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Abstract This paper proposes a sliding-mode disturbance observer (SMDOB)-based tracking controller

for a class of nonlinear systems with modeling uncertainties and external disturbances. The SMDOB is con-

structed using an extended state observer embedded by a filtered sliding mode term. The chattering caused

by the sliding mode is compressed by the frequency bandwidths of both the extended state observer and

the control system. The novelties of the proposed controller are as follows: (1) The semiglobal asymptotical

stability of the combined controller-observer system is guaranteed without the boundedness assumption of

the time derivatives of modeling uncertainties; (2) the SMDOB can be implemented with a low complexity

because of only three parameters to be tuned. Applications to robot manipulators illustrate the effectiveness

of the SMDOB-based tracking control strategy.
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1 Introduction

Approximation-based control can improve the control robustness of uncertain nonlinear systems through
uncertainty compensation [1–5]. Neural networks (NNs) and fuzzy logics (FLs) are useful for approximat-
ing nonparametric uncertainties and disturbances. However, NN- and FL-based control typically only
achieves uniformly ultimately bounded stability owing to the inherent approximation errors of NNs and
FLs. To obtain asymptotic tracking, sliding mode control [6,7] and other discontinuous control techniques
are typically applied. However, the use of discontinuous control strategies requires a high control band-
width, which may cause chattering. The NN-based variable-gain proportional-derivative (PD) controller
in [8] semiglobally stabilizes an uncertain nonlinear system; however, the controller is effective only if the
control objective is to regulate the system state to the zero point.

In addition to NNs and FLs, disturbance observers (DOBs) are useful for approximating modeling
uncertainties and disturbances. Compared with NN- and FL-based control, DOB-based control [9–15]
is appealing owing to its simple structure and easy implementation; hence, it has been applied in many
practical systems [16–18]. However, it is difficult for conventional linear DOB-based control to obtain
the asymptotic convergence of estimation errors if the time derivatives of estimated uncertainties are not
zero. Hence, it is important to design nonlinear DOB-based control to guarantee asymptotic tracking.

A sliding-mode disturbance observer (SMDOB), which exploits the advantages of sliding mode to
approximate system uncertainties, is considered a potential nonlinear DOB for approximating system
uncertainties. The stability of DOB-based closed-loop control systems is crucial for control reliability.
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However, many SMDOB-based controllers have been presented without the stability proof of combined
controller-observer systems [19–22]; hence, the reliability of SMDOB-based controllers is not guaranteed.
In SMDOB-based controllers with stability guarantee [23–26] and other DOB-based controllers [16–18],
it is typically assumed that the time derivatives of estimated uncertainties are bounded prior to control
implementation. In practical control systems, system uncertainties include external disturbances and
state-dependent modeling uncertainties. Because control system models are typically constructed in low
frequencies, it is reasonable to assume that the time derivatives of external disturbances are bounded.
However, it is unreasonable to assume that the time derivatives of modeling uncertainties are bounded
prior to control implementation. Recently, we proposed an SMDOB-based controller that requires only
continuous differentiability of the state-dependent modeling uncertainties [9]. Although the time deriva-
tives of modeling uncertainties are not required to be bounded in [9], this approach is affected by the
high complexity of parameters design in the SMDOB.

A novel SMDOB-based tracking controller for a single-input single-output (SISO) uncertain nonlinear
system with semiglobal asymptotic stability is proposed herein. The SMDOB is constructed using an
extended state observer embedded by a filtered sliding mode term. The chattering caused by the slid-
ing mode is compressed by the frequency bandwidths of both the observer and control system. From
calculations, the filtered signal of a lumped uncertainty is bounded by a constant plus a function of
tracking errors, and the uncertainty estimation error is compressed by the SMDOB and a PD control
term. Based on the Babalat’s lemma, we obtain the semiglobal asymptotic stability of the combined
observer-control system. The effectiveness of the proposed SMDOB-based tracking control strategy is
validated by applying it to one- and two-link robot manipulators.

