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Abstract Model predictive control (MPC) is widely used in fast sampling systems owing to its fast reg-

ulating ability. However, the sampling delay is a key issue and tends to be a fractional multiple of the

sampling period. If the fractional-order delay is not accurately offset, the controller output will exhibit er-

rors, thus resulting in oscillations in controlled system. Moreover, the MPC delay compensation algorithm

is limited to the computation time. To address the problems of fractional delay and computational burden

in fast sampling systems, we propose a new method to compensate for the fractional-order sampling delay.

First, we use a finite-impulse-response fractional delay filter based on a Lagrange interpolation polynomial

to approximate the fractional portion. Moreover, we prove that high accuracy and simplicity can be ensured

when the polynomial order is one. Then, we estimate the current state variable using the delayed sampling

signal and control signals of past moments. Further, we obtain the current control signal according to the

estimated state variable. By considering the simultaneous existence of computational and sampling delays,

a full compensation strategy is proposed. Computational simulation results validate the proposed MPC

algorithm with fractional-order delay compensation and demonstrate its advantages.
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1 Introduction

In each sampling period, model predictive control (MPC) constructs and solves the optimization prob-
lem, thus forming an optimal control method [1]. Indeed, MPC considers both control and optimization
and has been successfully used in the process industries [2]. In controlled systems, the time delay is a
significant factor that cannot be overlooked [3, 4]. To solve the delay problem in slow sampling systems,
numerous effective MPC compensation methods have been successfully used [5, 6]. For uncertain time-
varying systems with state delay, Jeong et al. [7] proposed an improved MPC algorithm to stabilize the
closed-loop system and verified the effectiveness of the proposed method using a numerical example of a
computer-simulated truck trailer with a sampling time of 0.1 s. By considering asynchronous measurement
and delay, the distributed MPC was verified using a chemical process example with a sampling time of
0.035 h [8]. Considering a time-delay continuous-stirred tank reactor system as an example, the effec-
tiveness of the iteratively distributed MPC [9] and fuzzy MPC [10] was verified. Most researchers have
focused on traditional process control fields, including refining, petrochemical, and chemical industries.
The sampling cycles of these systems are long, and the requirements of the MPC algorithm are not ar-
duous. However, in fast sampling systems, such as power electronics, the sampling period is short and
there is a high requirement for MPC control accuracy and rapid real-time calculation.

Currently, MPC has also been gradually adopted in fast sampling systems [11–13]. Considering the
delay caused by the calculation time in MPC, Cortes et al. [14] presented a simple and effective compen-
sation method, which shifts one step forward and outputs the optimal control signal at the next moment.
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Moreover, a networked fuzzy MPC with a small computational cost was developed to ensure the robust-
ness of the system with delay [15]. To address the problems of sampling delay, Zhang et al. [16] proposed
a multistep integer compensation MPC algorithm that could effectively improve the system performance.

The time delay can be classified into computation delay and sampling delay. First, we discuss the
computational delay. The control signal calculation must be completed within one cycle, so the computa-
tional delay will not exceed one cycle. Whether the computation delay is an integer or a fraction, it can be
treated as an integer delay. At the current moment, the optimal control signal at the next moment is cal-
culated in advance and then outputted at the next sampling moment [14]. Therefore, the computational
delay compensation is simple and has little impact on the algorithm complexity. However, the sampling
delay must distinguish between integers and fractions. Generally, the processing method of the sampling
delay is to adopt multiple periods of integer compensation. Either one-step or multistep compensation is
directly considered. However, integer compensation is challenging with the fractional-order delay, causing
oscillations in controlled systems. On the one hand, in fast sampling systems, the control signal must
complete the calculation within one sampling period. On the other hand, the MPC algorithm, which is
improved to compensate for the impact of the sampling delay, will increase the computational burden,
particularly the sampling delay of a fractional multiple of the sampling period. Therefore, an effective
low-computation compensation algorithm is particularly significant.

Several researchers have examined the fractional delay in digital filters [17–19]. Based on the concept of
a finite-impulse-response (FIR) filter using a Lagrange interpolation polynomial, Zou et al. [20] proposed
a real-time frequency adaptive control method to eliminate harmonic distortions with changing grid
frequency. For the fractional-order sampling delay problem, Bagheri et al. [21] designed a tuning method
for MPC of the first-order plus a fractional dead time model. However, the model was limited to a
first-order system. In fast sampling systems, such as power electronic systems, the model order is often
greater than one, presenting a high-order form. Compared with [21], the model proposed in this paper
has more general applicability.

