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Appendix A LR-RPN algorithm

In this section, LR-RPN algorithm is described in detail. Firstly, we introduce some preliminaries in section A.1. Next, we

present the process of constructing a reliable PPI network and how to find disease genes by logistic regression algorithm in

section A.2 and A.3, respectively.

Appendix A.1 Preliminaries

Let G = {g1, g2, · · · , gN} represent the set of all human genes, and N is defined as the totally number of human genes.

Given another set P = {g1, g2, · · · , gm} (P ⊆ G) represents unknown genes (candidate disease genes) which means that we

do not know whether they are related to the certain disease. Next, U = G/P = {gm+1, gm+2, · · · , gN} represents disease

genes which are related to diseases. In other words, the candidate disease genes in P are unlabeled.

In order to facilitate the understanding, we define D = {D1, D2, · · · , DM} to represent the set of human diseases

where Di is a data set composed of genes that are known associated with the ith disease. For a specific disease Dk, let

Xk = {xk
1 , x

k
2 , · · · , x

k
N} be label informations (labels, i.e., the value is set either 1 or 0) defined on training data, where

xk
i = 1 represents gi is associated with the kth disease (Dk), and xk

i = 0 otherwise.

Identifying candidate disease genes can convert to a positive-unlabelled (PU) learning task under these notations [1, 2].

On the basis of the logistic regression, we can get the conditional probability P (xk
i = 1|φ) for each unknown gene. Here

φ represents prior information, such as protein complexes, tissue expressions and the internal connection between reliable

PPI network and so on. We will introduce it in detail in later sections.

Appendix A.2 Constructing a reliable PPI network

Appendix A.2.1 Connecting PPI network and keywords

In order to consider the topological similarity of the PPI network and the properties of the protein individual characteristic,

we add keywords into PPI network to construct a new heterogeneous network. A similar constructed method has been used

in [3].

Formally, the heterogeneous network can be represented as an undirected graph H = {V,E}, where V and E represents

the set of nodes and edges, respectively. Here, V is divided into two types: protein and protein, protein and keyword. In

other words, an edge only connects two proteins or a protein and a keyword. The detailed definition of H is as follows:

H =

[
HP HKP

HPK 0

]

(N+K)×(N+K)

(1)

HP (i, j) =

{
1, if there is an edge linking Proteins i and j in PPI

0, if there is no edge linking Proteins i and j in PPI
(2)

HPK(i, j) =

{
1, if there is an edge linking Protein i and Keyword j

0, if there is no edge linking Protein i and Keyword j
(3)
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HKP (i, j) =

{
1, if there is an edge linking Keyword i and Protein j

0, if there is no edge linking Keyword i and Protein j
(4)

We add keywords into PPI network, which has two advantages. Firstly, the association between protein and keyword can

consolidate useful interaction in the PPI network [3]. Secondly, undirected proteins, which maybe have a certain biological

relationship, can be connected through keywords.

Appendix A.2.2 Random walking on the heterogeneous network

The RWR [4] algorithm mimics a random walker that starts on seed nodes and then randomly moves to a neighbor or

returns to seed nodes with a probability γ. Li et al. [5] applied improved RWR algorithm on the heterogeneous network

(RWRH). Here we adopt it to get a probability matrix.

Firstly, we construct the transition matrix M based on heterogeneous network H, which can be defined as follows:

M =

[
λMP (1 − λ)MKP

(1− λ)MPK 0

]

(N+K)×(N+K)

(5)

where λ is used to control the probability of jumping between proteins and keywords. MP is intra-subnetwork transition

matrixes. MKP and MPK are inter-subnetwork matrixes. The detailed definitions of MP ,MKP and MPK are as follows:

MP (i, j) =

{
HP (i,j)∑
k HP (i,k)

,if
∑

k HP (i, k) > 0

0 ,otherwise
(6)

MPK(i, j) =

{
HPK(i,j)∑
k HPK (i,k)

,if
∑

k HPK(i, k) > 0

0 ,otherwise
(7)

MKP (i, j) =

{
HKP (i,j)∑
k HKP (i,k)

,if
∑

k HKP (i, k) > 0

0 ,otherwise
(8)

The initial probability matrix for our heterogeneous network is defined as follows:

P (0) =

[
(1− η) ∗ PPPI(0) 0

0 η ∗ PKeywords(0)

]

(N+K)×(N+K)

(9)

where the initial probability matrix P (0) for our heterogeneous network is a diagonal unit matrix of |N+K| rows and |N+K|

columns. N and K is defined as the number of genes in PPI network and the number of keywords terms, respectively.

