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Abstract Cyclist trajectory prediction is of great significance for both active collision avoidance and path

planning of intelligent vehicles. This paper presents a trajectory prediction method for the motion intention

of cyclists in real traffic scenarios. This method is based on dynamic Bayesian network (DBN) and long

short-term memory (LSTM). The motion intention of cyclists is hard to predict owing to potential large

uncertainties. The DBN is used to infer the distribution of cyclists’ intentions at intersections to improve the

prediction time. The LSTM with encoder-decoder is used to predict the cyclists’ trajectories to improve the

accuracy of prediction. Therefore, the DBN and LSTM are adopted to guarantee prediction accuracy and

improve the prediction time. The experiment results are presented to show the effectiveness of the predict

strategies.
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1 Introduction

Cyclists are the vulnerable group in road traffic accidents. The “Annual Statistical Report of 2018
for Road Traffic Accidents in China” shows that cyclists accounted for 21.98% of the total number of
traffic fatalities with 46074 cyclists, and 20.07% of the injured with 12800 cyclists in 2017 [1]. Especially,
medium-sized cities and campuses generally have higher levels of bicycle commuting, so the traffic accident
rate is higher. According to situation awareness theory [2], it is not possible for a vehicle to arrive at its
destination safely by merely judging the current state of the environment. Instead, it has to cope with
the predictions of cyclists in the surrounding traffic environment [3–5].

Cyclist trajectory prediction aims to predict the position of the cyclist based on the model of cyclist
motion. In the beginning, some modeled cyclist motion treats the cyclist as a rigid body, including a
first power motion model and a quadratic motion model according to the motion complexity. The first
power motion model includes the constant position model, constant velocity model, constant position
model, and so on. The first power motion model assumes linear motion of the cyclist in a plane with
two perpendicular velocities, where the velocity directions are invariant. Quadratic motion models are
nonlinear models including the constant turn rate and velocity model, and the constant turn rate and
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acceleration model. Quadratic motion models are often used to model aircraft and automobiles. However,
such models do not perform well in this work owing to potential large errors.

Based on the typical motion model, Kalman filter (KF) was used to track and predict the motion of
the cyclist [6]. In order to improve the prediction accuracy of a single model, multi-motion models, such
as the mixture of linear dynamical system and switching linear dynamical system, are often employed.
Goldhammer et al. [7] and Gao et al. [8] combined multi-layer perception (MLP) and polynomial fitting to
predict the future trajectory of the rider. Bieshaar et al. [9] used MLP to detect the starting intention of
cyclists at intersections based on smart devices and infrastructure. In addition, long short-term memory
(LSTM) was increasingly used as a time recurrent neural network for trajectory prediction [10,11]. Saleh
et al. [12] compared one-way and two-way LSTM in the trajectory prediction of cyclists. The results
showed that the prediction accuracy of both networks is higher than that of traditional MLP.

However, the above methods are not applicable to scenarios when cyclists changing directions because
they treat the cyclist as a rigid body and less consider the intention in cyclists’ mind. Pool et al. [13]
modeled the rider’s motion as a regular or a hybrid linear dynamic system [14, 15]. The hybrid method
used road intersection as features to distinguish the cyclist’s motion intention such as going straight
or making turns. The accuracy of the predicted right turn was increased by 20% when the forecast
duration was 1.0 s compared with the traditional constant velocity model. Refs. [9, 16, 17] extracted the
rider’s pose characteristics from history cyclist images and employed SVM and CNN to classify the rider’s
intentions. The system was used to predict the cyclist’s intention of waiting or moving at intersections
with traffic lights. The test results show that both methods perform well to decide whether the rider
is ready to move, but the method of CNN requires a shorter processing time. Refs. [14, 18–20] used a
dynamic Bayesian network (DBN) to determine the motion intention. According to the characteristics
of the rider’s arm movement and the relative position between the rider, vehicles and road structure of
the intersection, the probabilities of cyclist’s motions such as going straight or making turns can be well
predicted. Compared with linear dynamic systems and hybrid linear dynamic systems, DBN can take
into account more cyclist-related features and effectively improve recognition accuracy.

This paper mainly studies an integrated method combining the intention recognition and trajectory pre-
diction of the cyclist in an unsignalized intersection scene. The design algorithm realizes the intent-based
cyclist trajectory prediction, and uses the test vehicle platform to collect real road data. Furthermore,
the proposed method verification and comparison with other methods are conducted.