For fast sampling systems, the existing literature mainly focuses on the integer-order multiple sam-
pling delays with little attention to the fractional-order sampling delay compensation of MPC. The main
contributions of this paper relative to the existing studies are as follows. We propose an MPC algorithm
with fractional-order sampling delay compensation to improve the performance of MPC in fast sampling
systems and utilize the FIR fractional delay filter based on Lagrange interpolation to approximate the
fractional sampling delay. Moreover, we prove that when the polynomial order n is one, the complexity is
the lowest and the approximation accuracy is sufficiently high at low frequencies. The low computational
complexity can ensure that the calculation is completed in a limited time, and high accuracy can ensure
good approximation of the fractional sampling delay. Therefore, the low-complexity and high-accuracy
MPC algorithm proposed in this paper can be well applied to fast sampling systems. Moreover, by
considering the computation delay, we propose a full compensation strategy for the coexistence of com-
putational and sampling delays. Further, the closed-loop stability of the system is discussed. Finally, the
simulation results verify the efficiency of the proposed fractional-order compensation algorithm.

The remainder of this paper is structured as follows. Section 2 presents the problem description. Sec-
tion 3 describes the controller design for fractional-order delay systems. Section 4 reviews the stability
analysis. Section 5 presents the simulation results, demonstrating the efficiency of MPC with fractional-
order delay compensation in fast sampling systems. Finally, conclusions are presented in Section 6.

Notation. For a matrix M , [M ]i denotes the ith row. For a vector a, [a]i denotes the ith component.
A ≻ 0 (A ≺ 0) means that matrix A is positive (negative) definite.

2 Problem description

Consider the system
{

x(k + 1) = Ax(k) +Bu(k) + F ,

y(k) = Cx(k),
(1)

where x ∈ R
Nn , u ∈ R

Nu , and y ∈ R
Ny are state variable, control signal, and output variable, respectively;

A ∈ R
Nn×Nn , B ∈ R

Nn×Nu , and C ∈ R
Nn×Ny denote coefficient matrices, respectively; F ∈ R

Nn is a
parameter matrix.
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Figure 1 (Color online) (a) Ideal case without delay; (b) computation delay; (c) sampling delay.

For the system (1), we assume that the functional relationship between the optimal control signal
and the state variable is u(k) = f(x(k)) where u(k) and x(k) are the control signal and state variable,
respectively. Moreover, we take the one-cycle computation delay and one-cycle sampling delay as examples
to illustrate the impact of the two on the system. In the ideal no-delay state presented in Figure 1(a),
at the current moment k, the sampled state variable is x(k) and the control signal u(k) acts on the
system. In this case, the controlled system can operate stably. Figure 1(b) shows the case with only the
computation delay. Due to the delay, u(k) calculated at the current moment k acts on the system at
moment k + 1, which causes the control law to form one cycle lag. In addition, Figure 1(c) presents the
situation where only the sampling delay exists. What is sampled at the current moment k is the state
variable x(k − 1), so the control law u(k − 1) is corresponding to the previous moment, which is also
equivalent to the control law forming one cycle lag. Whether it is the existence of calculation delay or
sampling delay, it will cause the control law to lag, which has a bad influence on the controlled system.
Therefore, it is necessary to compensate for the system delay. Indeed, the delay is generally not an integer
sampling period, so we must consider the compensation algorithm of the fractional-order delay.

3 Controller design for the fractional-order delay system

We first consider the solution of the system (1). Indeed, the prediction equation is given by

Y (k) = Sxx(k) + SuU(k) +DF , (2)

where Y (k), U(k), Sx, Su, and DF are

Y (k) =


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




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where Np and Nm are predictive horizon and control horizon, respectively; moreover, Np > Nm. Define
the objective function

J(U(k)) = (Y (k)−Ry)
TWy(Y (k)−Ry) + (U(k)−Ru)

TWu(U(k)−Ru)

=
1

2
U(k)TΨU(k) + gTU(k) + ϕcon, (3)

where Ry, Ru ∈ R represent reference values of the controlled variable and control signal, respectively;
Wy and Wu are diagonal weight matrices. Let

ψJ = Sxx(k) +DF ,

Ψ = 2(ST
uWySu +Wu),

gT = 2((ψJ −Ry)
TWySu −RT

uWu),

ϕcon = (ψJ −Ry)
TWy(ψJ −Ry) +RT

uWuRu.

