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Abstract The accuracy of channel state information (CSI) acquisition directly affects the performance

of millimeter wave (mmWave) communications. In this article, we provide an overview on CSI acquisition,

including beam training and channel estimation for mmWave massive multiple-input multiple-output systems.

The beam training can avoid the estimation of a high-dimension channel matrix, while the channel estimation

can flexibly exploit advanced signal processing techniques. In addition to introducing the traditional and

machine learning-based approaches in this article, we also compare different approaches in terms of spectral

efficiency, computational complexity, and overhead.

Keywords beam training, channel estimation, machine learning, massive MIMO, millimeter wave

(mmWave) communications

Citation Qi C H, Dong P H, Ma W Y, et al. Acquisition of channel state information for mmWave massive

MIMO: traditional and machine learning-based approaches. Sci China Inf Sci, 2021, 64(8): 181301, https://doi.

org/10.1007/s11432-021-3247-2

1 Introduction

Millimeter wave (mmWave) communications have attracted extensive interest from academia, industry,
and government as they can make full use of abundant frequency resources at high frequency band
to achieve ultra-high-speed data transmission [1–4]. The mmWave communication systems are usually
equipped with large antenna arrays, known as mmWave massive multiple-input multiple-output (MIMO),
to generate highly directional beams and compensate for the severe path loss in high frequency band.
However, the performance of directional beamforming largely relies on the accuracy of channel state
information (CSI) acquisition. Compared to the traditional MIMO systems, the CSI acquisition in
mmWave massive MIMO systems is challenging. On one hand, the large antenna arrays form a high-
dimension channel matrix, whose estimation consumes more resources, e.g., pilot sequence overhead,
sounding beam overhead, and computational complexity. On the other hand, the mmWave massive
MIMO typically employs a hybrid beamforming architecture, where the radio frequency (RF) chains
are much fewer than the antennas. Therefore, we can only obtain a low-dimension signal from the RF
chains instead of directly getting a high-dimension signal from the frontend antennas, which makes CSI
acquisition much more challenging than usual.

CSI acquisition includes beam training and channel estimation. The beam training sounds the mmWave
massive MIMO channel with analog transmit and receive beams to find the beam pairs best fitting for the
transmission, which can avoid the estimation of a high-dimension channel matrix. The channel estimation
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focuses on estimating a high-dimension channel matrix, which flexibly exploits advanced signal processing
techniques, such as compressed sensing (CS). Both beam training and channel estimation can exploit
machine learning (ML) techniques in addition to the traditional approaches.

In this article, we provide an overview on CSI acquisition for mmWave massive MIMO. We first
discuss beam training approaches, including beam sweeping, hierarchical beam training, and ML-based
beam training. Then we present channel estimation approaches, including the CS-based sparse channel
estimation, array signal processing based channel estimation, and ML-based channel estimation. Finally,
we compare different approaches in terms of spectral efficiency (SE), computational complexity, and
incurred overhead, and identify some future research topics in this area.

We use the following notations. Symbols for vectors (lower case) and matrices (upper case) are in
boldface. (·)T and (·)H denote the transpose and conjugate transpose (Hermitian), respectively. Let CP×Q

denote the set of complex-valued matrices with P rows and Q columns. According to the convention,
O(·) denotes the order of complexity.

2 Channel modeling and system overview

In this section, we first briefly review the state-of-the-art channel models for mmWave massive MIMO
systems, followed by the elaboration on the dedicated transceiver architecture. At the end of this section,
an enhanced-mmWave massive MIMO system with reconfigurable intelligent surface (RIS) is briefly
discussed.

2.1 mmWave massive MIMO channel modeling

It has been shown that mmWave massive MIMO channels follow the Saleh-Valenzuela model [5,6], which
can be further divided into the narrowband model [7] and the wideband model [8]. The narrowband model
is a summation of the product of several transmitting channel steering vectors and receiving channel
steering vectors, where each element involved in the summation corresponds to a channel multipath
component (MPC). We consider a multiuser mmWave massive MIMO system comprising a base station
(BS) and U users. Let NT and NR denote the number of antennas at the BS and each user, respectively.
Define the channel matrix between the BS as Hu ∈ CNT×NR and the uth user as

Hu =

√

NTNR

Lu

Lu
∑

i=1

gu,iα(NT, θu,i)α
H(NR, ϕu,i), (1)

where Lu and gu,i denote the total number of resolvable paths and the channel fading coefficient of the
ith path for the uth user, respectively. The steering vector α(N, θ) is defined as

α(N, θ) =
1√
N

[

1, ejπθ, . . . , ejπθ(N−1)
]T

. (2)

Define the angle of arrival (AoA) and angle of departure (AoD) of the ith path of the uth user as ϑu,i and

ϕu,i, respectively, which are uniformly distributed over [−π,π). Then θu,i , sinϑu,i and φu,i , sinϕu,i

if the distances between adjacent antennas at the BS and the users are with half-wavelength. Since
the non-line-of-sight (NLOS) MPCs are usually much weaker than the line-of-sight (LOS) MPCs, the
mmWave MIMO channel is sparse in the angle domain, which only has a small number of significant
entries. However, due to the channel power leakage caused by the limited resolution of phase shifters,
this sparse property is not ideal [9], which brings the challenge for CSI acquisition.

