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Dear editor,

The stochastic singular system is also called the stochas-

tic differential algebraic system, stochastic descriptor sys-

tem, generalized stochastic system, and stochastic degen-

erate system (e.g., [1–4]). This type of system is found in

numerous fields of application, which include fluid dynam-

ics, the modeling of multi-body mechanisms, finance, input-

output economics and the problem of protein folding. The

theory of stochastic singular systems, in which a special class

of linear stochastic singular systems is considered, has been

developed recently [1]. The form of the initial function is

given, so the corresponding initial value problem is uniquely

solvable by applying the theory of generalized stochastic pro-

cesses. Using white noise and fractional white noise, two

illustrative applications are presented in a previously con-

ducted study [2]. The basic question of solvability has been

formulated and considered [5, 6]. Moreover, they propose

a normalization procedure, and they completely solve the

problem of exact controllability for a class of linear stochas-

tic singular systems. The existence and uniqueness of the

impulse solution for a type of stochastic singular systems

were discussed by applying Laplace transform [7]. How-

ever, theorem 5.2.1 of [8] was incorrectly applied, leading to

inappropriate conclusion regarding impulse solution. The

solution and exact controllability of the degenerate Sobolev

equation have been discussed [4]. The impulse terms may

exist in the solution for a stochastic singular system. In

addition, the exact null controllability gives some internal

properties of the system. Consequently, this study considers

the concepts of impulse solution and exact null controllabil-

ity for a type of stochastic singular systems. In particular,

it considers the following Ito singular system:

Adx(t) = (Bx(t) + Cu(t))dt + (Dx(t)

+Gu(t))dw(t), x(0) = x0, (1)

where x(t) ∈ R
n denotes the state vector, u(t) ∈ R

m denotes

the control vector, w(t) denotes a one-dimensional standard

Wiener process, x0 ∈ R
n denotes the initial condition, and

A,B,D ∈ R
n×n, C,G ∈ R

n×m denote the deterministic and

constant matrices with rankA 6 n. First, we give the con-

ditions for the existence and uniqueness of the impulse so-

lution to (1), and we explain the reason why Lemma 1 of [7]

is incorrect. Second, we obtain the necessary and sufficient

conditions for the exact null controllability of (1) using the

matrix theory. Finally, an example is presented to illustrate

the effectiveness of the obtained theoretical results.

Notations. (Ω, F, {Ft}, P ) denotes a complete proba-

bility space with filtration {Ft} satisfying the usual con-

dition (i.e., the filtration contains all P -null sets and is

right continuous); w(t) is defined on (Ω, F, {Ft}, P ); E de-

notes the mathematical expectation; In ∈ R
n×n denotes

the identical matrix; T denotes the transpose of a vector

or a matrix; ‖ · ‖ denotes the Euclidean norm of a vector;

L2(Ω, Ft, P,R
n) denotes the set of all random variables η ∈

R
n such that η is Ft-measurable and the mean square norm

‖η‖2 = (E(‖η‖2))1/2 < +∞; L2(J,Ω,Rn) denotes the set

of all processes x(t) ∈ R
n such that ‖x(t)‖2 < +∞,∀t ∈ J ,

where J = [0, T ] or [0,+∞); all processes are Ft-adapted;

L2([0, T ], F,Rn) denotes the set of all processes x(t) ∈ R
n

such that E(
∫ T
0

‖x(t)‖2 dt) < +∞; Ck(J,Ω,Rn) denotes

the set of all k times continuously differentiable processes

x(t) ∈ R
n such that x(i)(t) ∈ L2(J,Ω,Rn) (i = 0, 1, . . . , k);

the definitions of continuity, differentiability, and integrabil-

ity are in the sense of mean square; for instance, we say that

a process x(t) ∈ L2([0,+∞),Ω,Rn) is locally integrable in

[0,+∞) if, for all finite interval [t1, t2] ⊂ [0,+∞), the inte-

gral
∫ t2
t1

‖x(t)‖2 dt < +∞.

Laplace transform. Let us introduce the class Hn of all

processes f(t) ∈ L2([0,+∞),Ω,Rn) such that

(i) f(t) is mean square locally integrable, and

(ii) There exist constants a > 0 and M0 > 0 such that

‖f(t)‖2 6 M0e
at, t > 0. (2)

Then, the stochastic Laplace transform of f(t) is defined by

the mean square integral

F (s) = L[f ](s) =

∫ +∞

0
f(t)e−stdt, Res > a, (3)
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where s denotes the complex number. From inequality (2),

we know that the integral (3) is well-defined in the half-plane

Res > a.

Here we assume that there are a pair of nonsingular de-

terministic and constant matrices P,Q ∈ R
n×n such that

the following condition is satisfied:

PAQ =

[

In1 0

0 N

]

, PBQ =

[

B1 0

0 In2

]

,

PC =

[

C1

C2

]

, PDQ =

[

D1 0

0 0

]

, PG =

[

G1

0

]

, (4)

where N ∈ R
n2×n2 denotes a nilpotent matrix with or-

der h, i.e., h = min{k : k > 1, Nk = 0}; B1, D1 ∈

R
n1×n1 , C1, G1 ∈ R

n1×m, C2 ∈ R
n2×m, and n1 + n2 = n.