Besides, PPPI(0) and PKeywords(0) are unit diagonal matrixes, which are N-dimensional and K-dimensional matrixes,

respectively. We can see from equation (9) that if seed node belongs to PPI, we give it initial probability 1− η, otherwise

η. The parameter η ∈ (0, 1) is used to determine the initial probability for the node of PPI and Keywords.

Based on P (0), P (t) and transition matrix, the probability vector at step t+ 1 can be described as follows:

P (t+ 1) = (1− γ)MTP (t) + γP (0) (10)

where the parameter γ ∈ (0, 1) is the restart probability, and P (t) represents a matrix in which the ith iteration holds the

probability of finding the random walker. At each iteration, the random walker has a probability of γ to get back the seed

nodes.

After some steps, the P (t+ 1) will reach a stationary distribution when the difference between P (t+ 1) and P (t) is less

than 10−6.

Appendix A.2.3 Reconstructing a reliable PPI network

In section 2.2.2, we could get a |N +K| × |N +K| probability matrix. Because our ultimate goal is to reconstruct the PPI

network, we only extract the first N rows and the first N columns of the final probability matrix, and then normalize by

rows. The final matrix is defined as Z.

Because the difference between the probability vectors of different nodes is very small in the final matrix Z, we employ

the PPI network reconstruction method in [6] to magnify the difference between them in next step. First, we construct a

median vector H from the matrix Z, where H(j) is the median of the ith row of Z. Next, we calculate the |N | × |N | offset

matrix Θ, where Θij = Zij − Hi. Finally, the topological similarity matrix of Z is calculated by the Pearson correlation

coefficient. Empirically, we define a topological similarity matrix C about Θ, where Cij = pcc(Θ1∼|N|,i,Θ1∼|N|,j ).

In the end, a reliable PPI network is constructed from the topological similarity matrix C by connecting pairs of nodes,

whose similarities between nodes in C are more than a certain threshold.

Appendix A.3 Prioritization of candidate disease genes

Appendix A.3.1 Prior label estimation

It is well known that the labeling informations of samples are needed in any machine learning algorithm. Obviously, we can

assign 1 or 0 to the known disease genes according to known gene datasets. However, other genes need to be given a prior

probability to determine if it is assigned 1 or 0.
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Being inspired by [7], we take protein complexes and tissue expression terms as prior information. If a gene gi encodes

a protein in a certain kind of tissue or protein complex, its prior probability, which is used to measure the possibility of

correlation between gi and Dk, is calculated as follows:

pi = max
(
pci , p

t
i

)
(11)

pci =
Ac

Bc
(12)

pti =
At

Bt
(13)

where pci and pti are prior probabilities of gi, which can be calculated by protein complexes and tissue expression terms

respectively. In formula (5), Ac is the number of Dk-related genes in a certain protein complex that contains gi, and Bc is

the number of all genes in corresponding protein complex. Similarly, At and Bt also have the similar meaning to Ac and Bc

respecting to tissue expression terms. If gi belongs to various protein complexes and tissue expression terms, the maximum

values of pci and pti are chosen. In addition, there is a special case that if gi does not encode protein in any protein complex

and tissue expression term, let pi = M/F be its prior probability, in which M is the number of Dk-related genes and F is

the number of genes in G. Next, the prior label for gi can be reckoned as follows:

t = rand(0, 1) (14)

xk
i =

{
1, t 6 pi

0, t > pi
(15)

where rand(a, b) is a function, which can generate a random number that obeys the standard uniform distribution between

a and b.

Appendix A.3.2 Prioritizing candidate disease genes based on logistic regression

Logistic regression algorithm is a classical classification algorithm representing the conditional probability distribution.

According to most of assumptions [7–9], the conditional posterior probability distribution of a specific gene gi, associated

with a specific disease Dk, can be formulated as follows:

p(xk
i = 1|ski , w) =

exp(wT ski )

exp(wT ski ) + 1
(16)

p(xk
i = 0|ski , w) =

1

exp(wT ski ) + 1
(17)

where ski is input and represents multiple heterogeneous biological feature vector. If xk
i is equal to 1, p(xk

i |s
k
i , w) represents

a posterior probability that gi is associated with Dk, xi is equal to 0 otherwise. w is the weight vector. In order to define

the multiple heterogeneous biological feature vector, we take gi as an example, and its feature value vector ski can be defined

as follows:

