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Dear editor,

Multi-agent systems (MASs) are ubiquitous in natural as

well as artificial systems. Over the past several decades, an

increasing number of researchers have devoted attention to

distributed cooperative control problems of MASs such as

mobile robots [1] and unmanned aircraft [2]. Recently, dif-

ferent containment control problems with multiple leaders

have arisen, including finite-time coordination [3, 4], forma-

tion producing [5], and heterogeneous MASs [6]. In previ-

ous studies, the objective of containment control has been

to make the followers converge to the convex hull formed

by the leaders [7,8]. However, in real-world applications for

containment control of MASs, disturbances from the envi-

ronment make it more reasonable to change the aforemen-

tioned convex hull into its interior points because the follow-

ers sometimes are not allowed to converge to the boundaries.

They should be constrained to converge to interior points of

a leaders-formed convex hull.

Consider an MAS comprising n agents among existing

studies on containment control problem. A weighted di-

graph G=(V , E ,A) comprises a node set V = {1, . . . , n},

an edge set E ⊆ V × V , and a weighted adjacency matrix

A = [aij ] ∈ R
n×n satisfying aij > 0 if (j, i) ∈ E , oth-

erwise aij = 0. Here, we assume that (i, i) /∈ E ; hence,

aii = 0 for all i = 1, . . . , n. The set of neighbors of node

i is denoted by Ni = {j ∈ V : (j, i) ∈ E}. The Lapla-

cian matrix L = [lij ]n×n of a weighted digraph G is defined

as lii =
∑n

j=1 aij and lij = −aij for i 6= j. Certainly, L

satisfies L1n = 0. Each agent is regarded as a node and

the element aij of the adjacent matrix denotes the weight

on information link (j, i). The dynamics of the ith agent is

described by

ṗi(t) =
n
∑

i=1

aij(pj(t) − pi(t)), (1)

where pi(t) ∈ R
N .

Assume that there are m leaders and n−m followers. The

Laplacian matrix L related to the communication digraph

G can be partitioned as

L =

[

0m×m 0m×(n−m)

L1 L2

]

, (2)

where L1 ∈ R
(n−m)×m and L2 ∈ R

(n−m)×(n−m) .

On the basis of [3], we assume that the communication

digraph G has a directed spanning forest. All the eigenval-

ues of L2 then have positive real parts, and each element of

−L−1
2 L1 is nonnegative. The sum of each row of −L−1

2 L1

is 1.

The containment control problem is solved for MASs un-

der the aforementioned communication digraph G. The fol-

lowers converge to the convex hull formed by the leaders, in-

cluding the boundaries. However, when the concerned MAS

is disturbed by nonvanishing perturbation, it is necessary

that followers cannot remain on the boundary of the con-

vex hull formed by the leaders of MASs. The agents on the

boundary will escape the convex hull because of the non-

vanishing disturbance. Consider the containment control of

MASs with a nonvanishing disturbance,

ṗi(t) =
n
∑

i=1

aij(pj(t) − pi(t)) + di(t), (3)

where di(t) satisfying ‖di(t)‖ 6 hi(constant) is a bounded

disturbance occurring on the ith agent. From the nonlinear

system analysis [9], the following inequations are concluded

to hold under some conditions:

‖pi(t)‖ 6 kie
−γi(t−t0)‖x(t0)‖ and ‖pi(t)‖ 6 bi,

where ki, γi, and bi are some suitable constants. The au-

thors of previous studies have proposed variable results for

this problem. However, with increasing h, the bound of

the norm of the MASs’ states increases sharply. Hence, we

notice the disturbance-tolerant character of the convex hull
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formed by multiple leaders in containment control problem

of MASs to deal with the disturbance.

First, to use this disturbance tolerant character, an as-

sumption is needed.

Assumption 1. There are at least N +1 leaders that are

not on the same (N − 1)-D hyperplane.

This assumption ensures that the convex hull formed by

the leaders is an N-D convex set, which means that the

concerned convex hull is disturbance-tolerant.

Furthermore, the relation between the position of an

agent and its neighbors’ is considered.

Definition 1. λij is called the jth convex parameter of

the ith follower agent, where λij is the ith row and jth col-

umn element of −L−1
2 L1.

This relation of the specific values of the elements in

−L−1
2 L1 is significant for the disturbance-tolerant charac-

ter of the concerned MAS. Thus, we propose the following

theorem.

Theorem 1. Assume that the communication digraph G

has a directed spanning forest. For the ith agent, the jth

convex parameter is the average of the jth convex parame-

ters of the ith agent’s neighbors.

From Theorem 1, we can easily conclude that the follow-

ing relation exists between the element of −L−1
2 L1 and the

topology of the concerned MAS.

Corollary 1. Assume that the communication digraph

G has a directed spanning forest. The sum of each row of

−L−1
2 L1 is 1 and the element of −L−1

2 L1, λij , is positive

if and only if the ith leader has a directed path to the jth

follower.