Compared with linear DOB-based control [16–18], the proposed SMDOB-based control guarantees the
semiglobal convergence of tracking errors and an uncertainty estimation error. In the above mentioned
control, the first- and second-order time derivatives of the external disturbance are supposed to be
bounded, which is reasonable for low-frequency control systems, and the modeling uncertainties must be
continuously differentiable. Hence, compared with the SMDOB-based controllers in [19–26], the closed-
loop control stability is proven without assuming that the time derivatives of modelling uncertainties
are bounded prior to control implementation. Compared with the SMDOB-based controller in [9], the
proposed SMDOB can be implemented with low complexity as only three parameters require tuning.

2 Problem formulation

Consider the following SISO uncertain nonlinear system:











ẋi = xi+1, i = 1, 2, . . . , n− 1,

ẋn = f(x) + g(x)u + d(t),

y = x1,

(1)

where x = [x1, x2, . . . , xn]
T ∈ R

n is the state vector, y ∈ R the system output, d(t) the external distur-
bance, and u ∈ R the control input.

Assumption 1. f(x), g(x) ∈ C2 and

f(x) = f0(x) + ∆f(x), (2)

g1(x) = g−1(x) = g0(x) + ∆g1(x), (3)

where f0(x), g0(x) ∈ C2 are known functions, |∆g1(x)| < g1(x). It is assumed that g(x), g0(x) > 0
without loss of generality.

Assumption 2. The disturbance d(t) and its first- and second-order time derivatives are bounded.

Assumption 3. The desired output yd(t) satisfies y
(i)
d (t) ∈ L∞ for i = 0, 1, . . . , n+ 2.

Assumption 4. The state x is measurable and is applicable to control design.

Define ȳd = [yd, y
(1)
d , . . . , y

(n−1)
d ]T ∈ R

n and an output tracking error e1 = yd(t) − y(t). The control
objective is to design an SMDOB-based tracking controller, such that the error e1 and the uncertainty
estimation error tend to zero.
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3 Main results

3.1 Control design

The dynamics of xn in (1) can be presented as

(g0(x) + ∆g1(x))ẋn = g1(x)f(x) + u+ g1(x)d(t)

from which one can obtain

ẋn = d̄(x, ẋn, t) + f0(x) + g−1
0 (x)u, (4)

where d̄(x, ẋn, t) := −g−1
0 (x)∆g1(x)ẋn + ρ(x, t) is the system uncertainty with ρ(x, t) = ∆f(x) +

g−1
0 (x)(∆g1(x)f(x) + g1(x)d).
We define the following filtered tracking errors:

{

e2 = ė1 + α1e1,

ei = ėi−1 + αi−1ei−1 + ei−2, i = 3, 4, . . . , n,
(5)

where αi, i = 1, 2, . . . , n− 1 are positive control parameters. By calculation, one obtains

ei =
i−1
∑

j=0

aije
(j)
1 , i = 2, 3, . . . , n, (6)

where aij = 1 for j = i − 1, and aij ∈ R
+ are constants obtained by substituting (6) into (5) and

comparing coefficients. From the dynamics in (5) and (6), one obtains

{

ėi = −ei−1 − αiei + ei+1, i = 1, 2, . . . , n− 1,

ėn = −d̄(x, ẋn, t)− f0(x) − g−1
0 (x)u + v,

(7)

where e0 = 0 and v = y
(n)
d +

∑n−3
j=0 a(n−1)je

(j+2)
1 + αn−1ėn−1 + ėn−2.

Next, we design an SMDOB-based tracking controller as

u = g0(x)(ken − f0(x) + v − ˆ̄d), (8)

where k is a positive control gain and ˆ̄d is an SMDOB-based estimator. Subsequently, substituting (8)
into (7) yields

ėn = −ken − ˜̄d, (9)

where ˜̄d = d̄(x, ẋ, t)− ˆ̄d is the estimation error.