While the narrowband model assumes the same delay for different MPCs, the wideband model further
considers the different delays of MPCs [10]. To tackle the frequency-selective fading caused by the
multipath delay spread in the wideband channel, orthogonal frequency division multiplexing (OFDM)
with K subcarriers is typically used to convert a wideband channel into multiple narrowband channels.
Define H

k
u ∈ CNT×NR as the channel matrix on the kth subcarrier between the BS and the uth user can

be expressed as

H
k
u =

D−1
∑

d=0

Hu,de
−j 2πkd

K , (3)
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Figure 1 (Color online) Hybrid architecture for mmWave MIMO transceiver.

where D denotes the number of delay taps of the channel. The channel matrix at the dth delay tap can
be expressed as

Hu,d =

√

NTNR

Lu

Lu
∑

i=1

gu,ipu(dTs − τu,i)α(NT, θu,i)α
H(NR, φu,i), (4)

where pu(t), Ts, and τu,i denote the pulse shaping, the sampling interval, and the delay of the ith path
for the uth user, respectively.

As an extension of the wideband channel model, a practical model in 3GPP TR 38.901 replaces each
channel MPC with a channel cluster, which further includes a number of channel rays with some minor
angel offsets. The 3GPP TR 38.901 reference implementation, known as the quasi deterministic radio
channel generator (QuaDRiGa) [11], has provided a system-level software to simulate realistic radio
channels including mmWave channels.

Based on the wideband model, the beam squint effect, which is caused by different delays of the received
signals from different receiving antennas, has been investigated [12, 13]. However, most studies neglect
the beam squint effect by assuming that the received signal contributed by the same MPC has the same
delay for different antennas. Sometimes it is necessary to further consider the detailed aspects of the
mmWave MIMO channel model so that the designed mmWave system can better match the practical
scenarios.

2.2 mmWave MIMO transceiver architecture

To balance complexity and performance, hybrid architecture, as shown in Figure 1, is widely used in
mmWave MIMO transceiver, where several antennas share one RF chain and signal processing is par-
tially in the digital and partially in the analog domains. Properly designed hybrid beamforming and
combining, with much lower complexity, can approach the achievable rate performance of fully-digital
beamforming [14]. Different from the fully-digital beamforming that needs the same number of RF chains
as that of the antennas, hybrid beamforming and combining uses much fewer RF chains than the antennas
and substantially reduces the hardware costs. From Figure 1, hybrid beamforming at the transmitter
side typically includes analog beamforming and digital beamforming, where the former generates highly
directional beams based on large antenna arrays and the latter mitigates the interference among parallel
data streams supported by multiple RF chains. Analog beamforming connects RF chains to antennas
by the phase shifters, switches, or electromagnetic lens. Hybrid combining works similarly as hybrid
beamforming, but at the receiver side.

There are two different connection modes for the phase shifters: full-connection and partial-connection
modes. In the full-connection mode, each RF chain connects to all antennas while in the partial-connection
mode, each RF chain only connects to a subset of antennas and therefore can further reduce the hardware
complexity but with some performance degradation. The phase shifters can only change the phases of
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Figure 3 (Color online) Illustration of mmWave massive MIMO communications system.

signals usually with limited resolution. To further reduce the hardware complexity, low-cost switches
with only on-and-off binary states can be used to partially replace the phase shifters [15, 16]. But the
time efficiency as well as the signal jitter when switching between two states should also be considered.
These hardware constraints bring new challenges to CSI acquisition comparing with other communication
systems. We will focus on CSI acquisition for mmWave communications in this article, as shown in
Figure 2.

2.3 RIS to enhance signal coverage

Recently, RIS has been proposed to improve signal coverage [17–20]. The RIS, sometimes also known as
the intelligent reflecting surface (IRS), can reflect the incident wireless signal by changing its amplitude
and phase, which functions similarly as a mirror to reflect the incident light. Therefore, it can help
cover the area without the LOS channel path, as illustrated in Figure 3, which well compensates for the
deficiency of the mmWave MIMO signal that mostly relies on the directional transmission. In mobile
mmWave wireless communications with ground vehicles [21] or unmanned aerial vehicles (UAVs) [22],
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the effective channel links between the users and the BS may be blocked by the buildings or other
users. In this context, the RIS can effectively reflect the signal and recover the link. Therefore, the
RIS can improve the reliability of the mmWave communications. But different from wireless relays,
RIS is generally implemented by low-cost hardware, such as meta-material antennas, positive intrinsic-
negative diodes, field effect transistors, and can passively reflect the signal in the RF frontend without
any baseband signal processing capabilities. The RIS introduces additional channel links between the
transmitter and the RIS as well as those between the RIS and the receiver [23–25]. As a result, the CSI
acquisition in the RIS-assisted mmWave massive MIMO system becomes much more complicated and
is different from that in mmWave systems. The traditional and ML-based CSI acquisition approaches
can be performed with the assistance of computing center that provides powerful computing capacity, as
shown in Figure 3. Since the RIS is a recent emerging technique for mmWave communications, there is
no much mature work in CSI acquisition for RIS-assisted mmWave massive MIMO system and therefore
we will skip the detailed discussion in this article.