The main contributions of this paper are summarized as follows.
(1) The DBN is used to infer the distribution of cyclists’ intentions at intersections. Therefore, the

problem of short prediction time can be solved.
(2) The LSTM with encoder-decoder is used to predict the cyclists’ trajectories. Therefore, the pre-

diction inaccuracy problem can be solved.
(3) The DBN and LSTM are adopted to guarantee prediction accuracy and improve the prediction

time.
The rest of this paper is structured as follows. Section 2 provides a method overview of the framework.

Section 3 describes the process of intention inference. Section 4 introduces trajectory prediction. Section 5
provides experiments and analysis about intention inference and trajectory prediction. Section 6 concludes
the article.

2 Method overview of framework

In this paper, the system consists of four parts, and the system overview is shown in Figure 1.
The first block is an input module. Information of the cyclist, ego vehicle, and road environments are

collected from sensors equipped on the ego vehicle. A data-collecting scenario is set at an unsignalized
intersection on campus, where cyclists pass frequently and cyclist-vehicle accidents are likely to occur.

The second block is the intention inference. A cyclist’s motion features, ego vehicle movement and
environmental features are incorporated in a graphical model of DBN, and the intention of the cyclist
can be estimated through the probabilistic reasoning. Details of this part are shown in Section 4.

The third block is trajectory prediction. LSTM with encoder-decoder is selected because of its strong
capabilities of acquiring information and representing intrinsic features when dealing with time sequences.
The trajectory prediction model incorporates historical movement and road limit. The intention result
from the second block is also incorporated. The model details are shown in Section 5.
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Figure 1 (Color online) Block diagram of the proposed method.
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Figure 2 (Color online) The DBN-based model for cyclist intention inference from time step t − 1 to t. The observed variables

(circle) correspond to the hidden variables. Intentions (shaded rectangle) are inferred via given hidden variables.

In the fourth piece, the predicted positions of cyclists are implemented for verification and application.

3 Intention inference

A DBN is employed to combine qualitative intentions with additional context information. The intent-
related position, motion, and feature details are regarded as hidden variables and observables, which are
variables collected from the vehicle sensors.

As shown in Figure 2, the hidden variables are selected as cyclist intention node Int, which has three
possible intentions: going straight, turning right and turning left. Node O is the set of observables from
the view of vehicle sensors, and node H is the set of hidden variables in the view of cyclists [20, 21].

O = {OO, OV , OR}, (1)

H = {HO, HV , HR}, (2)

where OO is the cyclist velocity orientation, OV is the time of collision between the cyclist and the ego
vehicle, and OR is the relative position of cyclist in the road. In the set of hidden variablesH , HO denotes
the orientation of cyclist’s temporary target, which is related to OO; HV denotes whether the cyclist feels
any danger when riding, which is related to OV ; HR denotes whether the cyclist is ready to go straight,
turn right or turn left; HO, HV and HR are discrete variables; and OO , OV , OR are continuous variables.
HO, HV and HR are independent variables with temporal and probabilistic transitions. Therefore, the
temporal transition for hidden variables H is defined as

P (Ht|Ht−1) = P (HO
t |HO

t−1)× P (HV
t |HV

t−1)× P (HR
t |HR

t−1), (3)
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Figure 3 (Color online) Inferring process steps of DBN.

where P (HO
t |HO

t−1), P (HV
t |HV

t−1) and P (HR
t |HR

t−1) are the temporal transitions for hidden variables H
from time step t− 1 to t.

The state of cyclist motion orientation is not directly related to the observed cyclist’s speed and the
cyclist’s coordinates on the road map. The probability relationships OO −HO, OV −HV and OR −HR

are independent of each other. Therefore, the relationship between the observed variables O and the
hidden variables HV could be written as follows:

P (Ot|Ht) = P (OO |HO)× P (OV |HV )× P (OR|HR), (4)

where P (OO|HO), P (OV |HV ) and P (OR|HR) indicate the relationships between OO −HO, OV −HV

and OR −HR respectively in the same time step.
P (OO|HO) accords with a Gaussian distribution with a mean value µ0 and a standard deviation σ0;

P (OV |HV ) conforms to a Gamma distribution with a parameter λV ; and P (OR|HR) accords with a
polynomial distribution. Their empirical distributions and parameters are estimated using maximum
likelihood estimation on the training data, which are manually annotated with the context states.