3.2 Sliding-mode disturbance observer

We design a novel SMDOB as follows:

˙̂xn = f0(x) + g−1
0 (x)u + ˆ̄d+ λ1x̃n, (10)

˙̄̂
d = −λ2

ˆ̄d+ λ3sgn(x̃n), (11)

where λi, i = 1, 2, 3 are positive design parameters, x̂n an estimation of xn, x̃n = xn − x̂n an estimation

error, and ˆ̄d an estimation of d̄(x, ẋn, t).
Based on the dynamics in (4), (10), and (11), one obtains

˙̃xn = ˜̄d− λ1x̃n, (12)

˙̄̃
d = −λ2

˜̄d− λ3sgn(x̃n) +
˙̄d+ λ2d̄. (13)
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Define r = ˙̃xn + λ1x̃n. From (12), one can obtain r = ˜̄d. Based on the dynamics in (12) and (13), one
can obtain

ṙ =− λ2r − λ3sgn(x̃n) +
˙̄d+ λ2d̄. (14)

Substituting (8) into (1), one can obtain

ẋn = y
(n)
d +

n−3
∑

j=0

a(n−1)je
(j+2)
1 + αn−1ėn−1 + ėn−2 + ken + ˜̄d

= y
(n)
d + a(n−1)(n−3)(y

(n−1)
d − xn) +

n−4
∑

j=0

a(n−1)je
(j+2)
1

− (α2
n−1 − 1)en−1 + (αn−1 − αn−2)en−2 + en−3 + (αn−1 + k)en + ˜̄d, (15)

whose time derivative can be expressed as

ẍn = y
(n+1)
d + F (e, ˜̄d)− λ3sgn(x̃n) +

˙̄d+ λ2d̄, (16)

where e = [e1, e2, . . . , en]
n, and F (e, ˜̄d) is defined as

F (e, ˜̄d) = F (e1, . . . , en,
˜̄d)

= a(n−1)(n−3)(y
(n)
d − ẋn) +

n−4
∑

j=0

a(n−1)je
(j+3)
1 − (α2

n−1 − 1)ėn−1 + (αn−1 − αn−2)ėn−2

+ ėn−3 + (αn−1 + k)ėn − λ2
˜̄d. (17)

Taking the time derivative of d̄ and substituting (16) yields

˙̄d = −g−1
0 (x)∆g1(x)

[

y
(n+1)
d + F (e, ˜̄d)− λ3sgn(x̃n) +

˙̄d+ λ2d̄
]

+ ρ̇(x, t) +

n
∑

i=1

∂ξ(x)

∂xi

ẋiẋn. (18)

By adding g−1
0 (x)∆g1(x)

˙̄d in both sides of (18), we obtain

˙̄d =− g−1
1 (x)∆g1(x)

[

y
(n+1)
d + F (e, ˜̄d)− λ3sgn(x̃n) + λ2d̄

]

+ g−1
1 (x)g0(x)

[

n
∑

i=1

∂ξ(x)

∂xi

ẋiẋn +

n
∑

i=1

∂ρ(x, t)

∂xi

ẋi

]

+ ḋ, (19)

where ξ(x) := −g−1
0 (x)∆g1(x). Subsequently,

˙̄d+ λ2d̄ can be expressed as

˙̄d+ λ2d̄ = Nd + λ3g
−1
1 (ȳd)∆g1(ȳd)sgn(x̃n) + Ñ , (20)

where ȳd = [yd, ẏd, . . . , y
(n−1)
d ]T and Nd, Ñ are defined as

Nd = −g−1
1 (ȳd)∆g1(ȳd)y

(n+1)
d − λ2g

−1
1 (ȳd)∆g1(ȳd)y

(n)
d

+ g−1
1 (ȳd)g0(ȳd)

n
∑

i=1

[

∂ρ(ȳd)