3 Beam training

Beam training is a process to find a pair of transmit and receive beams that best align with the strongest
MPCs of the mmWave MIMO channel. Sometimes beam training is also called beam alignment [26]. For
the mmWave massive MIMO using electromagnetic lens that generally function as a DFT transformation
from the angle space to the beamspace, beam training is also called beam selection. Codebook-based beam
training is a popular and general method [27–30]. For this method, a codebook is first established at the
transmitter and the receiver, and each codeword in the codebook, similar to the channel steering vector,
generates a beam. During the beam training, we use a pair of codewords selected from the codebooks
at the transmitter and receiver, respectively, to generate a pair of beams and then measure the received
signal power. The pair of codewords corresponding to the largest received signal power is identified as
the result of beam training. As shown in Figure 2, the beam training approaches can be categorized into
three branches, including beam sweeping, hierarchical beam training, and ML-based beam training. In
brief, beam training identifying the best transmit and receive beams can avoid the challenge coming from
estimating a high-dimension mmWave MIMO channel matrix in the scale of the number of antennas.
With beam training, we only need to estimate a low-dimension equivalent channel matrix in the scale of
the number of the RF chains. Once the beam training is finished, we use the classical methods such as
least square or minimum mean squared error estimation, to estimate the equivalent channel matrix with
a small number of pilot symbols.

3.1 Beam sweeping

The most straightforward approach on beam training is testing all pairs of codewords to find the best one,
which exhaustively selects each pair of codewords one by one and is thus very similar to sweeping different
angles in the space. As a result, this approach is called beam sweeping [31]. After beam sweeping, we
can find the best pair of codewords and use them for transmit and receive beamforming. However, we
may generate even better fine-grained beams by further performing angle estimation based on the best
pair of codewords [32,33], since the codewords used in the beam sweeping usually point at coarse-grained
discrete angles.

To reduce the overhead of beam sweeping, one scheme only uses a subset of codewords for the beam
sweeping, which is called partial beam sweeping [34]. As shown in Figure 4, the transmit and receive
codewords generating transmit and receive beams, respectively, can form two-dimensional grids, where
each grid represents a pair of transmit and receive codewords. The partial beam sweeping divides the
beam training into two stages for the initial test (INTS) and the additional test (ADTS). While the
original beam sweeping exhaustively tests all grids in Figure 4, the partial beam sweeping method only
tests half or fewer of all the grids in the stage of INTS. By exploiting the coherence of different grids
caused by the mmWave channel power leakage, the neighboring two columns and two rows with the largest
average energy are identified, where the two tested grids on the cross of the identified two columns and
two rows are predicted as the best codeword pair or best grid. Then the untested grids in the neighbor
of the predicted best grid are tested in the ADTS, which only needs a very small training overhead [34].
Furthermore, to break down the constraint that the grid selection in the INTS should be equally spaced,
the probabilistic selection is introduced for the grid selection so that the number of the selected grids
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Figure 4 (Color online) Illustrations of partial beam sweeping and hierarchical beam training.

in the INTS can be set randomly. Compared with the beam sweeping, the partial beam sweeping can
substantially reduce the beam training overhead with small sacrifice of SE performance.

Aside from directly reducing the training overhead, another option is to consider more efficient use of
the total training energy budget. In [35], the beam sweeping is divided into two stages. In the first stage,
all beam pairs are tested in the same way as the beam sweeping, but a set of less favorable pairs determined
from the received signal profile is then eliminated. In the second stage, an extra measurement is taken
for each of the survived pairs and the best beam pair is determined by comprehensively considering these
two stages.

Auxiliary beams can also be used to assist the beam sweeping as well as the beam tracking. Different
from using only one beam for beam sweeping, multiple beams with one main beam and some auxiliary
beams are used together for beam sweeping. Since we can compare the power between the main beam
and the auxiliary beams, estimation of channel AoA and AoD can be improved [36]. Auxiliary beams
are also capable of tracking the angle variations in mobile mmWave communications scenarios, where
high-resolution angle tracking strategies can be designed [37].

3.2 Hierarchical beam training

Another approach to reducing the beam training overhead is hierarchical beam training, which uses a
fast codeword selection strategy based on a hierarchical codebook [38–44]. The hierarchical codebook
has multiple layers with increasing numbers of codewords from the upper to the lower layers. That
is, the upper layer consists of a small number of low-resolution codewords that generate wide beams
and the lower layer has a large number of high-resolution codewords that generate narrow beams with
highly directional beam gain. As shown in Figure 4, the hierarchical beam training usually first tests the
mmWave channel with some wide beams generated by low-resolution codewords at the upper layer and
then narrows down the beam width layer by layer until a best codeword at the bottom layer is obtained.

Many studies focus on the codeword design under different hardware constraints, including the lim-
ited resolution, constant envelope of phase shifters, and the limited number of RF chains. To design
a codeword with a wide beam coverage, the simplest scheme is to power off some antennas; but will
consequently reduce the total radiation power and affect the signal coverage. A better scheme is to divide
a large antenna array into several subarrays [39], where each subarray generates a beam and we optimize
the weighted summation of the subarray beams to approximate the objective beam pattern. To further
improve the performance of beam pattern for the generated beams under the hardware constraints, e.g.,
reducing the mainlobe fluctuations or enlarging the sidelobe attenuation of the generated beam, we may
design ideal codewords in the first step by ignoring the hardware constraints and then generate practical
codewords considering the hardware constraints to approximate the ideal codeword by alternative min-
imization in the second step [30]. For the non-convex codeword design problem under the constraints
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of the transition band and the ripple on mainlobe or sidelobes, an efficient algorithm is proposed and
closed-form expressions of the beam training error rate are derived [40]. To support simultaneous beam
training for multiple users and therefore improve the efficiency of multiuser beam training, adaptive hi-
erarchical codebook based on multi-mainlobe codewords can be further considered, where each mainlobe
can be pointed at a spatial region that a user may be probably located in [45, 46]. As such, the total
training overhead can be substantially reduced.