(4)

Since ϕcon is a constant independent of U(k), we are able to obtain a new objective function given by

min
U(k)

Jn(U(k)) =
1

2
U(k)TΨU(k) + gTU(k). (5)

Supposing Ψ ≻ 0, the solution can be expressed as

U(k) = −Ψ−1g. (6)

We substitute (4) into (6) to get

U(k) = −Ψ−1ST
uWySxx(k) − 2Ψ−1(ST

uWy(DF −Ry)−WuRu). (7)

Defining u(k) = [U(k)]1, M = [−Ψ−1ST
uWySx]

1, and b = [−2Ψ−1(ST
uWy(DF −Ry)−WuRu)]1, we are

able to derive the optimal control signal as follows:

u(k) =Mx(k) + b, (8)

where M is a vector and b is a scalar.

3.1 Fractional-order compensation of computation delay

The state-space model with the computation delay is

{

x(k + 1) = Ax(k) +Bu(k − dc) + F ,

y(k) = Cx(k),
(9)

where dc is the delay term. Since the computation delay does not exceed one cycle, dc belongs to [0,1].
Considering only the computation delay, we propose the Algorithm 1 and express the future trajectory
y(k + 1 +Np|k) as follows:

y(k + 1 +Np|k) = CANp+1x(k) +

Np−1
∑

i=−1

CANp−i−1Bu(k + 1 + i|k) +

Np−1
∑

i=−1

CANp−i−1F . (10)

Algorithm 1 Fractional-order compensation of the computation delay

1: Obtain the state variables of the current moment;

2: Apply the optimal control signal u(k) calculated before one period to the current time;

3: At the current time k, calculate the optimal control signal u(k + 1) and output it at time k + 1.

Since y(k + 1) can be calculated from known x(k) and u(k), we start to predict from k + 2 moment.
Accordingly, the prediction equation can be described as

Y (k) = Sxx(k) + SuU(k) +Duu(k) +DF , (11)
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where Y (k), U(k), Sx, Du, and DF are

Y (k) =
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We redefine ψJ = Sxx(k) +Duu(k) +DF in (4) and substitute Sx, Du, and DF in (11) to (4). In the
same derivation way as (8), we can get the optimal solution of the controller as follows:

u(k + 1) =M1x(k) + b1. (12)

Here, M1 = [−Ψ−1ST
uWySx]

1, and b1 = [−2Ψ−1(ST
uWy(DF −Ry)−WuRu)]1.

3.2 Fractional-order compensation of sampling delay

MPC takes the state variable x(k) sampled at the current moment k as the starting point of prediction.
Correspondingly, the calculation of the control law u(k) is related to x(k). For fractional sampling delay
x(k − τ), we need to estimate the current state variable x(k) according to x(k − τ) where τ = N + d,
N = int[τ ], and d ∈ [0, 1). To achieve this goal, we first analyze the integer delay compensation. If
the sampling signal is delayed by integer multiple periods, then the estimated value x(k|k − N) can be
deduced as

x(k|k −N) = ANx(k −N) +
N
∑

i=1

Ai−1Bu(k − i) +
N
∑

i=1

Ai−1F . (13)

Eq. (13) gives us an inspiration that we can establish the relationship between fractional sampling
delay x(k− τ) and integer sampling delay x(k−N). Once we have constructed the relationship between
x(k − τ) and x(k −N), then we can get the estimated value x(k|k − τ) based on (13). The polynomial
interpolation is a considerable approach that can be utilized to approximate the fractional-order delay
z−d. Compared to other interpolation methods, the Lagrange interpolation method has the following
advantages: easy explicit formulas for the coefficients, great response at low frequency bands, and a
smooth magnitude response [22]. Indeed, there are other polynomial interpolation methods for the
fractional-order delay approximation, such as splines interpolation. However, these methods are not
optimal from the frequency domain perspective [22]. According to [20], it is known that fractional-order
delay z−d can be approximated by a Lagrange-interpolation-based filter as follows:

z−d ≈
n
∑

j=0

αjz
−j , (14)

αj =
n
∏

i=0

i6=j

d− i

j − i
, i, j = 0, 1, . . . , n (n > 1), (15)

where n is polynomial order. Ref. [20] indicates that the Lagrange-interpolation-based FIR fractional
delay filter has high approximation accuracy within its bandwidth, i.e., the logarithmic magnitude of
the filter frequency characteristic is close to 0 dB. In other words, the filter has high approximation
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accuracy in the low-frequency range. Further, we use the following theorem to prove that n = 1 can
ensure the lowest computational complexity of x(k|k − τ) and the fractional delay filter bandwidth is
[0, fs/4], ∀d ∈ [0, 1) where fs denotes the sampling frequency. It is noted that the bandwidth of the
low pass filter is [0, fc] where fc is the cut-off frequency. We know that the cut-off frequency fc refers
to the point where the logarithmic magnitude of the frequency characteristic is −3 dB. Moreover, the
logarithmic magnitude of −3 dB is equal to the absolute magnitude of 1√

2
.