∂y
(i−1)
d

y
(i)
d +

∂ξ(ȳd)

∂y
(i−1)
d

y
(i)
d y

(n)
d

]

− λ2g
−1
1 (ȳd)∆g1(ȳd)y

(n)
d

− λ2g
−1
1 (ȳd)g0(ȳd)[∆f(ȳd) + g−1

0 (ȳd)∆g1(ȳd)f(ȳd)] + ḋ+ λ2d, (21)

Ñ = Ñ1 + Ñ2 + Ñ3 + Ñ4 + Ñ5, (22)
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with

Ñ1 = [−g−1
1 (x)∆g1(x) + g−1

1 (ȳd)∆g1(ȳd)]
[

y
(n+1)
d + F (e, ˜̄d)− λ̄3sgn(x̃n)

]

,

Ñ2 = −g−1
1 (ȳd)∆g1(ȳd)F (e, ˜̄d),

Ñ3 = g−1
1 (x)g0(x)

n
∑

i=1

[

∂ρ(x)

∂xi

ẋi +
∂ξ(x)

∂xi

ẋiẋn

]

− g−1
1 (ȳd)g0(ȳd)

n
∑

i=1

[

∂ρ(ȳd)

∂y
(i−1)
d

y
(i)
d +

∂ξ(ȳd)

∂y
(i−1)
d

y
(i)
d y

(n)
d

]

,

Ñ4 = −λ2g
−1
1 (x)∆g1(x)ẋn + λ2g

−1
1 (ȳd)∆g1(ȳd)y

(n)
d ,

Ñ5 = −λ2g
−1
1 (x)g0(x)[∆f(x) + g−1

0 (x)∆g1(x)f(x)]

+ λ2g
−1
1 (ȳd)g0(ȳd)[∆f(ȳd) + g−1

0 (ȳd)∆g1(ȳd)f(ȳd)].

(23)

From Assumptions 1–3, Nd(yd, y
(1)
d , . . . , y

(n+1)
d , d, ḋ) ∈ L∞, y

(i)
d ∈ L∞ for i = 0, 1, . . . , n + 2 and

d, ḋ, d̈ ∈ L∞. Therefore, one can conclude that positive constants a1 and a2 exist, such that

|Nd| 6 a1, |Ṅd| 6 a2. (24)

Based on (15) and (17), F (e, ˜̄d) can be expressed as a linear combination of ei, i = 1, 2, . . . , n. Let

α(x) := −g−1
1 (x)∆g1(x) and z(t) := [e1, e2, . . . , en,

˜̄d]T. Therefore, it is clear that y
(n+1)
d + F (e, ˜̄d) −

λ̄3sgn(x̃n) can be bounded by a globally invertible and nondecreasing function of z. Similar to [27], using
the mean value theorem, one can obtain

|α(x) − α(ȳd)| 6 |α̇(ȳd + θ(x− ȳd))||x− ȳd|, (25)

where θ ∈ [0, 1]. From Assumption 1, α̇ ∈ C1 and there exists a globally invertible and nondecreasing
function δ1(·), such that

|Ñ1| =
∣

∣

∣
(α(x) − α(ȳd))

[

y
(n+1)
d + F (e, ˜̄d)− λ̄3sgn(x̃n)

]
∣

∣

∣
6 δ1(||z||)||z||. (26)

By an analysis similar to that presented in the previous paragraph, invertible and nondecreasing
functions δ3(·), δ4(·) and δ5(·) exist, such that |Ñi| 6 δi(||z||)||z|| for i = 3, 4, 5. From (15) and (17),

F (e, ˜̄d) can be expressed as a linear combination of ei, i = 1, 2, . . . , n. Furthermore, from Assumption 3,
it is clear that an invertible and nondecreasing function δ2(·) exists, such that |Ñ2| 6 δ2(||z||)||z||. Based
on the analysis above, a globally invertible and nondecreasing function δ(·) exists, such that

|Ñ | 6 δ(||z||)||z||. (27)