3.3 ML-based approaches

Recently, ML has been introduced for the mmWave beam training by exploiting the temporal, frequency or
spatial correlation of the mmWave communications. Two main branches of ML for beam training include
supervised learning and reinforcement learning (RL), where the labeled training dataset is required by
the former but not by the latter. The RL enables an agent to learn how to take a good action on the
environment aiming at getting the largest rewards from the environment, by continuous exploration and
exploitation.

3.3.1 Supervised learning-based approaches

The commonly used methods for supervised learning include the methods based on neural network (NN),
such as deep NN (DNN), convolutional NN (CNN), recurrent NN (RNN). To reduce the overhead of
beam sweeping, a beam alignment method only testing partial beams can be used to predict the beam
distribution and the best beam pair based on the NN, where the NN is trained offline to exploit the
channel spatial correlation using simulated mmWave channel data [47]. To improve the efficiency of
beam training, beams with different widths, e.g., wide beams and narrow beams, can be used. Given the
wide beam measurements, a super-resolution-inspired deep learning method based on the CNN can be
used to estimate the beam qualities of narrow beams and therefore select the best narrow beam for data
transmission. By capturing the spatial correlation as well as the temporal correlation, a beam qualities
prediction model based on a convolutional long short term memory (LSTM) network is used to estimate
the current beam qualities from the historical data [48]. In fact, we may treat a pair of transmit and
receive beams as a pixel of an image, where the beam training can be treated as an image reconstruction
problem. Based on the off-line eigen-beam extraction from the original beam-domain receive power map
(BDRPM) and partial beam measurements, we can reconstruct a full BDRPM by the DNN [49].

To assist the beam training, additional information including the positions and orientation of users [50,
51], situational awareness [52], and those coming from sub-6GHz channel [53] and light detection and
ranging (LIDAR) sensors [54] can be employed. In [50], a pair of transmit and receive beams can
also be considered as a fingerprint at a particular position. Based on an NN trained by a fingerprint
database, we can predict the candidate beam pairs given the position of the users, which will only incur
small beam training overhead. In [51], the position and orientation are input to a DNN that essentially
functions as a multi-labeled classifier to obtain the probability of each beam pair being the best one
under indoor scenarios. By collecting and exploiting the situational awareness information, e.g., the
positions and types of the receiver and its neighbors, the mmWave beam training can be formulated as
a classification problem, where the ensemble learning methods can be leveraged to design efficient and
robust schemes [52]. It is well known that the sub-6 GHz wireless channels have better propagation
condition than the mmWave ones. If sub-6 GHz channels are available, the mapping functions to predict
the best mmWave beam pair from the sub-6 GHz channels can be better modeled by the DNN than the
analytical methods [53]. In autonomous driving, LIDAR is a sensor widely equipped for high-resolution
mapping and position, where the LIDAR sensor data can be used to train the CNN to find a set of beams
for mmWave communications [54].

3.3.2 RL-based approaches

Different from the supervised learning that relies on the labeled training dataset, the RL does not need
such kind of information and therefore is more flexible. Aiming at obtaining the largest rewards from
the environment, an agent learns how to take a good action towards the environment through continuous
exploration and exploitation. As a straightforward approach of RL, multi-armed bandit (MAB) can
be applied for mmWave beam training. MAB addresses a sequential decision problem that an agent
selects an arm with a trade-off between exploitation and exploration to maximize the expected reward.
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Each pair of transmit and receive beams can be regarded as an arm of the MAB model. Then the
beam training can be formulated as the problem of finding a best arm, which can be typically solved by
upper confidence bound (UCB) algorithms. In [55], the correlation and unimodality properties across
beam training are exploited, which inspires the proposed unimodal beam alignment algorithm with the
asymptotically optimal performance. In [56], the beam training is divided into two stages, including the
beam pair selection stage and the beam refinement stage. In the first stage, coarse beam directions are
identified by the proposed greedy UCB and risk-aware greedy UCB algorithms. In the second stage, a
modified optimistic optimization algorithm further refines the results from the first stage. Considering
the multipath propagation of mmWave channels, M arms with M largest UCBs instead of only one
arm are selected at each time slot, where the transmission rate is iteratively updated according to the
feedback [57].

In addition to the UCB algorithm, the Bayesian methods can also be used to solve the beam alignment
problem based on the MAB model. The linear Thompson sampling can be integrated with sparse Bayesian
learning and Kalman filters for smart exploration of feasible actions [58]. In [59], a second-best preference
policy is proposed to restrict the value function and select the beam pair with the current sub-optimal
priority to achieve the best balance between exploitation and exploration.

Besides the UCB and Bayesian algorithms, a fast ML method based on contextual information is
proposed to use rough user location and aggregate the received data to learn and continuously adapt to
the actual channel environment [60], while a hierarchical beam alignment method exploiting the inherent
correlation among beams determines the optimal beam with accelerated BA process and reduced beam
training overhead [61].

Compared to the MAB model, it is more sophisticated to model the beam training as a Markov decision
process, where Q-learning methods are typically employed. In [62], the estimation of beam steering angle
is divided into two phases. In the first phase, Q-learning based beam tracking finds the optimal beam.
In the second phase, several beams neighboring the optimal beam found in the first phase are tested,
where the tested beam pair with the largest received signal strength is then selected for the modified
auxiliary-beam-pair-based angle estimation. In fact, the Q table in the Q-learning methods can be well
approximated by the DNN, which is named as deep Q-network (DQN). In [63], the DQN is used to learn
the change of the mmWave communication channels and intelligently train the beams with low overhead.