Theorem 1. (1) n = 1 can ensure the lowest computational complexity of x(k|k− τ). (2) When n = 1,
if Aβ(ω) >

1√
2
, ∀d ∈ [0, 1), the frequency of the excitation signal satisfies

0 6 f 6
fs
4
, (16)

where Aβ(ω) is the magnitude frequency characteristic function of the FIR filter; f denotes the excitation
signal frequency.

Proof. (1) According to (14), we can transform x(k − τ) into

x(k − τ) = z−τx(k) = z−(N+d)x(k) = z−N





n
∑

j=0

αjz
−j



x(k) =

n
∑

j=0

αjx(k − (N + j)). (17)

According to (1), we know that the sum of the last two terms αn−1x(k−(N+n−1)) and αnx(k−(N+n))
in

∑n
j=0 αjx(k − (N + j)) is

αn−1x(k − (N + n− 1)) + αnx(k − (N + n))

= (αn−1Im + αnA
−1)x(k − (N + n− 1))− αnA

−1(Bu(k − (N + n)) + F ), (18)

where Im is the identity matrix of the same order as A. Rearranging (17), we are able to derive

x(k − τ) + αnA
−1(Bu(k − (N + n)) + F )

=

n−2
∑

j=0

αjx(k − (N + j)) + (αn−1Im + αnA
−1)x(k − (N + n− 1)). (19)

Indeed, we eliminate x(k−(N+n)). Similarly, we can replace x(k−(N+n−1)) with x(k−(N+n−2)).
After many iterations, we finally obtain the relationship between x(k − τ) and x(k −N) as follows:

x(k − τ) +

n
∑

i=1





n
∑

j=i

αjA
i−j−1



 (Bu(k − (N + i)) + F ) =

n
∑

j=0

αjA
−jx(k −N). (20)

Then, we are able to get x(k −N) described as

x(k −N) =





n
∑

j=0

αjA
−j





−1 

x(k − τ) +

n
∑

i=1





n
∑

j=i

αjA
i−j−1



 (Bu(k − (N + i)) + F )



 . (21)

Based on (13) as well as (21), we can derive

x(k|k − τ) =AN











n
∑

j=0

αjA
−j





−1 

x(k − τ) +

n
∑

i=1





n
∑

j=i

αjA
i−j−1



 (Bu(k − (N + i)) + F )











+
N
∑

i=1

Ai−1Bu(k − i) +
N
∑

i=1

Ai−1F . (22)

x(k|k−τ) needs to be updated in real-time during each sampling period and, thus, n = 1 can guarantee
the low complexity of x(k|k − τ) due to n > 1.
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Figure 2 (Color online) Magnitude frequency characteristics of Lagrange-interpolation-based fractional delay filters with order

n = 1.

(2) The expression of the Lagrange interpolation FIR fractional delay filter is G(z) = 1 − d+ dz−1 if
n = 1. Indeed, the mapping is z = esTs between z and s. By substituting z = esTs into G(z), we can
deduce Gc(s) = 1− d+ de−sTs . Assuming s = jω, we have

Gc(jω) = 1− d+ de−jωTs .

Define the magnitude of Gc(jω) as

Aβ(ω) =

√

(1− d+ d cos(ωTs))
2
+ (d sin(ωTs))

2
=

√

(1− d)
2
+ d2 + 2(1− d)d cos(ωTs).

Moreover, define Hβ(d) = (1− d)2 + d2 + 2(1− d)d cos(ωTs) and the derivative of Hβ(d) is

Ḣβ(d) = (4− 4 cos(ωTs))d+ 2 cos(ωTs)− 2.

We consider only positive frequency and combine the Shannon sampling theorem to obtain 0 6 ω 6
ωs

2 = π

Ts
. Therefore, Aβ(ω) is a monotonically decreasing function if d ∈ (0, 1). First, ω = 0 can deduce

Aβ(ω) = 1 . Then, if d = 0, Aβ(ω) is also equal to one. Finally, for any d ∈ [0, 1), Aβ(ω) = 1 >
1√
2
if

ω = 0. Now we will analyze 0 < ω 6
ωs

2 , and we have cos(ωTs) ∈ [−1, 1). The coefficient 4− 4 cos(ωTs)
of d is always greater than 0 with cos(ωTs) ∈ [−1, 1). Hβ(d) will get the minimum value at d = 0.5.
Let d := 1 − d, and we can know Hβ(d) = Hβ(1 − d). It shows that Hβ(d) is symmetrical at d = 0.5.
Aβ(ω) >

1√
2
for any d ∈ [0, 1) can infer

min
d
Hβ(d) >

1

2
.