ski = {1, ski1, s
k
i2, s

k
i3, s

k
i4, s

k
i5, s

k
i6, s

k
i7, s

k
i8} (18)

where ski1 is the number of genes associated with Dk in direct neighbors of gi. ski2 is equal to NN − ski1, where NN is the

number of direct neighbors of gi. ski3 is the number of genes associated with Dk in a certain protein complex which contains

gi. ski4 is equal to NC − ski3, where NC is the number of genes in corresponding protein complex. ski5 and NT have similar

definition as ski3 and NC, here we just simply replace the protein complex with the tissue in their definitions. ski6 is equal

to NT − ski5. ski7 is the similarity score between gi and Dk using Wang’s measure in GoSemSim, which is an R package for

semantic similarity computation among gene clusters, sets of GO terms, gene products and GO terms [10, 11]. Firstly, the

similarity of gi and Dk is defined as follows:

ski7 = max
16j6o

(
MF

geneSim(gi,dg
k
j
) + CC

geneSim(gi ,dg
k
i
) + BP

geneSim(gi,dg
k
j
)

3

)

(19)

where dgkj belongs to the set ofDk, in other words, dgkj is a gene associated with Dk. MF
geneSim(gi,dg

k
j
), CC

geneSim(gi ,dg
k
j
)

and BP
geneSim(gi ,dg

k
j
) is the semantic similarity values between gi and dgkj based on MF , CC and BP by geneSim function

in GoSemSim, respectively. ski8 is equal to 1− ski7.

Hence, the feature value of all genes about a specific disease Dk can be grouped together in a matrix form as follows:

FF k =





1 sk11 sk12 sk13 sk14 sk15 sk16 sk17 sk18

1 sk21 sk22 sk23 sk24 sk25 sk26 sk27 sk28
...

...
...

...
...

...
...

...
...

1 skm1 skm2 skm3 skm4 skm5 skm6 skm7 skm8

...
...

...
...

...
...

...
...

...

1 sk
N1 sk

N2 sk
N3 sk

N4 sk
N5 sk

N6 sk
N7 sk

N8





N×9

(20)

Besides, the corresponding weighted parameter is set as w = (w1, w2, w3, w4, w5, w6, w7, w8, w9)T . If weighted parameter

is given and prior labels for all genes have been estimated, we can get all posterior probability that all unknown genes are

related with Dk according to the above equation.
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Appendix A.3.3 Parameter estimation

Some studies [7–9] have discussed how to estimate the weighted parameter w. The estimation of parameter w can be

calculated based on the training set, where the known genes associated with Dk are marked as 1, and others are labeled

based on the equation of (11)∽(15).

The likelihood can be written as:

ŵ = argmax
w

N∏

i=1

P (xk
i |s

k
i , w) (21)

marked as:

ŵ = argmax
w

L(w) (22)

where L(w) is the log likelihood function. After taking into(16), (17) into (21) and some mathematical reasoning, we can

obtain L(w) as

L(w) =
i=1∑

N

[
xiw

T ski − ln
(
1 + exp(wT ski )

)]
(23)

The log likelihood (23) has been proved to be a concave function on the page 354 of [9]. In this study, it can be solved

by using the standard matlab function fminunc() which is used to calculate the minimum solution −L(w). Here, the initial

parameter of w is equal to zero.

Appendix A.4 Training 10 logistic regression model classifiers

Because the identification of disease genes is a class-imbalance classification problem, we use the under-sampling method.

Besides, in order to avoid loss of some important information, we construct ten negative data sets, in which samples are

randomly selected from all unknown genes. The number of samples in each negative data set is equal to twice the number of

known genes on a special disease. Then we combine these 10 negative data sets and known genes data sets into 10 training

data sets. In these training data sets, known genes are the same but unknown genes are different. Next, we train 10 logistic

regression classifiers by these training sets. The final posterior probability, which indicates the degree of association between

genes and disease, is equal to the average of the posterior probability from 10 logistic regression model classifiers.

However, the posterior probability does not always work well [7]. Therefore, we use the rank score. Firstly, we calculate

the number of posterior probabilities of genes that is smaller than the posterior probability of current research gene, and then

it divided by the number of genes is equal to the rank score. Obviously, the larger rank score represents that corresponding

candidate genes have a high probability of being associated with a special disease.

Appendix B Experiment

Appendix B.1 Data Sources

In this study, multiple biological data sources are collected to test the performance of LR-RPN, which are presented as

follows.