4 Channel estimation

Channel estimation, as the other category of CSI acquisition, aims at accurately estimating the mmWave
massive MIMO channels. As shown in Figure 2, the mainstream channel estimation methods can be
divided into three branches, including CS-based sparse channel estimation, array signal processing-based
channel estimation, and ML-based channel estimation.

4.1 CS-based sparse channel estimation

Extensive studies on channel measurement and modeling have demonstrated that the scattering environ-
ment in mmWave frequencies is sparser than its lower frequency counterpart, such as in the sub-6 GHz
channel. Therefore, we can exploit the channel sparsity by formulating channel estimation as a sparse
recovery problem and solve it using the CS algorithms. In general, we first obtain the AoDs/AoAs and
then estimate the channel gains. Let z denote a sparse vector, where its locations and values of the
non-zero entries indicate the quantized AoDs and AoAs and path gains, respectively. The performance
loss caused by the quantization error proves to be minor with a fine-grain enough candidate set for AoDs
and AoAs [64]. Owing to the channel sparsity, the number of non-zero entries in z is much smaller than
its dimension.

The orthogonal matching pursuit (OMP) algorithm is popular for sparse channel estimation for
mmWave wireless system [23, 64–66]. During the downlink channel training, random beamforming and
projection can be used to estimate the mmWave channel, where the OMP algorithm is adopted to estimate
the quantized AoDs and AoAs corresponding to the largest entries of z and a lower bound on the achiev-
able rate as a function of the CS measurements is provided [65]. However, the proposed method in [65]
only estimates the LOS channel path of the mmWave channel, which does not make full use of mmWave
channel resources. To solve this problem, OMP-based estimation methods for multiple channel paths
are proposed [64, 66]. Different from the random beamforming adopted in [65], a hierarchical codebook
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with adaptive CS algorithm to recover z is designed in [64], which can invoke hybrid processing during
the pilot transmission and thus yield more efficient beam patterns to capture the non-zero entries in z.
The AoD, AoA, and the gain of each channel path are iteratively distilled from the residual signal, where
the residual signal is iteratively updated by subtracting the components contributed by the previously
estimated paths. In [66], the OMP-based channel estimation is evaluated with a redundant dictionary,
which consists of array response vectors with finely quantized angle grids non-uniformly distributed in
[0,π]. The lower and upper bounds of the sum-of-squared errors of the proposed method are analytically
derived, while the pilot vectors are designed to minimize the coherence of the sensing matrix. Note that
the receiving noise in the mmWave system is not white since it is multiplied by the hybrid combiner at the
receiver. In [67], a simultaneous-weighted-OMP algorithm exploits the common support among different
subcarriers, where the spatial noise components are simultaneously whitened by Cholesky factorization
of the hybrid combiner and the most likely support index in the sparse beamspace channels can be esti-
mated more accurately before whitening. Since the OMP algorithm only saves the best candidate atom
having the largest projection with the residue at each iteration, it estimates the dominant channel entries
sequentially and greedily, which cannot guarantee the globally optimal performance. In [68], a regularized
multipath matching pursuit algorithm better than OMP is proposed for sparse channel estimation, where
multiple candidate atoms instead of only one atom are kept at each iteration and a regularization step is
introduced to reduce the computational complexity.

Sparse channel estimation for mmWave massive MIMO with electromagnetic lens structure draws
the research interest, since the electromagnetic lens with switches have lower hardware complexity than
the phase shifter networks. In [69], mmWave system with 2D lens is considered, where the structural
characteristics of beamspace channel show that the support of the sparse beamspace channel is uniquely
determined by its largest entry. Therefore, only one projection is needed to determine the beamspace
channel support of each path, which can substantially reduce the computational complexity. Better
performance can be achieved by the proposed method in [69], especially in the low signal-to-noise ratio
(SNR) region, compared to the classical CS algorithms. The mmWave system with 3D lens is considered
in [70, 71]. It is shown that the most power of the beamspace channel matrix is concentrated on a
much smaller submatrix, which inspires the adaptive support detection method to model the beamspace
channel support as a rectangle, with the adaptively modified width and length of the rectangle [70]. It is
further demonstrated in [71] that the main power of the beamspace channel is more concentrated on an
area of dual crossing than the rectangle, which brings forward a dual crossing channel estimation method
to iteratively refine the selection of dominant entries until the stop condition is met. At each iteration,
two adjacent columns and rows with the largest channel power are identified to form the area of dual
crossing, where the selection of the dominant entries is adjusted by deleting the weakest outer entry at
dual crossing corners and then adding a new entry outside of the strongest outer entry.