Corollary 1 reveals an evident and reasonable fact that

if an agent just obtains the information from the leaders in

the same boundary, it will converge to this boundary. Under

the existing conditions of the topology of MASs with multi-

ple leaders, the convex parameters of an agent may be zero;

therefore, it lies on the boundary. From Corollary 1, we can

easily change the position of the followers on the boundary

of the convex hull formed by the leaders via a few steps.

For instance, we can simply add a connection between the

concerned agent and a follower agent within the convex hull

to prevent it from converging to the boundary.

The next problem is how to adjust the convex parame-

ters of agents to make their positions sufficiently far from

the boundaries based on the variable bounds of agents’ non-

vanishing disturbance bi.

Before a topology reconfiguration algorithm is proposed,

an assumption should be noted.

Assumption 2. The upper bounds of nonvanishing dis-

turbance of all agents, hi, are known.

In view of the given hi of the followers, their order from

largest to smallest can be obtained as hk1
> hk2

> · · · >

hkn−m
. We propose the following algorithm to solve the

containment control problem with topology reconfiguration.

Step 1. Calculate the center OL and the radius RL of

the inscribed ball of the convex hull formed by the leaders.

Thus, the corresponding convex parameters (λr1 , . . . , λrm)

of the center can be obtained as the optimal objective for

topology reconfiguration.

Step 2. Eliminate the convex parameters of agents whose

values are zeros by redesigning the topology of the MAS. In

particular, add the communication between the agent with

the zero convex and nonzero convex parameters based on

proposed Corollary 1.

Step 3. The objective of the topology reconfiguration is

to make undesirable convex parameters converge to the opti-

mal one. In particular, based on hk1
> hk2

> · · · > hkn−m

with priority from hk1
to hkn−m

, two options exist for a

concerned agent whose neighbors are to be selected.

Adding a connection. Find an agent in the set of V −Ni,

which can be assumed as the kth agent. And add a con-

nection between the ith and the kth agent to minimize the

following value:

|λij + λkj − 2λrj |. (4)

Through the aforementioned process, the sum of the con-

cerned convex parameter and λij will approach 2λrj step

by step.

Cutting a connection. If the set of V − Ni contains few

agents, which may be a consequence of the large number of

the ith agent’s neighbors, we will search for the kth agent

in the neighbor set Ni and cut it, which makes
λij−λkj

λrj
−λij

the

largest.

Condition to stop adjusting the convex parameters. As-

sume that the distance between the concerned follower agent

and the boundary is Rip (i = 1, . . . , n − m; p is the ordi-

nal number of the step of adjusting the convex parameters

dealing with the ith follower agent). Then we will stop ad-

justing the convex parameters for the ith follower agent if

the inequality Rip > hki
holds, or Rip−hki

> e in practical

operation, where e is a small reasonable constant.

In the application of the aforementioned algorithm, we al-

ways use “cutting” to deal with MASs with a large number

of communications and “adding” to deal with MASs with

small number of communications.

Simulations. Consider the MAS with three leaders that

form an equilateral triangle in a two dimensional (2-D) plane

and with ten followers. Using the proposed method, we

design the communication topology of the concerned MAS

with a nonvanishing disturbance to solve the containment

control problem.

ṗi(t) =
n
∑

i=1

aij(pj(t) − pi(t)) + di(t), (5)

where the nonvanishing disturbance is chosen as a sinusoidal

or cosine function randomly:

di(t) = 0.5sin(t− 6), di(t) = 0.5sin(2t),

di(t) = 0.5sin(t− 2), di(t) = 0.5cos(t),

di(t) = 0.5cos(t − 4), di(t) = 0.5sin(2t − 1),

di(t) = 0.5cos(t − 1), di(t) = 0.5sin(3t),

di(t) = 0.5sin(t− 1), di(t) = 0.5sin(4t − 3).

Given an initial topology of the MAS (Figure S2(a)), the

followers may not be containment controlled with nonvan-

ishing disturbance (Figure S1(a)). Using our proposed algo-

rithm for topology reconfiguration twice, we give the posi-

tions and the relative topology of the MAS in Figures S1(b)

and (c) and S2(b) and (c) (see supporting information).

We conclude that redesigning the communication topol-

ogy structure can effectively avoid the followers escaping the

boundary of the convex hull formed by the concerned agents.

Conclusion and future work. In this study, containment

control problems for leader-followers MASs with a nonva-

nishing disturbance were considered. A topology redesign

method was proposed to handle this problem. Instead of
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constructing a highly required anti-disturbance distributed

controller, we redesigned the communication topology struc-

ture on the basis of the norm of the concerned agents’ dis-

turbance to avoid the followers escaping the boundary of the

convex hull formed by the agents. However, adjusting the

convex parameters quantificationally through a distributed

algorithm remains difficult and only a range of the concerned

group of convex parameters can be obtained. Narrowing this

range will be the main objective of our future work.
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