3.3 Stability analysis

Lemma 1. Let ξ1(x) = g−1
1 (x)∆g1(x) < 1 and

L(t) = r(t)(Nd + λ3ξ1(ȳd)sgn(x̃n)− λ3sgn(x̃n)). (28)

If λ1 and λ3 in the SMDOB in (10) and (11) satisfy

λ1 > max
{

1, |ξ̇1(ȳd)|/(1− ξ1(ȳd))
}

,

λ3 >
λ1|Nd|+ |Ṅd|

λ1(1 − ξ1(ȳd))− |ξ̇1(ȳd)|
,

(29)

then
∫ t

0

L(τ)dτ 6 ζc, (30)
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with ζc = (1− ξ1(ȳd(0)))λ3|x̃n(0)| − x̃n(0)Nd(0).
Proof. Substituting the definition of r into (28) and applying integration by step to the integral of L(τ)
from τ = 0 to τ = t yields

∫ t

0

L(τ)dτ =

∫ t

0

λ1x̃n(τ)[Nd(τ) + λ3ξ1(ȳd(τ))sgn(x̃n(τ)) − λ3sgn(x̃n(τ))]dτ + x̃n(τ)Nd(τ)|t0

+ λ3|x̃n(τ)|ξ1(ȳd(τ))|t0 −
∫ t

0

[x̃n(τ)Ṅd(τ) − λ3x̃n(τ)ξ̇1(ȳd(τ))]dτ − λ3|x̃n(τ)||t0

6

∫ t

0

|x̃n(τ)|[−(1 − ξ1(ȳd(τ)))λ1λ3 + λ1|Nd(τ)| + |Ṅd(τ)|+ λ3|ξ̇1(ȳd(τ))|]dτ

+ |x̃n|(−λ3 + |Nd|+ λ3ξ1(ȳd)) + (1− ξ1(ȳd(0)))λ3|x̃n(0)| − x̃n(0)Nd(0). (31)

Because λ1 and λ̄3 satisfy (29),

∫ t

0

L(τ)dτ 6 (1− ξ1(ȳd(0)))λ3|x̃n(0)| − x̃n(0)Nd(0) = ζc. (32)

Theorem 1. For the uncertain nonlinear system in (1) satisfying Assumptions 1–3, design the SMDOB-
based tracking control law as in (8) with the SMDOB in (10) and (11). If λ1 and λ3 in the SMDOB in (10)
and (11) satisfy (29), k > 1, and αn−1 > 1/2, then the controller-observer system achieves semiglobal

asymptotic stability such that e1 and ˜̄d converge to zero as t → ∞.
Proof. Consider the following Lyapunov function candidate:

V =
1

2

n
∑

j=1

e2j +
1

2
r2 + P (t), (33)

where P (t) ∈ R is defined as

P (t) = ζc −
∫ t

0

L(σ)dσ. (34)

Lemma 1 ensures P (t) > 0. Hence, the function V is a positive definite function that satisfies

β1||y||2 6 V (y, t) 6 β2(||y||), (35)

where y = [zT,
√
P ]T, β1 is a positive constant, and β2(·) is a nondecreasing function.

Taking the time derivative of V and substituting (7), (9), (14), and (19) into it yields

V̇ =−
n−1
∑

j=1

αje
2
j + en−1en + en(−ken − ˜̄d) + r[−λ2r − λ3sgn(x̃n) +Nd + Ñ

+ λ3ξ1(ȳd)sgn(x̃n)]− L(t). (36)

Because |en−1en| 6 (e2n−1 + e2n)/2, |en ˜̄d| 6 (e2n + ˜̄d2)/2 and Eq. (25) holds,

V̇ 6−
n−2
∑

j=1

αje
2
j − (αn−1 − 1/2)e2n−1 − (k − 1)e2n − λ2r

2 + |r|δ(||z||)||z||. (37)