To mitigate the performance loss caused by the quantization error, we may increase the resolution of
the AoD/AoA candidate set, which however incurs high hardware complexity. To tackle this problem, off-
grid super-resolution channel estimation based on gradient descent [72], atomic norm minimization [73],
Dirichlet kernel [74], and distributed grid matching pursuit [75] has been investigated. Inheriting the
formulated sparse recovery problem, the intractable l0-norm minimization is equivalently transformed
into the minimization of a surrogate function [72]. By resorting to the iterative reweighting method, the
above equivalent problem is then solved with the AoDs and AoAs updated based on gradient descent. If
the initialized channel sparse level is set larger than the genuine one, we can find the genuine number of
paths by iteratively pruning those false paths. To reduce the computational complexity, singular value
decomposition-based preconditioning can be further used by properly initializing the AoDs and AoAs.
Channel estimation can also be formulated as an atomic norm minimization problem, which avoids
discretizing the angle spaces of the AoA/AoD into grids and therefore achieves high-accuracy channel
estimation [73]. Further reformulating the atomic norm minimization problem as a semi-definite program,
alternating direction method of multipliers can be employed where each iteration only needs closed-form
computation. By assuming that the beamspace parameters can be any value in the beamspace domain
and do not restrict to predefined discrete angles, implicit Dirichlet kernel structure in the Fourier domain
is used, where the OMP algorithm is employed to find the maximum of the Dirichlet kernel peaks instead
of recovering all the non-zero entries in the virtual DFT domain [74]. In [75], a channel estimation
method based on distributed grid matching pursuit is developed to iteratively detect and adjust the
channel support, where the adaptive measurement matrix is determined by the most possible channel
paths in the outer loop iteration and the AoAs and AoDs estimation associated with the LOS path is
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improved with the grid matching strategy in the inner loop iteration.

4.2 Array signal processing based channel estimation

Array signal processing technique, originally proposed for the AoA estimation in radar system with a large
antenna array, can also be applied for mmWave massive MIMO channel estimation. The estimating signal
parameters via rotational invariance techniques (ESPRIT) algorithm and multiple signal classification
(MUSIC) algorithm are the classical AoA estimation algorithms used in radar systems. But different
from the radar system, the mmWave massive MIMO typically employs a hybrid beamforming architecture
where the RF chains are much fewer than the antennas, meaning that we can only obtain a low-dimension
signal from the RF chains instead of directly getting a high-dimension signal from the frontend antennas.
Compared to the high-dimension mmWave MIMO channel matrix to be estimated, the low-dimension
signal from the RF chains is not enough.

Channel estimation methods based on the ESPRIT algorithm are proposed in [76–80]. The training
signals at both the BS and each user are designed to obtain the low-dimensional effective channel [76,77],
while the spatial smoothing and the forward backward averaging techniques are adopted to alleviate the
impact of coherent signals caused by multiple AoAs or AoDs close to each other. Moreover, the channel
matrix is converted to a real matrix so that the computational complexity can be reduced. To avoid the
information loss from the high-dimension signal to the low-dimension signal, a straightforward method
is to power off some antennas so that the time slots for channel estimation equal that of the antennas,
by which we estimate the AoAs and AoDs through a submatrix of the high-dimension mmWave MIMO
channel matrix and eventually combine the submatrices together to obtain an estimate of the full channel
matrix. Two methods based on the beamspace ESPRIT algorithm are proposed in [78, 79], where the
hybrid precoding matrix and combining matrix are designed as the DFT matrix so that the beamspace
ESPRIT algorithm can be directly applied. However, the hybrid precoding matrix and combining matrix
can only be partial DFT matrix, since the time slots for channel estimation are less than the total
antennas. Consequently, the AoAs and AoDs to be estimated are restricted in a small range, indicating
that the aforementioned methods are not generally applicable for the estimation of any AoAs and AoDs.
Note that powering off antennas will reduce the total radiation power and therefore reduce the signal
coverage. A better method is to turn off fewer antennas, e.g., only one antenna [80]. To achieve high-
resolution estimation of AoAs and AoDs using the ESPRIT method, multiple stages of pilot transmission
can be considered. AoAs and AoDs can be first estimated by a two-dimensional ESPRIT scheme and
then paired, based on which the channel gain can be estimated by the least squares (LS) method. To
further reduce the pilot overhead, a one-dimensional ESPRIT and minimum searching-based scheme only
needing two stages are proposed, where the AoAs are first estimated and then the AoDs are obtained by
searching the minimum value within the identified mainlobe. Besides, hybrid beamforming and combining
matrices for the pilot transmission can be designed to yield almost equal received powers for any AoA
and AoD so that robust super-resolution channel estimation can be achieved.

Channel estimation methods based on the MUSIC algorithm are proposed in [81,82]. The beamspace
2D MUSIC algorithm in [81] estimates the AoAs and AoDs of the incoherent signals and then the LS
method is adopted to estimate the channel gain for each path. Similar to [78], the hybrid precoding and
combining matrices are partial DFT matrices, indicating that the beamspace 2D MUSIC algorithm can
only estimate AoAs and AoDs in a small range. For the coherent signals, the beamspace 2D MUSIC
algorithm is also used [82]. Since the signals are coherent, different signals can merge into one signal,
which decreases the number of independent sources. In this context, the received signals are multiplied
by an exchange matrix so that the number of antennas in subarrays equals the total number of array
entries. However, the hybrid precoder and combiner can only be partial DFT matrices, which also suffers
from the drawbacks of a small estimation range.