Firstly, the dataset of PPI network is obtained from the human protein reference database (HPRD) (Release 9) [12]. The

HPRD database provides protein interaction data, where we can link two human genes if corresponding proteins interact

together.

Secondly, the protein complexes are collected from the database of CORUM [13] and PCDq [14]. These human protein

complexes contain at least one gene that can be mapped back to HPRD database.

Thirdly, the gene-disease of association data is obtained from Goh et al. [15] and OMIM database [16]. Goh et al. [15]

have manually classified diseases in OMIM into 22 primary disease classes.

For the above datasets, we directly obtain them from Chen et al. [7]. They have been preprocessed in such a way that

the PPI network contained 7311 human genes from HPRD database, the protein complexes have 2870 types containing

3881 human genes, and the gene-disease of association data contains 12 disease classes which are connected with 815 human

genes.

In order to improve the accuracy of the identification of disease genes based on various biological data, we also integrate

other data as follows.

The tissue expression data is collected from the HPRD (Release 9) [12]. There are 307 types of expression terms in this

database with at least two proteins, which involve 1110 proteins in those expression terms. The original tissue expression

file can be obtained in AdditionalF ile \ T issue Expressions. The keywords data is collected from the UniProt database

[17]. We select 632 types of term in UniProt database with at least two proteins. The original keywords file can be obtained

in AdditionalF ile \Keywords.

To validate the effectiveness of LR-RPN algorithm, we select 5 multifactorial diseases that are associated with multiple

genomic regions from OMIM database [16] in Dec. 2017, which belong to cancer class according to Goh et al. [15].

According to the MIM records, all these 5 diseases are associated with great than or equal to 10 known valid causing

genes locating different genomic regions according to the OMIM file of morbidmap.xlsx, and they also are used in [18,19].

Detailed information is shown in Table B1.
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Table B1 The detail information of five kinds of cancer disease

Phenotype name Phenotype ID No. of associated genes

Breast cancer 114480 23

Lung cancer 211980 18

Prostate Cancer 176807 18

Leukemia 601626 22

Colon cancer 114500 26

Appendix B.2 Evaluation criteria

In this study, the performance of LR-RPN is evaluated by leave-one-out cross validation (LOOCV) based on the rank score.

LOOCV is a special case of k-fold cross-validation where k is equal to 1. In each round of experiments, only one gene,

being associated with dk, is deleted in training set and then add to the test set. The remaining known disease-related genes

are used as a training set to assess whether the test gene is related to a certain disease. According to the leave-one-out

cross-validation result, we plot the receiver operating characteristic (ROC) curve and compute the area under the curve

(AUC) values based on rank score.

When we plot the ROC value, the positive control genes are those known associated with disease dk . However, we need

the extra operation for negative control genes. A similar approach has already been adopted in [7]. The negative control

genes are randomly selected from those known gene samples, which are not associated with dk . If the number of positive

control genes is equal to s, we randomly extract s samples from unknown genes as negative control genes.

Based on rank score, the precision and recall are also employed to evaluate the performance of our method. Precision

reflects the proportion of true positives in the top-k samples for a disease class. Recall is equals to true positives in the

top-k samples divided by the total number of true positives in the test for a disease class. The values of precision and

recall are different for different top-k samples. They can be defined as follows:

precision =
TP

TP + FP

recall =
TP

TP + FN
where TP is the number of predicted disease genes matched with known disease genes. FP is the number of predicted

disease genes, which are not matched with known disease genes. FN is the number of known disease genes that are not

located in predicted disease genes.

Appendix B.3 Experimental results

In this section, we first evaluate the effects of different forms of feature value in original PPI network. Next, the effects of

λ and η are analyzed for identifying disease genes result. Then, we compare the performance of prioritizing disease genes

between the origin PPI network and the reliable PPI network, which aims is to prove the reliability of reconstructed PPI

network. Besides, we compare our algorithm with some other methods, which are: (1) the DIR algorithm [20], (2) the

RWR algorithm [4], (3) the MRF algorithm [21] and (4) logistic regression (F3PC) [7]. Finally, we conduct case studies

to verify the effectiveness of LR-RPN in the identificiation of disease genes.

Appendix B.3.1 Effects of different forms of feature values

To analyze the effects of different heterogeneous data on prioritizing disease genes, we define three types of feature value

vectors for gi as follows.