The inference DBN process employs assumed density filtering as the approximate inference method [20]
and is divided into the “predict” and “update” steps as shown in Figure 3. Prior probability P (·)
and posterior probability P̂ (·) are then introduced in the inference process, which uses the posterior
probability of the previous step P̂ (Intt−1, Ht−1) as the basis for the “predict” step. The prior probabilities
P (Intt, Intt−1, Ht, Ht−1) and P (Intt, Ht) are calculated, and then the posterior probability is updated to
P̂ (Intt, Ht) with the observables.

The “predict” step is

P (Intt, Intt−1, Ht, Ht−1) = P (Intt|Intt−1, Ht)× P (Ht|Ht−1)× P̂ (Intt−1, Ht−1), (5)

P̄ (Intt, Ht) =
∑

Intt−1

∑

Ht−1

P̄ (Intt, Intt−1, Ht, Ht−1). (6)

The “update” step is
P̂ (Intt, Ht) ∝ P (Ot|Ht)× P (Intt, Ht), (7)

P̂ (Intt) =
∑

Ht

P̂ (Intt, Ht). (8)

At every time step, the network is updated with all available observables, so the posterior probability
of crossing function P̂ (Intt) is inferred. The whole intention influence process is shown in Algorithm 1.

4 Trajectory prediction

LSTM is employed for trajectory prediction based on the intention result. LSTM is a special recurrent
neural network (RNN) and capable of learning long-term dependencies. It shows strong information
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Algorithm 1 Intention inference model

1: Initialize: P (HO
t |HO

t−1), P (HV
t |HV

t−1), P (HR
t |HR

t−1), P (OO |HO), P (OV |HV ), P (OR|HR), P (Intt|Intt−1, Ht);

2: for episode = 1, M do

3: Initialize P̂ (Intt−1, Ht−1);

4: Obtain the temporal transitions for hidden variables with time step: P (Ht|Ht−1);

5: Obtain the relationship between the observed variables and the hidden variables: P (Ot|Ht);

6: Obtain joint prior distribution of Int and H at time step t and t − 1 : P (Intt, Intt−1, Ht, Ht−1);

7: Obtain joint prior distribution of Int and H at time step t : P (Intt, H);

8: Obtain and output the posterior probability of crossing function P̂ (Intt);

9: end for
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Figure 4 (Color online) Framework of trajectory prediction.

acquisition capabilities and can represent intrinsic features when dealing with time sequences. Also,
LSTM can reliably predict trajectories in complicated scenes because of its ability of combining all
feature into one semantic vector. Since trajectory prediction belongs to a time sequence problem, LSTM
is selected to predict trajectories in future through historical motion data and environment information.

Encoder-decoder is chosen as our trajectory prediction model, since it can handle cases of unrelated
outputs at different time steps and deal with seq-to-seq problems. The encoder-decoder structure is
shown in Figure 4.

4.1 Encoder

The information of target cyclist’s motion and road structure are put into the encoder, and then the
input sequence is transformed into intermediate semantic representations — context by non-linear trans-
formation. The context is the summary of hidden layer information.

(1) The system input is

X = {Xt−h, Xt−h+1, . . . , Xt}, (9)

Xt = {Ct, Rt, Intt}, (10)

where Ct is motion information of target cyclist and Ct = [xt, yt, vt, at]; Rt is information of road structure,
Intt is the result of intention inference. (xt, yt) is the position of the target cyclist, vt is velocity and at
presents acceleration.

(2) Output. The output is the context which is a semantic vector and is a summary of hidden layer
information.

4.2 Decoder

The output of the encoder is the input of this step. Using the intention inference result, the predicted
position in the next time step is obtained. A new position is achieved by inputting the result of the
previous step iteratively. And we can get the predicted sequence of the trajectory. Here the mean
squared error (MSE) is used as the loss function and mean absolute error (MAE) is defined as the
evaluation index.



Gao H B, et al. Sci China Inf Sci July 2021 Vol. 64 172207:6

(1) Input. The input is the context which is a semantic vector and is a summary of hidden layer
information. BOS (begin-of-study) is set as a starting condition and represents the starting position
of predicted sequence. Intention with [w1, w2, w3] is the output from DBN-based intention recognition
model, where, w1, w2 and w3 represent the probabilities of going straight, turning left and turning right
respectively.