Because of mindHβ(d) = Hβ(0.5) =
1
2+

1
2 cos(ωTs) >

1
2 , we have cos(ωTs) > 0 and derive 0 < ωTs 6

π

2 .
Further, 0 < ωTs 6

π

2 can deduce 0 < ω 6
ωs

4 . To sum up, the range of ω satisfying good approximation

accuracy is [0, ωs

4 ]. Due to ω = 2πf , 0 6 f 6
fs
4 is proved.

We get the logarithmic magnitude frequency characteristic curves of (14) as shown in Figure 2. The
Nyquist frequency is half of the sampling frequency fs. Figure 2 presents that the filter has high accuracy
in the bandwidth frequency range. Further, if the signal frequency is in [0, fs/10], the logarithmic
magnitude of frequency characteristic is in [−0.437, 0] dB and its maximum drop is 0.437 dB. This
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indicates that the lower frequency has higher accuracy. Taking fast sampling systems such as power
electronics as an example, the sampling frequency is generally set to 20 kHz. Then, if the signal frequency
is in [0, 5] kHz, it is considered to have high approximation accuracy. If the signal frequency range is
smaller, for example in [0, 2] kHz, the approximation accuracy is higher.

According to Theorem 1, we substitute n = 1 into (22) to derive

x(k|k − τ) =AN ((α0Im + α1A
−1)−1(x(k − τ) + α1A

−1(Bu(k − (N + 1)) + F )))

+

N
∑

i=1

Ai−1Bu(k − i) +

N
∑

i=1

Ai−1F . (23)

If τ is an integer, (23) and (13) are equivalent. If τ is a fraction, we can substitute x(k|k − τ) in (23)
for x(k) in (8), and obtain the optimal control signal

u(k) =Mx(k|k − τ) + b. (24)

Accordingly, the fractional-order compensation of sampling signal delay is listed in Algorithm 2. Then,
we synthesize the computation delay and sampling delay. Similarly, we substitute x(k|k − τ) in (23) for
x(k) in (12) and derive

u(k + 1) =M1x(k|k − τ) + b1. (25)

Algorithm 2 Fractional-order compensation of sampling signal delay

1: Calculate M and b in (8);

2: Estimate the current state variable x(k|k − τ) by (23);

3: Obtain the optimal control law by (24).

In summary, the compensation algorithm of the hybrid delay (coexistence of computational and sam-
pling delays) proposed in this paper is presented in Algorithm 3.

Algorithm 3 Fractional-order compensation of hybrid delay

1: Calculate M1 and b1 in (12);

2: Estimate the current state variable x(k|k − τ) by (23);

3: Obtain the optimal control law by (25).

4 Stability analysis

For (25), we assume k := k − 1 and have

u(k) =M1x(k − 1|k − τ − 1) + b1. (26)

To simplify the notation, we replace x(k−1|k−τ−1) with x(k−τp) where τp = τ+1. Substituting (26)
into (1), we have

x(k + 1) = Ax(k) +BMx(k − τp) +BF , (27)

where BM = BM1 and BF = Bb1 + F .

Theorem 2. The system (27) is asymptotically stable if there are symmetric positive definite matrices

Q1, Q2, and nonsingular matrix
∫ Ts

0
eAsγdγ, which satisfies

Φ =

[

AT
s Q1 +Q1As +Q2 Q1As(A− I)

−1
BM

[As(A− I)
−1
BM ]TQ1 −Q2

]

≺ 0, (28)

where As is the coefficient matrix of the continuous-time state vector. I is the unit matrix with the same
dimension as As.
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Proof. We convert (27) into a continuous form as follows:

ẋ(t) = Asx(t) +BMsx(t− Tsτp) +BFs, (29)

where Ts is the sampling time of the discrete model. The coefficients of the continuous model and discrete
model are transformed as follows:



























A = eAsTs ,

BM =

∫ Ts

0

eAsγdγ ·BMs,

BF =

∫ Ts

0

eAsγdγ · BFs.