Let [
x1

x2
] = Q−1x, and then system (1) is equivalent to

dx1(t) = (B1x1(t) + C1u(t))dt + (D1x1(t)

+G1u(t))dw(t), x1(0) = x10, (5)

Ndx2(t) = x2(t)dt + C2u(t)dt, x2(0) = x20. (6)

Now, we consider the initial value problem (6). In the fol-

lowing, assume that the solution to (5) is the strong solution

in the sense of [8] and Eq. (6) admits the stochastic Laplace

transform. Applying the stochastic Laplace transform to

(6), we have

(sN − In2 )X2(s) = Nx20 + C2U(s). (7)

Impulse solution. Suppose that x2(t) is the inverse

stochastic Laplace transform of X2(s) obtained from (7).

Then, x2(t) is the impulse solution to (6) in the sense of the

stochastic Laplace transform, or simply, the impulse solu-

tion to (6). In this case, if x1(t) denotes the solution to (5),

then x(t) = Q[
x1(t)

x2(t)
] is called the impulse solution of (1).

Let Φ(t) be the solution of system

dΦ(t) = (B1dt+D1dw(t))Φ(t), Φ(0) = In1 . (8)

By applying theorem 5.2.1 of [8] and Ito’s formular, the fol-

lowing proposition can be obtained.

Proposition 1. Let u : [0, T ] → R
m be a bounded Borel

measurable function; then Eq. (5) has a unique solution on

[0, T ] with any initial condition x10 ∈ L2(Ω, F0, P,R
n1 ), and

the solution is given by the following stochastic process:

x1(t) = Φ(t)x10

+ Φ(t)

∫ t

0
Φ−1(τ)(C1 −D1G1)u(τ)dτ

+ Φ(t)

∫ t

0
Φ−1(τ)G1u(τ)dw(τ), 0 6 t 6 T. (9)

For the solution of (6), we have the following theorem by

applying Laplace transform and [9].

Theorem 1. For any x20 ∈ L2(Ω, F0, P,R
n2), u ∈

Ch−1([0,∞),Ω,Rm) and u(i) ∈ Hm(i = 0, 1, . . ., h − 1),

if h > 2, then subsystem (6) has a unique impulse solution,

which is given by

x2(t) = −

h−1
∑

i=1

δ(i−1)(t)

[

N ix20

+

h−1
∑

k=i

NkC2u
(k−i)(0)

]

−

h−1
∑

i=0

N iC2u
(i)(t), (10)

where δ(t) denotes the Dirac function and δ(i)(t) denotes

the ith derivative of δ(t) (for proof, see Appendix A).

Based on Proposition 1 and Theorem 1, we obtain the

following theorem.

Theorem 2. Assume that Eq. (1) is equivalent to (5)

and (6), u : [0, T ] → R
m is a bounded Borel measurable

function, u ∈ Ch−1([0,∞),Ω,Rm), and u(i) ∈ Hm (i =

0, 1, . . . , h− 1). If h > 2, then Eq. (1) has a unique impulse

solution, for any x0 ∈ L2(Ω, F0, P,R
n), which is given by

x(t) = Q[
x1(t)

x2(t)
], where x1(t) and x2(t) are given by systems

(9) and (10), respectively.

We remark that Lemma 1 of [7] is incorrect. The reason

is explained in Appendix B. Now, we introduce the concept

of exact null controllability.

Exact null controllability. System (5) and (6) is said to

be exactly null controllable on [0, T ] if for any [
x10

x20
] ∈ R

n,

there exists u ∈ L2([0, T ], F,Rm), such that system (5) and

(6) has a unique solution [
x1(t)

x2(t)
] satisfying the initial con-

dition [
x1(0)

x2(0)
] = [

x10

x20
] in addition to the terminal condition

[
x1(T )

x2(T )
] = 0.

It is obvious that if system (5) and (6) is exactly null

controllable, so are the subsystems (5) and (6) respectively.

Using the example in Appendix C, we obtain that if N 6= 0,

then system (5) and (6) is not necessarily exactly null con-

trollable. Consequently, we assume that N = 0 in the fol-

lowing.

Theorem 3. If G1 = 0, then the necessary condition

for (5) to be exactly null controllable on [0, T ] is that

E(
∫ T
0 f2(t)Φ−1(t)C1(Φ−1(t)C1)Tdt) is invertible for any

real valued polynomial f(t) not identical zero (see Appendix

D for a proof).

Let rankG1 = n1, u(t) = M [
0

v(t)
], and z(t) = D1x1(t),

where M denotes an m×m matrix, which satisfies G1M =

[In1 0], and v(t) denotes an (m− n1)-dimension vector.

For the above u(t), system (5) and (6) is equivalent to

−dx1(t) = (F1x1(t) + F2z(t) + F3v(t))dt

− z(t)dw(t), x1(0) = x10, (11)

x2(t) = −C2M

[

0

v(t)

]

, t > 0, (12)

where F1 = D1 − B1, F2 = −In1 , F3v(t) = −C1M [
0

v(t)
].

Let Ψ(t) denote the solution of system dΨ(t) =

Ψ(t)(F1dt+ F2dw(t)),Ψ(0) = In1 .

Theorem 4. System (11) and (12) is exactly null control-

lable on [0, T ] if and only if

E

(
∫ T

0
f2(t)Ψ−1(t)F3(Ψ

−1(t)F3)
Tdt

)

(13)

is invertible for any real valued polynomial f(t) not identical

to zero (see Appendix E for a proof).

Conclusion. We provided the conditions for the existence

and uniqueness of the impulse solution, and we also pro-

posed the necessary and sufficient conditions for the exact

null controllability. An illustrative example is given in Ap-

pendix F, which validates the effectiveness of Theorem 4.
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The exact observability of singular stochastic systems will

be discussed in the future.
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