As |r|δ(||z||)||z|| 6 (λ2 − 1)r2 + δ2(||z||)||z||2/(4(λ2 − 1)),

V̇ 6 −
(

α− δ2(||z||)
4(λ̄2 − 1)

)

||z||2, (38)

where α = min{αj, j = 1, 2, . . . , n− 2, αn−1 − 1/2, k− 1, 1} > 0. Hence,

V̇ 6 −γ||z||2, for ||z|| 6 δ−1
(

2
√

α(λ2 − 1)
)

, (39)
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with γ being a positive constant.
We define the region D as

D =
{

z ∈ R
n+1 : ||z|| 6 δ−1

(

2
√

α(λ2 − 1)
)}

. (40)

Therefore, the inequality in (35) holds and the function V ∈ L∞, if z ∈ D.
Let S be a set defined as follows:

S =
{

y ∈ R
n+2 : V (y) 6 β1δ

−1
(

2
√

α(λ2 − 1)
)}

. (41)

Because the inequality in (35) holds, z ∈ D if y ∈ S. Therefore, if y(0) ∈ S, then y(t) ∈ S and z ∈ D and
V ∈ L∞, which implies e1, . . . , en, r ∈ L∞. Hence, we can conclude that e1, . . . , en and r are uniformly
continuous based on the dynamics expressed in (7) and (9).

Integrating both sides of the inequality in (39) from t = 0 to t = T1 yields

∫ T1

0

γ||z||2dt 6 V (0)− V (T ) 6 V (0), (42)

which implies that
∫ ∞

0

e2idt < ∞, i = 1, 2, . . . , n,

∫ ∞

0

r2dt < ∞. (43)

Based on the inequality in (39) and the uniform continuity of γ and ei for i = 1, 2, . . . , n, according to
the Babalat’s lemma, we can conclude that e1, . . . , en and r converge to zero as t → ∞. Subsequently, the

convergence of the tracking error e1 and the disturbance estimation error ˜̄d can be obtained. The stability
is semiglobal as the sense that the set S can be arbitrarily enlarged by the increase of the disturbance
observer parameters and control parameters.

Remark 1. The SMDOB in [9] was designed by the construction of an extended state observer em-
bedded by an improved super-twisting algorithm, where five parameters must be designed. Meanwhile,
the proposed SMDOB in (10) and (11) was constructed using an extended state observer with lumped
uncertainty estimated from a filtered sliding mode signal, where only three parameters must be designed
in the observer. Hence, the proposed SMDOB is low in complexity compared with the SMDOB in [9].

Remark 2. Compared with the existing SMDOB-based controllers in [19–26], one important contri-
bution of this study is the closed-loop control stability analysis in Theorem 1 without assuming that the
time derivatives of modeling uncertainties are bounded prior to control implementation. Based on (41),
the control law is effective only if y(0) ∈ S. Hence, the parameter λ2 in the proposed SMDOB should be
selected such that V (0) 6 β−1

1 (2
√

α(λ2 − 1)).

Remark 3. For the SMDOB in (10) and (11), the parameters λ1 and λ3 were designed to satisfy (29),
and λ2 must satisfy V (0) 6 β−1

1 (2
√

α(λ2 − 1)) stated in Remark 2. For the controller in (8), the control
parameters k and αi, i = 1, 2, . . . , n− 1 are selected as positive constants.

4 Illustrative results

Simulations on robot manipulators are presented to illustrate the effectiveness of the proposed SMDOB-
based controller. Simulations are performed in Matlab R2017a software on Windows 7 operating system,
Intel Core i7-6700HQ CPU, and 32 GB RAM memory. In the simulations, fixed-step ode 4 is selected as
the solver with step size of 1× 10−3 s.