(30)

Assume that the equilibrium state of the system is xe, and xe satisfies the following expression:

(As +BMs)xe = −BFs. (31)

We define a new state variable q(t) = x(t)−xe, and the equilibrium state qe of q(t) is zero. Substitute
q(t) into (31) and we obtain

q̇(t) = Asq(t) +BMsq(t− Tsτp). (32)

Next, we construct a Lyapunov function

V (q(t)) = qT(t)Q1q(t) +

∫ t

t−Tsτp

qT(γ)Q2q(γ)dγ, (33)

where Q1 and Q2 are symmetric positive definite matrices. The derivative of V (q(t)) with respect to time
t is

V̇ (q(t)) = 2qT(t)Q1(Asq(t) +BMsq(t− Tsτp)) + qT(t)Q2q(t) + qT(t− Tsτp)Q2q(t− Tsτp). (34)

We rewrite (34) and obtain

V̇ (q(t)) = ξTΦξ, (35)

where ξ and Φ are

ξ =

[

q(t)

q(t− Tsτp)

]

, (36)

Φ =

[

AT
s Q1 +Q1As +Q2 Q1BMs

BT
Ms
Q1 −Q2

]

. (37)

According to (30), we have

BMs =

[

∫ Ts

0

eAsγdγ

]−1

BM . (38)

In addition, due to
d
(

eAst
)

dt
= Ase

Ast = eAstAs, (39)

then the following formula is given by

∫ Ts

0

eAsγdγ = eAstAs
−1|Ts

0 =
(

eAsTs − I
)

As
−1. (40)

Substituting (30) and (40) into (38), we can deduce

BMs = As(A− I)−1BM . (41)
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D

L=3 mHQ

C=100 μF
u
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=24 V

R=10 Ω

Figure 3 Topology and parameters of the BUCK converter.

We substitute (41) into (37) to derive

Φ =

[

AT
sQ1 +Q1As +Q2 Q1As(A− I)−1BM

[As(A− I)
−1
BM ]TQ1 −Q2

]

.

Therefore, the system (27) is asymptotically stable as long as there are symmetric positive definite

matrices Q1, Q2, and nonsingular matrix
∫ Ts

0
eAsγdγ, which are able to make Φ negative definite. The

proof of Theorem 2 is completed.
Remark 1. Although this paper discusses the unconstrained MPC, the proposed fractional-order com-
pensation algorithm can be directly extended to the constrained MPC. When the system exists both
sampling delay and computation delay, we can first estimate the current state x(k) according to (23),
and then calculate the control input u(k+ 1) at the next time k+1. Finally, we can keep the calculated
u(k+1) and output it at time k+1. For the constrained MPC, we can get the optimal solution u(k+1)
by solving a quadratic programming problem. As long as the algorithm used to solve the quadratic
programming converges within one sampling cycle, the controlled system under the constrained MPC is
stable.

5 Simulation results

5.1 Numerical example

Figure 3 presents the topology and parameters of the BUCK converter. uin, uC , and iL denote the input
voltage, the output voltage, and the current passing through the inductor, respectively. First, in the
conduction stage of the switching tube, we can get the state equation as follows:

[

i̇L

u̇C

]

=







0 −
1

L
1

C
−

1

RC







[

iL

uC

]

+





1

L
0



uin. (42)

In the shutdown stage of the switching tube, we can obtain

[

i̇L

u̇C

]

=







0 −
1

L
1

C
−

1

RC







[

iL

uC

]

+

[

0

0

]

uin. (43)

Average (42) and (43), and we have

[

i̇L

u̇C

]

=







0 −
1

L
1

C
−

1

RC







[

iL

uC

]

+





ud
L
0



uin,

where ud is the duty cycle. Taking ud as the control input, we are able to derive the mathematical model
of the BUCK converter

[

i̇L

u̇C

]

=







0 −
1

L
1

C
−

1

RC







[

iL

uC

]

+





uin
L
0



ud.
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Figure 4 (Color online) Comparison of the sampling delay

compensation algorithms under the BUCK converter.

Figure 5 (Color online) Step response of the BUCK converter

under the coexistence of computation and sampling delays.

Assuming uC is the controlled variable and the sampling cycle Ts is 50 µs, A, B, C, and F in the
model (1) are

A =

[

0.9959 −0.0162

0.4870 0.9472

]

, B =

[

0.3995

0.0983

]

,

C = [ 0 1 ], F =

[

0

0

]

.

We compare three MPCmethods, namely, no compensation method, integer compensation method [16],
and the proposed fractional-order compensation method. Assume that the computation delay dc is 0 and
sampling delay τ is 1.5. The reference value of the controlled variable uC is 12 V. Figure 4 illustrates that
the fractional-order compensation algorithm has a better effect than that of the integer compensation
and uncompensated cases.