4.3 ML-based solutions

The fast development of ML motivates its application in channel estimation for mmWave massive MIMO.
In particular, deep learning (DL) based methods have attracted many interests since they can extract
features via multiple neural layers and accelerate the computation dramatically resorting to parallel
computing. The DNN can be trained to estimate the channel parameters including AoAs, AoDs, and
channel gains.
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ML-based channel estimation using the denoising methods is proposed in [83–88]. In [83], the beamspace
mmWave massive MIMO channel matrix is treated as a 2D image, where a learned denoising-based ap-
proximate message passing (LDAMP) NN integrating denoising CNN estimates the mmWave channel by
subtracting the estimated residual noise from the noisy channel. To further improve the estimation per-
formance of [83], the denoising process is divided into several stages, mainly including the preprocessing
stage and the fine processing stage [84, 85]. In [84], a learned approximate message passing (LAMP)-
based network with deep residual learning for channel estimation includes two stages. In the first stage,
the LAMP network exploits the beamspace channel sparsity to get a preliminary channel estimation,
while in the second stage the deep residual learning further refines the coarse estimation obtained in the
first stage and reduces the impact of channel noise. In [85], a fully convolutional denoising approximate
message passing algorithm has three stages. In the first stage the LAMP network processes the received
signal and the mmWave channels; in the second stage, a fully convolutional denoising network extracts
noise characteristics and obtains the noise level; and in the final stage, the feature channel is increased
or decreased, respectively, by down-sampling or up-sampling. To accurately estimate the beamspace
channel, the original soft-threshold shrinkage function in the LAMP network can be replaced by a de-
rived Gaussian mixture shrinkage function, based on the prior information that the beamspace channel
elements can be modeled by the Gaussian mixture distribution [86]. Note that the above denoising-based
channel estimation methods are tailored to specific noise levels. To improve the flexibility and efficiency
of denoising-based channel estimation, a fast and flexible denoising CNN is proposed, where the sparse
mmWave channel matrix is also treated as a natural image [87]. By using a flexible noise level map as the
input, the proposed denoising network can be used for a wide range of SNR levels. Moreover, to reduce
the training and testing latency, each image in the proposed denoising network is divided into several
sub-images.

In fact, the ML can also be directly used to predict the mmWave channel besides functioning as
denoisers [89–92]. In [89], the DNN learns the mapping function between the received omni-beam patterns
and the mmWave channel, while the LSTM is adopted to track the channel. However, in practical
mmWave wireless system equipped with a large antenna array, it is difficult to obtain the omni-directional
signal, which requires powering off all the antennas except one antenna and consequently reduces the
radiation power and signal coverage. Since the mmWave channel exhibits sparse property in beamspace,
the beamspace channel amplitude can be introduced for the training of the DNN [90]. Then based on it,
the significant entries in the beamspace channel vector can be predicted. This method is more flexible
than directly predicting the positions of nonzero entries, especially when the beamspace channel is not
ideally sparse. The non-zero entries of the sparse channel can be obtained simultaneously by a well trained
DNN with significantly reduced running time, instead of the sequential greedy search by heuristic sparse
recovery algorithms, such as OMP. Moreover, the DNN can be trained under a noisy channel environment
with interference, making it robust to various channel conditions. To provide accurate channel estimation
close to the performance of the ideal minimum mean-squared error estimator, a robust framework on DL-
based channel estimation has been proposed for mmWave massive MIMO-OFDM systems [91]. The
main idea is using the deep CNN to capture the spatial, frequency, and temporal channel correlation
simultaneously, which is difficult for the traditional methods. Figure 5 illustrates the framework of deep
CNN-based channel estimation, where NT and NR are the numbers of antennas at the transmitter and
the receiver, respectively, and MT[n] and MR[n] are the numbers of beamforming and combining vectors,
respectively, for pilot transmission in the nth coherence interval. As shown in Figure 5, the received pilots
at Q subcarriers in the current coherence interval are first processed by the tentative estimation module.
Then the tentatively estimated channels together with those estimated in the previous S − 1 coherence
intervals are input into the developed deep CNN to obtain the estimated channels at Q subcarriers of the
current coherence interval. Specifically, the input of the deep CNN consists of 2QS real-valued matrices,
which are first processed by sixty-four 3×3×4 convolutional kernels. The obtained feature maps are then
filtered by eight convolutional layers with sixty-four 3×3×64 kernels. The output layer applies four 3×3×4
convolutional kernels to process the extracted feature maps to approximate the real channel matrices.
Through proper design, the CNN is able to capture the channel temporal correlation efficiently with
low complexity even without incorporating the long short-term memory architecture. Besides improving
the estimation accuracy and saving the running time, the proposed framework also reduces the pilot
overhead. Specifically, several successive coherence intervals are grouped as a channel estimation unit,
within which the pilot overhead can be reduced gradually at the cost of limited performance loss. The
developed CNN-based framework is robust to different propagation scenarios even unseen in the offline
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Figure 5 (Color online) Framework on deep CNN-based channel estimation.

Table 1 Comparisons of different channel estimation or beam training schemes

Scheme name Computational complexity Overhead

Beam

training

Partial beam sweeping [34] O(U(
NT

2NRF
+ 2) + 4U3) 2(

NT

2NRF
+ 3)

Hierarchical beam training [39] O(U log
2
NT + 4U3) 2U log

2
NT + U

MAB-based scheme [55] O(N3

T
) Depend on convergence speed

Channel

estimation

Adaptive CS-based scheme [64] O(U log
2
NT + 4U3) 2U log

2
NT + U

ESPRIT-based scheme [80] O(8UT 3 + 2UL2(10L+ 5T )) T

Deep CNN-based scheme [91] O(UN2

T
+ UNT

∑
Lc

l=1
F 2

l
Nl−1Nl) T

training stage and without any prior knowledge of the channel conditions.

5 Performance evaluation

In this section, we compare several typical approaches introduced in Sections 3 and 4 in terms of SE,
computational complexity, and overhead.