Feature1 = {1, ski1, s
k
i2}

Feature2 = {1, ski1, s
k
i2, s

k
i3, s

k
i4}

Feature3 = {1, ski1, s
k
i2, s

k
i3, s

k
i4, s

k
i5, s

k
i6}

Feature4 = {1, ski1, s
k
i2, s

k
i3, s

k
i4, s

k
i5, s

k
i6, s

k
i7, s

k
i8}

Feature5 = {1, ski1, s
k
i3, s

k
i5, s

k
i7}

Feature6 = {1,
ski1

ski1 + ski2
,

ski3
ski3 + ski4

,
ski5

ski5 + ski6
, ski7}

• Feature1 : According to the definition of ski in section 2.3.2, we can see that Feature1 only considers one factor, which

is the direct neighbor of gi in origin PPI network (coming from HPRD database). This method is similar with Chen et al.

[22] methods.

• Feature2 : Similarly, we can see that Feature2 considers two heterogeneous factors, which are the direct neighbors of

gi in origin PPI network and protein complex.

• Feature3 : We enhance heterogeneous factor comparing with Feature1 and Feature2. The vector can capture the

PPI, protein complex and tissue information to prioritize disease genes.

• Feature4 : We further enhance heterogeneous factor for Feature4. It contains PPI network, protein complex, tissue

expression and the semantic similarity of genes based on Go terms. It can capture more heterogeneous information than

other feature vectors.
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Figure B1 Performance of different feature vectors to logistic regression for prioritizing disease genes

• Feature5 : This feature only considers disease factors for different biological data.

• Feature6 : This feature is not only considering disease factors but also the non-disease factor for different biological

data. However, it combines the disease and non-disease factors into a comprehensive factor in each of the biological data.

In subsection 2.3.2, the attribute name of every feature has been explained. Figure B1 shows the AUC performance

of the six feature vectors to logistic regression for prioritizing disease genes in original PPI network. Obviously, we can

see that the values of AUC increase as the heterogeneous feature vectors increase. It proves that integrating multiple

heterogeneous data can enhance the performance of prioritizing disease genes. The detailed result data can be obtained in

AdditionF ile \Different Feature Result.

Appendix B.3.2 Effects of parameters

In the process of constructing reliable PPI network, there are three parameters which are γ, λ and η. As we all known, the

parameter of γ is the restart probability. It has been demonstrated that γ only has a slight effect on the experimental result

[14]. Here, we assign γ to the value of 0.7, based on the previous studies [4]. From Figure B1, we can see that Feature4

has the best performance for logistic regression, so we select Feature4 as the feature vector for next evaluation.

To analyse the effects of two parameters, we set various values for them ranging from 0.1 to 0.9. Then we run LR-RPN

in disease class and experiment result is shown in Figure B2. The AUC value ranges from 0.8494 to 0.9196. These results

indicate that LR-RPN has better stability and accuracy in prioritizing candidate disease genes for disease class. We plot

the distribution of AUC values showed in Figure B3. Besides, we can see the overall effect of two parameters from the

Figure B3(b). In general, according to Figure B2 and Figure B3, we can observe the influence of parameters on the final

result from different perspectives, we can find that it is optimal when λ = 0.6 and η = 0.1. The data sources, which contain

reconstructing reliable PPI network and corresponding result, can be obtained in the AdditionalF ile \RePPI Keywords

and AdditionalF ile \RePPI Result Keywords.

Appendix B.3.3 Effects of different networks

To further highlight the importance of the reliable PPI network, we compare the logistic regression algorithm in original

PPI network (LR-OPN), reconstructed PPI network by random walk with restart on PPI network (LR-REPN), and reliable
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Figure B2 Effect of value and based on whole genome

Figure B3 The distribution map of AUC values

PPI network by walking on heterogeneous network (LR-RPN). Here λ and η is set as 0.1 and 0.7 for LR-RPN, respectively.

Besides, the situations of LR-REPN and LR-RPN are the same, when the parameters λ and η of LR-RPN is taken as 1

and 0, respectively.

Obviously, we can see clearly from Figure B4 that the AUC value of LR-RPN is better than the AUC value of LR-OPN

and LR-REPN. Besides, the AUC value of LR-REPN is better than the AUC value of LR-OPN. It proves that building a

reliable PPI network by PPI and keywords is helpful for the identification of disease genes.