To further prove the contributions and advantages of the proposed algorithm, we utilize the proportional-
integral-differential (PID) algorithm for comparison when the computation delay and sampling delay
coexist. The computation delay dc is 0.9 and sampling signal delay τ is 1.6. Figure 5 presents the step
response of the controlled variable using the full compensation algorithm. Moreover, the reference value
steps to 20 V from 12 V at 0.05 s. Indeed, the PID algorithm can deal with the problem of fractional-
order delay and guarantee that the controlled voltage tracks the reference value. However, the dynamic
performance of the PID algorithm is worse than that of the proposed MPC algorithm. The setting time
of the PID algorithm is much longer than that of the proposed algorithm. Compared with PID algo-
rithm, MPC performs optimization calculation in each sampling period, which ensures its fast regulating
ability [23]. Indeed, the fast regulating speed is significant for fast sampling systems. Accordingly, the
great performance of MPC in fast sampling systems makes it capable to deal with the fractional-order
delay compensation problem.

5.2 Example of wireless power transfer system

In this subsection, we use the power electronic system in PLECS instead of its mathematical model. In
addition, the MPC algorithm runs in MATLAB. Then, we combine MATLAB and PLECS to obtain the
simulation results. Therefore, the controlled variable will not be as smooth as the numerical model due
to the existence of the switching ripple. According to the wireless charging system model in [24], we
change the load of the DC-DC converter into a lithium battery, and remove the output filter capacitor to
obtain the structure presented in Figure 6. The DC-DC converter of the wireless power transfer system
is modeled as

{

ẋ = As1x+ Fs1, kTs 6 t < (k + ud)Ts,

ẋ = As2x+ Fs2, (k + ud)Ts 6 t < (k + 1)Ts,

where [kTs, (k + ud)Ts) and [(k + ud)Ts, (k+ 1)Ts) denote the on and off states of insulated gate bipolar
transistor (IGBT), respectively. The switching cycle is consistent with the sampling cycle. x = [uCd iLd]

T
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Figure 6 Topology of the wireless power transfer system.

Table 1 Parameters of wireless power transfer

Parameter Symbol Value

Input voltage of the inverter uin 200 V

Self-inductance of the primary-side coil L1 178 µH

Self-inductance of the secondary-side coil L0 178 µH

Primary-side resonant inductor Lf1 45.5 µH

Secondary-side resonant inductor Lf0 45.5 µH

Primary-side resonant capacitor Cf1 77.05 nF

Secondary-side resonant capacitor Cf0 77.05 nF

Primary-side compensation capacitor C1 24.46 nF

Secondary-side compensation capacitor C0 24.46 nF

DC-DC input capacitor Cd 90 µF

DC-DC inductor Ld 3 mH

Battery voltage ub 136 V

Sampling cycle Ts 50 µs

is the state variable. As1, As2, Fs1, and Fs2 are

As1 =







0 −
1

Cd

1

Ld

0






, Fs1 =







iin
Cd

−
ub
Ld






, As2 =

[

0 0

0 0

]

, Fs2 =







iin
Cd

−
ub
Ld






, (44)

where iin represents the equivalent DC-DC input current; Cd and Ld are the DC-DC input capacitor and
the DC-DC inductor, respectively; uCd and iLd are voltage on Cd and current on Ld, respectively; ub
denotes the battery voltage. By discretizing (44), we can obtain

{

x(k + 1) = Ad1x(k) + Fd1, ud = 1,

x(k + 1) = Ad2x(k) + Fd2, ud = 0.

The introduction of the duty cycle ud brings the nonlinear term to the model as follows:














x(k + 1) = Amx(k) +Bmx(k)ud + Cmud +Dm,

Am = Ad2, Bm = Ad1 −Ad2,

Cm = Fd1 − Fd2, Dm = Fd2.

Based on the method outlined by [25], we can obtain the linear model (1).

5.2.1 Influence of the computation delay and sampling delay on the system

Based on parameters in Table 1, we first discuss the influence of the computation delay and sampling
delay on the system. If the sampling delay is τ cycle, i.e., the sampled state variable at the current
moment is x(k − τ), then the calculated control law is u(k − τ), which means that the control law is
delayed by τ cycle. If the computation delay is dc cycle, the control law is delayed by dc cycle. Indeed,
the longer the delay time of the control law is, the greater the influence on the system is.

The computation delay refers to the time spent by the controller in the calculation process, which
results in a delay in the control law. In applications, the controller runs through the interrupt service
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Figure 7 (Color online) Comparison of the influence of the computation delay and sampling delay on the system.
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Figure 8 (Color online) Comparison of the sampling delay compensation algorithms under the wireless power transfer system.

function. When the sampling interrupt service function is triggered, the controller starts to execute the
control algorithm. When the interrupt service function at the next moment is triggered, the controller
will not be able to complete the calculation if its calculation time is greater than one sampling cycle.
Therefore, the calculation of the control signal needs to be completed within one cycle. Accordingly,
the computation delay will not exceed one sampling cycle. Different from the computation delay, the
sampling delay can be greater than one cycle. When the sampling delay is longer than the computation
delay, the sampling delay has a greater influence on the system.