We consider a multiuser mmWave massive MIMO system, where a BS equipped with NT = 64 antennas
and NRF = 4 RF chains serves U = 3 single-antenna users. The mmWave massive MIMO channels are
generated based on the Saleh-Valenzuela model. In Table 1, we compare three beam training schemes and
three channel estimation schemes, including partial beam sweeping [34], hierarchical beam training [39],
the MAB-based scheme [55], the adaptive CS-based scheme [64], the ESPRIT-based scheme [80], and the
deep CNN-based scheme [91].

5.1 SE performance

Figure 6 compares the SE at different SNRs for the six schemes. From the figure, at the low SNR region,
the partial beam sweeping, the MAB-based scheme, and the deep CNN-based scheme outperform the other
three schemes. At SNR = −5 dB, the deep CNN-based scheme has 56.8%, 143.1% and 73.2% performance
improvement over the adaptive CS-based scheme, the ESPRIT-based scheme, and the hierarchical beam
training scheme, respectively, while the partial beam sweeping-based scheme has 104.7%, 217.4% and
126.1% performance improvements over the adaptive CS-based scheme, the ESPRIT-based scheme, and
the hierarchical beam training scheme, respectively. Since the narrow beams with large beam gain are
used by both the partial beam sweeping and the MAB-based scheme, better anti-noise performance
can be achieved. On the contrary, for the hierarchical beam training and adaptive CS-based schemes
relying on hierarchical codebooks, wide beams with relatively small beam gain are used at the upper
layer, which leads to worse anti-noise performance. The deep CNN-based scheme can train the neural
network under the predefined noisy condition and can guarantee better anti-noise performance than the
other two schemes. At SNR = 15 dB, the ESPRIT-based scheme has 8.3%, 15.7%, 18.0%, 23.6%, and
36.3% performance improvement over the deep CNN-based scheme, the partial beam sweeping scheme,
the adaptive CS-based scheme, the MAB-based scheme, and the hierarchical beam training scheme,
respectively. Since the ESPRIT-based scheme employs singular value decomposition to achieve super-
resolution estimation of the AoA and AoD, it performs the best in the high SNR region and the worst in
the low SNR region among all the schemes.
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Figure 6 (Color online) Comparisons of spectral efficiency for different schemes in terms of SNR.

5.2 Computational complexity

The computational complexity for the six schemes is compared in Table 1. To compare computational
complexity for different schemes, we set the parameters of the deep CNN-based scheme as [91], where
Q = 1, the number of convolution layers Lc = 10, the side length of the filters used by the lth layer
Fl = 3, the number of input feature maps of the lth layer Nl−1 = 2, for l = 1 and Nl−1 = 64, for
l = 2, . . . , 10, and the number of output feature maps of the lth layer Nl = 64, for l = 1, . . . , 9 and
Nl = 2, for l = 10. By setting the number of channel paths and the length of pilot symbols to be
L = 2 and T = 8, respectively, we can figure out that the computational complexities of partial beam
sweeping, hierarchical beam training, MAB-based scheme, adaptive CS-based scheme, ESPRIT-based
scheme, and deep CNN-based scheme, are in the orders of the magnitudes of 102, 102, 105, 102, 104 and
107, respectively. In brief, the deep CNN-based scheme has the largest computational complexity among
all the schemes but can be accelerated dramatically via parallel computing.

5.3 Overhead comparison

To compare the overhead for different schemes in the unit of time slots, we assume either a test of a beam
pair or transmission of a pilot symbol occupies one time slot in Table 1. Note that both the ESPRIT-
based scheme and deep CNN-based scheme need T time slots, which is independent of the numbers of the
antennas, served users, and RF chains. Since both the adaptive CS-based scheme and the hierarchical
beam training scheme are based on hierarchical codebooks, they have the same overhead, which is larger
than that of partial beam sweeping for a small NT, and vice versa.

6 Conclusion and open issues

In this article, we have provided an overview on CSI acquisition for mmWave massive MIMO, including
beam training and channel estimation, with focus on the traditional and the ML-based approaches.
The in-depth review along with a comprehensive performance comparison demonstrates the promising
prospect of mmWave massive MIMO communications from theory to practice. However, there are still
many open issues for future research. Here are some of them.

6.1 CSI acquisition for mobile mmWave massive MIMO

Since the mmWave massive MIMO uses highly directional beams to compensate the path loss, the CSI
acquisition and tracking are critical for reliable communications, especially in the mobile scenario, e.g.,
communications with ground vehicles or UAVs. How to efficiently manage the beams and design the
channel tracking algorithms in case of channel blockage is an open issue.
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6.2 CSI acquisition for RIS-assisted mmWave massive MIMO

The RIS introduced in Section 2 can improve the signal coverage of mmWave massive MIMO by creating
additional channel links. The beam training and channel estimation for RIS-assisted mmWave massive
MIMO worth further investigation, especially in the dynamic wireless environment with multiple RISs.
The low-cost and passive characteristics of RIS and hardware constraints should be taken into account.

6.3 CSI acquisition based on RL

RL can interactively learn how to take a good action based on the reward and does not rely on the
labeled training dataset, which well matches with the mmWave channel with short coherence time. How
to effectively integrate RL in the CSI acquisition, i.e., conceive smart beam training strategies or intelligent
channel estimation schemes, deserves more studies.

6.4 Advanced CSI acquisition techniques

Although the beam training and channel estimation are presented in two separate categories in this article,
they are not independent to each other. Sometimes we may combine them together, e.g., first using beam
training benefit from directional transmission gain and then using advanced estimation methods coming
from channel estimation category for flexible parameter estimation. More efficient and intelligent CSI
acquisition techniques are interesting and worth future study.
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