(2) Loss function MSE is set as follows:

MSE =

∑n

i=1(Yi − Yip)
2

n
, (11)

where n is the number of input steps. Yi and Yip represent the real and the predicted positions respectively.
(3) Evaluation index MAE is set as follows:

MAE =

∑n

i=1(|Yi − Yip|)

n
. (12)

(4) Output:
Y = {Yt+1, Yt+2, . . . , Yt+k}. (13)

Yt+1 = [xt+1, yt+1], (14)

where the output Y is the predicted position and [xt, yt] represents the coordinates of that. k is the number
of time steps about prediction. In order to avoid information bottleneck and overfitting phenomenon,
the number of hidden cells of LSTM cell body is 128, and the deep cyclic neural network structure is
constructed by stacking three cyclic layers. The dropout ratio between different layers is 0.2. Using
Adam optimizer, the learning rate is α = 0.0005, and the attenuation rate is 0.9. The whole trajectory
prediction process is shown in Algorithm 2.

Algorithm 2 Trajectory prediction model

1: Initialize: Encoder network Qe(Xt, w), and decoder network Qd(Ct,BOS, v) (w and v are the network parameters);

2: for episode = 1, M do

3: Initialize encoder input Xt;

4: Initialize starting condition BOS;

5: for t = h,H do

6: Obtain the output of encoder Ct;

7: Obtain the output of decoder Yt+1;

8: Minimize the loss function to update networks: MSE =
∑n

i=1(Yi−Yip)2

n
;

9: end for

10: end for

5 Experiments and analysis

5.1 Data collecting

Since the sampling frequency is relatively low in existing public benchmark dataset on cyclist detec-
tion [22], a new dataset is collected in this work for intent-based trajectory prediction. The dataset
consists of 94 sequences, 7358 frames collected by a moving vehicle equipped with LiDAR (Velodyne
VLP-16, 10 fps) and a mono camera (IDS UI-5250CP-C-HQ, 15 fps). The sensor data are fused with
10 fps. Each sequence involves one cyclist approaching the intersection with an intention to cross, for a
duration of several seconds (min/max/mean: 3.7 s/12.2 s/7.8 s).

The experiment is conducted at an unsignalized intersection. The road has two lanes with mixed
traffic, where vehicles and cyclists can share the same lane. The road has a speed limit of 40 km/h.

The positional ground truth (GT) of cyclists was obtained by manual labeling from the plan view of
LiDAR point cloud data. To acquire information about the road geometry ahead, an intelligent vehicle
can localize itself in digital map. In the confined road area for data collection, a 2D static map of the
road geometry is built offline by LiDAR SLAM [23] on collected LiDAR data. The coordinate system on
the map is aligned with the intersection layout. The scenarios for data collection are shown in Figure 5.

Based on the directions of relative movement between the cyclist and the ego vehicle, three classes are
distinguished: longitudinal, crossing and oncoming [24]. The dataset is also divided into sub-scenarios
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Turning left

Going straight

Turning right

Longitudinal From leftFrom right Oncoming

Figure 5 (Color online) Scenarios for data collection.

according to the high-level behaviors of cyclists at cross-shaped intersection as listed in Table 1. Three
sub-scenarios are “going straight”, “turning left” and “turning right”, which correspond to the cyclist
intentions when approaching the intersection.

Recorded frames are further labeled with time-to-event (TTE) values following the literature [25]. For
all cyclists, the first frame where they passed the entrance line of the intersection is labeled with TTE =
0. All frames before TTE = 0 have negative TTE values, and all frames after the event have positive TTE
values. The intersection region is determined by four entrance lines. If the cyclist passes the entrance
line into the intersection region, the frames are labeled as “at intersection”.

The proposed approach is further verified by the cyclist dataset. In the experiments, cross validation is
used to separate training and test sequences, covering three sub-scenarios (i.e. “going straight”, “turning
left” and “turning right”).

5.2 Analysis of intention inference results

We compare the recognition accuracy, recognition precision and recognition rate in different scenarios,
using the method of LSTM. Moreover, we evaluate the classification performance over TTE on test se-
quences. Each time step corresponds to 100 ms. In each sub-scenario, four instances of cyclists coming
from different directions related to ego vehicle are selected to analyze and evaluate the specific perfor-
mance.

LSTM is a typical neural network method with the advantages of solving timing problems that was
chosen for comparing with DBN in intention inference. In LSTM network setting, the deep cyclic neural
network structure is constructed by stacking two cyclic layers with 800 training sessions. The learning
rate is 0.001, and the attenuation rate is 0.8. In order to balance the training speed and training effect,
the batch size of the small batch gradient descent method used in this paper was set to 5. During the
training process, five sets of training data were randomly selected for learning model parameters. Variable
learning rates were used to learn model parameters.