We set the reference value and sampling cycle in the wireless power transfer system as 150 V and 50 µs,
respectively. Subsequently, we present the influence of one-cycle computation delay, one-cycle sampling
delay, and two-cycle sampling delay on the system. As shown in Figure 7, if the computation delay and
sampling delay are both one cycle, the controlled voltage variations of the system are basically the same.
If the sampling delay is two cycles, the controlled voltage will oscillate more violently than that of the
one-cycle computation delay. Accordingly, for the sampling delay and computation delay, the delay with
longer time has a greater influence on the system.

5.2.2 Effect of fractional-order compensation algorithm

Figure 8 shows the results of the sampling delay compensation. Assume that the computation delay
is 0 µs and the sampling delay is 70 µs, i.e., dc = 0 and τ = 1.4. The system is also tested in three
cases: no compensation, integer multiple compensation, and fractional multiple compensation. When the
system has no sampling delay compensation, the controlled voltage is oscillatory. When we adopt the
integer multiple compensation for the system, the effect of the controlled voltage is improved, but it is
still slightly fluctuating. If the fractional compensation is employed in the system, the effect of controlled
voltage is great because of its advantage of the precise compensation.

Assume that the computation delay and sampling delay are 40 and 70 µs, respectively, i.e., dc = 0.8
and τ = 1.4. If only one kind of delay is compensated, the control effect is unsatisfactory as shown in
Figure 9(a). In addition, the control signal variations are presented in Figure 9(b). The change of control
signal is more regular when the algorithm of the full compensation strategy is adopted. The simulation
results demonstrate the validity of the proposed fractional-order compensation and the extended hybrid
delay compensation strategy. In this hybrid delay state, we further compare the results of the proposed
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Figure 9 (Color online) Coexistence of computation and sampling delays. (a) Controlled variable variations; (b) control signal

variations.
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Figure 10 (Color online) Step response of the wireless power transfer system under the coexistence of computation and sampling

delays.

MPC and PID algorithms. The reference value steps from 150 to 160 V at 0.05 s. Figure 10 presents
that the adjustment speed of the proposed MPC algorithm is faster than that of the PID algorithm. It
further proves that the proposed MPC algorithm is superior.

5.2.3 Time-varying situation of F

Now we discuss the situation where F in the system (1) is time-varying. DF in (11) needs to be revised
as follows:

DF =

































0
∑

i=−1

CA−iF (k + i+ 1)

1
∑

i=−1

CA1−iF (k + i+ 1)

...
Np−1
∑

i=−1

CANp−i−1F (k + i + 1)

































Np×1

.

Similarly, the revised x(k|k − τ) is

x(k|k − τ) =AN ((α0Im + α1A
−1)−1(x(k − τ) + α1A

−1(Bu(k − (N + 1)) + F (k − (N + 1)))))

+

N
∑

i=1

Ai−1Bu(k − i) +

N
∑

i=1

Ai−1F (k − i).

The general method to deal with time-varying problems is to assume that F in the prediction horizon
is constant, and then the MPC rolling optimization mechanism is used to feedback F in real-time. Based
on this idea, we assume that the values of time-varying F in the proposed method are the sampled value
at the sampling moment. Then, F is updated at each sampling moment through using the MPC rolling
optimization mechanism. We consider the voltage expression of the lithium battery as follows:

ub = 136 + 2 sin(200πt).
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Figure 11 (Color online) Control effect under time-varying situation of F . (a) Controlled variable variations; (b) control signal

variations.

Correspondingly, F is time-varying according to (44). The computation delay and sampling delay of
the system are set to 40 and 70 µs, respectively; the reference value is 150 V. As presented in Figure 11,
the controlled voltage can still be stabilized at 150 V. The approaches in this paper are still applicable.
Moreover, the control signal exhibits periodic changes because the lithium battery voltage ub, the control
signal ud, and the controlled voltage uCd satisfy the relationship ub = uCd × ud. This relationship is the
property of the DC-DC converter. When the lithium battery voltage changes periodically, the control
signal also changes periodically to stabilize the controlled voltage.

6 Conclusion

In this paper, we propose an MPC algorithm with a fractional-order delay compensation for delay prob-
lems in fast sampling systems. Combined with the idea of an FIR fractional delay filter, we present a
sampling delay compensation method with low computational complexity and high accuracy. Consider-
ing the coexistence of computational and sampling delays, we design a full delay compensation method.
Simulation results show the validity and superiority of the proposed compensation method.
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