4.1 SMDOB-basd control for one-link robot manipulator

Consider a one-link robot manipulator with the following dynamics:

Mq̈ +
1

2
mgl sin q + q̇ = u+ d(t), (44)

where q ∈ R and q̇ ∈ R are the angle and velocity, respectively; M = 1 denotes the moment of inertia;
g = 9.8 N/kg denotes the acceleration owing to gravity; m = 1 kg and l = 1 m denote the mass and
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Figure 1 (Color online) Tracking performances of one-link manipulator by proposed SMDOB-based controller (solid line) and

SMDOB-based controller (dashed line) in [26].

the length of the link, respectively; d(t) denotes the external disturbance. The dynamics in (44) can be
expressed as

ẋ1 = x2, (45)

ẋ2 = f(x) + g(x)u+M−1d, (46)

where x1 = q, x2 = q̇, f(x) = M−1(− 1
2mgl sinx1 − x2), and g(x) = 1. Assume f0(x) = −3.9 sin(x1),

g0(x) = 0.8 and d = 0.2 cos(0.5t). Subsequently, select λ1 = 5, λ2 = 3, λ3 = 8 for the SMDOB, α1 = 1,

k = 3 for the controller in (8), yd = cos t as the desire trajectory, and x1(0) = x2(0) = x̂2(0) =
ˆ̄d(0) = 0

as the initial values for the control system.

Based on the simulation results shown in solid lines in Figure 1, the proposed SMDOB-based controller

in (8) causes the tracking error e1 and the uncertainty estimation error ˜̄d to converge to zero, validating
the theoretical results in Section 3. Because chattering is alleviated by passing sgn(x̃n) through the
low-pass filter in (11) and compressing it by the frequency bandwidth of the SMDOB, the chattering in
˜̄d is extremely low. The low chattering is further compressed by the frequency bandwidth of the control

system. Hence, the chattering in e1 is significantly less than that in ˜̄d.

Figure 2 presents the poor tracking performances of the considered one-link manipulator by the con-

troller in (8) without the SMDOB-based compensation term ˆ̄d. The advantage of the SMDOB in im-
proving the control robustness is highlighted by comparing the trajectory tracking performances shown
in Figures 1 and 2. Based on the analysis above, it is clear that the proposed SMDOB-based controller
performs well in trajectory tracking and uncertainty estimation.
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Figure 2 (Color online) Tracking performances of one-link manipulator without SMDOB-based compensation.

4.2 SMDOB-basd control for two-link robot manipulator

The proposed SMDOB-based control for SISO systems in Section 3 can be extended to control multiple
input multiple output (MIMO) systems without difficulty, and the effectiveness is illustrated by the
following two-link robot manipulator:

M(q)q̈ + C(q, q̇)q̇ +G(q) +Dq̇ = u+ d(t), (47)

where q = [q1, q2]
T ∈ R

2 denotes the joint angle vector; M(q) ∈ R
2×2, C(q, q̇)q̇ ∈ R

2, and G(q) ∈
R

2 denote the inertial moment, centripetal and Coriolis torque, and gravity vector, respectively. The
uncertainties Dq̇ ∈ R

2 and d(t) denote the viscous friction and disturbance, respectively. The matrices
in (47) are expressed as

M(q) =

[

m1l
2
c1 +m2(l

2
1 + l2c2 + 2l1lc2 cos q2) m2l1lc2 cos q2 +m2l

2
c2

m2l1lc2 cos(q2) +m2l
2
c2 m2l

2
c2

]

,

C(q, q̇) =

[

−m2l1lc2q̇2 sin q2 −m2l1lc2(q̇1 + q̇2) sin q2

m2l1lc2q̇1 sin q2 0

]

,

G(q) =

[

m1lc1g cos q1 +m2g(lc2 cos(q1 + q2) + l1 cos q1)

m2glc2 cos(q1 + q2)

]

,

D = diag{0.3, 0.3}.