The confusion matrix was used to compare the intent recognition effects of DBN and LSTM. The
confusion matrix is defined in Table 2.
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Table 1 Number of frames in the cyclist dataset

Longitudinal From left From right Oncoming Total

Going straight 750 750 1126 657 3283

Turning left 735 571 898 490 2694

Turning right 425 372 372 212 1381

Total 1910 1693 2396 1359 7358

Table 2 Confusion matrix definition
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Figure 6 (Color online) Comparison of intention inference methods. (a) ACCR; (b) PRE; (c) RECR.

In each category, the accuracy rate (ACCR), precision (PRE) and recognition rate (RECR) were
defined. Since intention inference was a multi-category task, the results of various intention classifications
were analyzed in three 2×2 confusion matrices separately. For example, for the straight category, it is
divided into going straight and non-going straight, similarly turning left and non-turning left, and turning
right and non-turning right for the other two categories.

ACCR =
TP + TN

TP + TN+ FP + FN
, (15)

PRE =
TP

TP + FP
, (16)

RECR =
TP

TP + FN
. (17)

Figure 6 shows ACCR, PRE and RECR of different models for different intention inferences. It can
be seen that the DBN has higher ACCR in inferring the intention of going straight and turning left. The
inference precision reflects the credibility of the model as positive timing. In the comparison of inference
precision, it can be seen that PRE of DBN for going straight is significantly lower than that of LSTM,
but the PRE of DBN for turning right is higher than LSTM. The RECR indicates the ability of the
model to identify positive samples. RECR of DBN is better than LSTM for all cases of going straight,
turning left, or turning right.

By assuming that each intention is distinct in all scenarios, the classification performance on test tracks
is evaluated, and the results demonstrate that the developed approach could classify the intention of each
track correctly. The probabilities of cyclist’s intention changing with TTE in the case of going straight
and turning left are shown in Figure 7. The time when the cyclist goes into the intersection is defined
as TTE = 0. This shows that the intent inference method could accurately classify the cyclist intentions
within 17 frames after cyclists entering the intersection region. For turning cases, at the time when the
corresponding intent probability raises up to 0.8 that indicates relative clear intention, the TTE of the
turning-left cases is larger than that of the turning-right cases by comparing Figure 7(b) with Figure 7(c).
This is related to the fact that the left turning radius is greater than the right turning radius under the
rule of driving on the right. Considering the probability of three cyclist intentions varying with time in
three sub-scenarios, the proposed method has great performance in turning right cases with the intention
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TTE (frames)
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TTE (frames)
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Figure 7 (Color online) The probability of cyclist intentions changes over TTE in three cases. (a) Going straight; (b) turning

left; (c) turning right.

probability achieving 0.8 before 2 frames of entering the intersection for four types of cyclists as shown
in Figure 7(c).

Above all, the developed approach shows a good performance in predicting cyclist intentions at intersec-
tions. The approach could infer the cyclist intentions within 0.9 s after the cyclist enters the intersection.
The intent inference method based on DBN, benefiting from the intent-related cyclist motion, ego vehicle
motion and environment features, not only is conducive to generating a reasonable trajectory, but also
saves time for the decision layer of intelligent vehicles to take maneuvers to protect cyclists.

5.3 Analysis of trajectory prediction results

Conventional prediction methods, e.g., the constant velocity KF, do not consider the intentions of cyclists,
which limits its performance in long-term prediction. To evaluate the proposed DBN+LSTM, we compare
the prediction performance to the baseline method for all sub-scenarios. We use DBN for intention
inference and KF for trajectory prediction [25] as the baseline methods. Section 4 shows that our approach
is able to successfully predict cyclist intentions at intersections. This provides a probabilistic qualitative
basis for the long-term prediction of reasonable trajectories rather than a deterministic prediction.

Euclidean metric ε was adopted to evaluate the performance of prediction results quantitatively in time
domain. As shown in (18), we use the Euclidean metric of the predicted positions with respect to the
ground truth (GT) which is generated by the tracked position. At prediction time step t, the predicted
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Figure 8 (Color online) Error comparison of trajectory prediction methods. (a) 1.0 s-AEE; (b) 1.5 s-AEE; (c) 2.5 s-AEE.

position of the cyclist is (xpre(t), ypre(t)) and the GT position is (xGT(t), yGT(t)).