Appendix B.4 Compare with Previous Algorithms

To investigate the efficiency of LR-RPN (γ=0.7, λ=0.6 and η=0.1), four previous algorithms were introduced for comparison,

which include: (1) the DIR algorithm [20], (2) the RWR algorithm [4], (3) the MRF algorithm [21] and (4) logistic regression

(F3PC) [7]. As shown in Table B2, we can see LR-RPN is much better than other algorithms in terms of AUC. The AUC

value of LR-RPN is 0.912, which is 8.2%, 19.1%, 19.6%, 20.1% than the F3PC algorithm, the MRF algorithm, the DIR

algorithm and the RWR algorithm, respectively. The detailed ROC curve is displayed in Figure B5.

Next, we also evaluate LR-RPN and other methods by using precision and recall. A detailed description of precision

and recall is located in section 3.2. For each algorithm, the precision and recall of top-k positions are calculated, which can

help us to understand the local characteristics of these algorithms. The range of k is 5 to 815. From the results shown in

Figure B6, we can see that precision and recall of LR-RPN are far superior to F3PC, RWR, DIR and MRF in Figure B6(a)
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Figure B4 ROC curves of cross-validation results of LR-RPN, LR-REPN, and LR-OPN

Table B2 The performance of different algorithms

Method LR-RPN F3PC MRF DIR RWR

AUC 0.9196 0.8300 0.7210 0.7160 0.7110

and Figure B6(b), respectively.

Finally, we compare the performance of each algorithm on 12 disease classes as shown in Figure B7. Obviously, it can be

seen from Figure B7 that LR-RPN has the excellent performance for AUC value than other algorithms in each of 12 disease

classes, except immunological class. The highest AUC proves that integrating multiple data is beneficial for prioritizing

disease genes.

Appendix B.4.1 Assessment by predicting new disease genes

To further validate the effectiveness of LR-RPN for prioritizing new disease genes, we perform case studies here for 5

multifactorial cancer diseases. When the parameter γ, λ and η is set as 0.7, 0.1 and 0.5 respectively, the performance of

LR-RPN is the best. So we only focus on the prediction of LR-RPN (γ=0.7, λ=0.6 and η=0.1). The genes are verified

by literature and their PMID is given. Then, we only selecte Breast cancer (MIM: 114480) as the case study for LR-RPN

(γ=0.7, λ=0.6 and η=0.1) and other cancer disease for case study can be download in AdditionalF ile \ CaseStudy.

The breast cancer is etiologically and genetically heterogeneous, and histopathologically. Important genetic factors have

been indicated by familial occurrence and bilateral involvement. As shown in Table 3, the first prediction MID2 is analyzed

in relation to breast cancer [23] (PMID: 26791755) in which the author indicated that MID2 may be a novel interventional

target and prognostic marker in breast cancer. The prediction HDAC1 is also analyzed in relation to breast cancer

[24] (PMID: 28779562), and author indicated that the migration and proliferation of breast cancer cells via activation of

Snail/IL-8 signals can be triggered by HDAC1. Gao Yun et al. [25] (PMID: 30390344) found the target genes of miR-93

were closely related to RBBP7 by Gene Ontology enrichment analysis, and the serum levels of miR-93 were upregulated

in breast cancer in the qPCR validation test. Yan Y et al. [26] (PMID: 26616021) demonstrated that the growth of breast

cancer cells is reduced by PIAS4 depletion. Cheng X W et al. [27] (PMID: 19858209) suggested the cell proliferation in
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Figure B5 ROC curves of cross-validation results of different methods

Figure B6 Average precision and recall on disease classes of test set at each top-k position. (a) average

precision on all disease classes, (b) average recall on all disease classes.

MCF-7 breast cancer cells is promoted by depletion of GPS2 or SMRT by siRNA.

Appendix C Additional File

Additional file data association with LR-RPN can be downloaded, in github online, at

https://github.com/zwx94/LR-RPN
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Figure B7 The AUC performance of different algorithm for 12 disease class

Table B3 Top-10 predicted causal genes of breast cancer

Gene Symbol PMID Evidence URL

MID2 26791755 https://www.ncbi.nlm.nih.gov/pubmed/?term=MID2+breast+cancer

MED26 unconfirmed unconfirmed

COPS6 unconfirmed unconfirmed

HDAC1 28779562 https://www.ncbi.nlm.nih.gov/pubmed/28779562

RBBP7 30390344 https://www.ncbi.nlm.nih.gov/pubmed/30390344

BANP unconfirmed unconfirmed

PIAS4 26616021 https://www.ncbi.nlm.nih.gov/pubmed/26616021

WASF2 unconfirmed unconfirmed

CBFA2T2 unconfirmed unconfirmed

GPS2 19858209 https://www.ncbi.nlm.nih.gov/pubmed/19858209
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