(48)

Assume m1 = 8 kg, m2 = 6 kg, l1 = l2 = 0.4 m, lc1 = lc2 = 0.2 m and d = [0.2 cos(0.5t), 0.2 sin(0.5t)]T.
The dynamics in (47) can be written as follows:

ẋ1 = x2, (49)

ẋ2 = f(x) + g(x)u +M−1(q)d, (50)

where x1 = q, x2 = q̇, f(x) = M−1(x1)(−C(x1, x2)x2 − G(x1) − Dx2), and g(x) = M−1(x1). Assume
f0(x) = M−1(x1)(−C(x1, x2)x2 − G(x1)), g0(x) = M−1(x1). Select λ1 = 8, λ2 = 3, λ3 = 17 for the
SMDOB, α1 = 1, k = 3 for the controller in (8), yd = [0.2+0.2 sin(0.5t), 0.4+ 0.2 cos(0.5)]T as the desire

trajectory, and x1(0) = x2(0) = x̂2(0) =
ˆ̄d(0) = [0, 0]T as the initial value.

Figures 3 and 4 present the tracking performances of the two-link manipulator by the proposed
SMDOB-based controller in (8) and by the controller in (8) without SMDOB-based compensation. It
is obvious that without SMDOB-based compensation, the manipulator cannot track the desired trajec-
tory by the PD controller in (8) with k = 3 and α = 1 owing to modeling uncertainties. As shown in
Figure 3, the proposed SMDOB-based controller in (8) causes the tracking error e1 = [e1(1), e1(2)]

T and
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Figure 3 (Color online) Tracking performances of two-link manipulator by proposed SMDOB-based controller (solid line) and

SMDOB-based controller (dashed line) in [26].
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Figure 4 (Color online) Tracking performances of two-link manipulator without SMDOB.

the uncertainty estimation error ˜̄d = [ ˜̄d(1), ˜̄d(2)]T to converge to zero. Hence, the SMDOB significantly
improves the control stability and robustness. The chattering resulted from using the sliding mode is
effectively alleviated by both the frequency bandwidth of the SMDOB and the bandwidth of the con-
trol system. Therefore, we can conclude that the proposed SMDOB-based controller performs well in
trajectory tracking and uncertainty estimation for the two-link manipulator.

The dashed lines in Figures 1 and 3 present the tracking performances by the controller in (8) based on
the SMDOB in [26] and the parameters in Table 1. From the comparison of the performances depicted
by the solid and dashed lines, the proposed SMDOB-based control enables better tracking accuracies of
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Table 1 Parameters for the SMDOB in [26]

Selection Parameters

SMDOB c0 = 10, l0 = 0.001, Θ0 = [0.2, 0.4]T, γ̄ = 1, λ2 = 5, λ3 = 0.5, δ0 = 0.1, l1 = 0.001

the manipulators owing to higher estimation accuracy of the proposed SMDOB.

5 Conclusion

In this study, an SMDOB-based control approach for a class of nonlinear systems was investigated by
modeling uncertainties and external disturbances. Using the sliding mode in the observer compressed
the lumped uncertainty and guaranteed the convergence of uncertainty estimation errors. The semiglobal
asymptotic stability of the controller-observer system was established based on the Babalat’s lemma.
Chattering was effectively alleviated by passing switching signals through a low-pass filter and the fre-
quency bandwidths of both the observer and the control system. The novelties of the proposed controller
are as follows: (1) the semiglobal asymptotic stability of the combined controller-observer system is
guaranteed without the time derivatives of modeling uncertainties being bounded; (2) the DOB can be
implemented with low complexity as only three parameters require tuning. The control effectiveness was
validated by illustrative examples on one- and two-link robot manipulators. The control approach can
be applied to plants with dynamics similar to (1), such as robot manipulators, Duffing systems, and
pendulum plants.

Compared with NN and FL-based controllers, the proposed SMDOB-based controller is simple in
structure, easy to implement, and guarantees an asymptotic convergence for estimation errors; however,
it requires the right hand of (1) to be twice continuously differentiable, and the chattering caused by the
sliding mode is inevitable.
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