ε(t) =
√

(xpre(t)− xGT(t))2 + (ypre(t)− yGT(t))2. (18)

One evaluation metric based on Euclidean distance is employed, which considers a specific prediction
time horizon named average Euclidean error (AEE). When all of the predictions in the test data with
a specific prediction time horizon are given, AEE shows the average error at each time step [26]. The
prediction horizons are chosen as 1.0 s, 1.5 s and 2.5 s respectively to evaluate the performance at different
time steps.

The results of trajectory prediction methods for the prediction horizons of 1.0 s, 1.5 s and 2.5 s are
illustrated in Figure 8. With the increase of prediction time, the AEE of KF and DBN+KF rises obviously,
while the proposed approach keeps a relatively stable prediction performance with a slight increase of
AEE. The AEE of the approach is below 1.44 m in three scenarios with the prediction time horizon of
2.5 s. For the going straight scenario, we received an AEE of 0.55 m with DBN+LSTM and 0.43 m
with DBN+KF for a prediction time horizon of 1.0 s. For a prediction time horizon of 2.5 s we received
1.44 m and 1.87 m, while the KF approach showed an AEE of 0.52 m for 1 s and 2.91 m for 2.5 s. For
the turning right scenario, a prediction time horizon of 1.0 s led to an AEE with DBN+LSTM of 0.69
m and 1.12 m for a horizon of 2.5 s. Using the KF we obtained 1.27 m and 5.14 m, respectively. In the
turning left scenario, it shows that DBN+LSTM also performs a lower AEE than DBN+KF and KF.

The KF method does not consider any context information while the DBN+KF method does not
take road structures into consideration. In contrast, our approach considers context information when
anticipating the cyclist intentions. Since the road structure limits the curvature of trajectory, our ap-
proach outperforms the KF and DBN+KF not only in turning cases, but also for long prediction horizons
especially when the prediction horizon is longer than 1.5 s.

Figure 9 shows the Euclidean error varies with TTE in sub-scenarios for a prediction horizon of 1.5 s.
Compared to KF, the developed approach performs better in predicting trajectories for going straight
and turning. The KF cannot determine if the cyclist will make a turn or keep moving straight, resulting
in failures to predict the lateral movement of the cyclist. As a result, in turning left cases, the proposed
approach shows similar accuracy to KF before turning, and improves accuracy after the turn is initiated.
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Figure 9 (Color online) Prediction error over TTE in three cases for prediction time horizon 1.0 s. (a) Going straight; (b) turning

left; (c) turning right.

Compared to DBN+KF, the developed approach demonstrates improved accuracy in predicting positions
based on the road structure. DBN+KF performs well for going straight. However, it does not perform
well for turning cases. As shown in turning right cases, the proposed approach and DBN+KF method
have similar accuracy before turning. During turning, the error of the DBN+KF goes up obviously, while
the proposed approach keeps a relatively stable prediction performance with minor errors. Also as shown
in Figure 8, the error in turning right cases of DBN+KF is larger than that in turning left cases. It is
because the cyclist has a smaller turning angle in turning right cases.

6 Conclusion and future work

In this paper we proposed an integrated framework for cyclist trajectory prediction based on intent
inference at unsignalized intersections. The intentions of cyclists at intersections are inferred via a DBN,
incorporating the cyclist-related motion, ego vehicle movement and environment features. Then, taking
the advantage of LSTM with encoder-decoder, an online trajectory prediction approach is presented
considering not only motion dynamics, but also the cyclist intentions and environment constraints. The
performance of the proposed approach is verified on the collected cyclist dataset. The developed approach
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could in advance infer the cyclist intentions within 0.9 s after entering the intersection.

Compared to the baseline KF and DBN+KF, the developed approach has shown significant improve-
ments in average error for different prediction horizons. The proposed approach connects the qualitative
intent inference with the quantitative trajectory prediction domain to make a more accurate prediction
within a longer prediction horizon than conventional methods KF and DBN+KF, which is significant for
intelligent vehicles on both vulnerable road user protection system and the module of path-planning.

The cyclist trajectory prediction problem has been solved successfully; however, there are still some
issues such as the cyclist and ego vehicle’s interaction. The robustness as well as the interpretability of
cyclist trajectory prediction methods need to be researched in the future.
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