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Abstract With the increasing number of cars, road traffic accidents have caused a lot of losses every

year and human factors play an important role in many cases. Applying active safety assistance control or

shared control techniques in intelligent vehicles is promising to reduce the number of traffic accidents. In this

context, the dynamic optimization of the shared control policy and the smooth transitions of control authority

between human drivers and intelligent driving systems are critical issues to be solved. Motivated by this,

this paper proposes an event-triggered shared control approach for safe-maneuver of intelligent vehicles with

online risk assessment. In the proposed approach, a Bayesian regularized artificial neural network (BRANN)

is designed to predict vehicle trajectories and build a quantization function to assess the risk level owing to

potential collision events. The shared controller dynamically optimizes the shared control policies between

the human and the intelligent driving system via solving a model predictive control (MPC) problem. The

predicted driving behaviors in the prediction horizon are pre-computed with a finite-horizon model predictor

steering the predicted trajectories contributed by human driving. Moreover, smooth transitions back to

human driving mode are realized via adding penalties on the shared control of the intelligent driving system.

Three simulation scenarios in the PreScan environment, i.e., rear-end collision avoidance, lane-keeping and

unskilled driving, are studied to test the effectiveness of the proposed approach. The simulation results,

including the comparison with a linear quadratic regulator (LQR)-based shared controller, are reported,

which show that the proposed approach can timely evaluate dangerous events and realize safe driving in

terms of collision avoidance and lane-keeping. Also, the proposed approach outperforms the LQR-based

shared controller in terms of smooth transitions.
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1 Introduction

Road traffic accidents caused great losses every year and the improper behaviors of human drivers are one
of the main causes. In daily driving activities, human drivers may suffer unawareness of their vehicles in
potential danger owing to fatigue, distraction or blind spots, or may fail to avoid collisions caused by faulty
operation and poor driving skills. Intelligent vehicles are promising to achieve a safer and more efficient
driving experience. For the past decades, the developments of techniques required for autonomous driving
have made significant progress in areas including smart sensing, decision making and motion control.
However, the reliability and robustness of autonomous driving vehicles cannot satisfy the requirements
of complex traffic conditions. For this reason, the research area on human-machine coordination and
shared control for advanced assistant driving has received special attention, see for instance [1,2]. Unlike
autonomous driving, human-machine cooperative driving allows shared and switched control between
humans and vehicles to realize driving tasks with the goal of reducing the driver’s labor intensity and
traffic accidents. There are three critical issues in the process of cooperative driving, including (i) when to
start the cooperation, (ii) how to cooperate on driving tasks, and (iii) at what time the cooperation is over.
Although each of these issues has been separately studied in previous studies, see for instance [1, 3–5],
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Figure 1 (Color online) Diagram of the shared control framework.

but the effectiveness is difficult to be validated as the above issues are mutually coupled. Few studies can
offer realistic solutions with all the issues considered. In addition, the dynamic optimization of control
authority between the intelligent system and the human has not been addressed in the existing studies,
see [1,2]. Indeed, dynamically optimizing the switching of control authority can be very useful to enforce
smooth and active transitions between the shared controller and human driving mode. Motivated by
the above problems, this paper proposes an event-triggered human-machine shared control approach for
collision-free maneuver. The main diagram of the proposed framework is depicted in Figure 1. Human
driving orders can be applied to the driving system all the time, while the control contributed by the
machine is triggered when a potential risk event is detected. In this case, the shared, final control action
is the integration of the human and the machine and the shared controller is continuously optimized
according to a safety-oriented performance index.

The contributions of this paper include the following three aspects. (i) We propose an online risk
assessment algorithm making only use of historical driving information. This method avoids monitoring
the driver’s status directly. The main idea is to learn and predict the vehicle trajectory with past motion
information of the vehicle by using a Bayesian regularized artificial neural network (BRANN). Then, the
potential risk is quantized using the predicted trajectory and the detected environment. (ii) We design
an event-triggered shared lateral controller for collision avoidance. The algorithm optimizes the shared
control policy of the human driver and the machine dynamically according to a safe-driving oriented
objective function. The driver’s future behaviors used in the prediction horizon are pre-computed via
modeling itself as an online model predictor steering the predicted trajectories contributed by human
driving. Moreover, the smooth transition to the driver mode is realized via adding penalties on the
shared control in the optimization problem. (iii) We test and compare the proposed controller with the
linear quadratic regulator (LQR)-based shared controller described in [6] in three high-fidelity simula-
tion examples, including rear-end collision avoidance, lane-keeping and unskilled driving, which shows
smoother transitions and smaller intervention time period of the proposed approach than that of the
LQR-based one.

The paper is organized as follows. Related work is primarily reviewed in Section 2. Section 3 introduces
the linear time-varying vehicle model to be used and the control objective. In Section 4 the main idea of
the risk assessment strategy is described. Section 5 gives the design details of the shared lateral controller,
while simulation implementations and results are presented and collected in Section 6. Finally, concluding
remarks are drawn in Section 7.

2 Related work

Among all the shared control strategies, many studies rely on driving models or the direct prediction
of the driver’s intention. In these studies, one line is to use switching control between the human and
machine. For instance, a taking over controller has been proposed in [7] with a camera supervising the
driver’s intention. In [8] a switching controller has been developed, where a fault detection algorithm is
used to detect the driver’s abnormal steering behaviors. In case the failure occurs, the machine will take
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over the control. As it has been noted in [9], there are potential safety issues caused by driver or machine
factors in the process of control switching. Hence, the shared control of the driver and machine is of great
importance. Shared controllers using physical-based driver models have been developed in [10–12]. In [13],
a fuzzy logic-based sliding mode controller has been proposed to achieve shared control, and a vision-
based measure system was used for predicting vehicle trajectories. From the theoretical perspective, a
shared controller for linear constrained systems has been presented in [14], and extended in [15,16] taking
into consideration of the effects of disturbances. The robustness property is guaranteed by resorting to
Lyapunov arguments. A shared controller has been proposed in [17], where the stability in presence of
uncertainty of driver model is discussed. A data-driven shared steering control algorithm with resorting
to adaptive dynamic programming has been proposed in [18], where the input-to-state stability property
is proven with small gain theory. In [19], a shared control design strategy from the driver’s experience
perspective has been presented to achieve good driving experience. Different from the aforementioned
studies, the proposed approach in this paper does not rely on a physical-based driver model or directly
measure the driver’s intention. Instead, the driver’s future behavior is modeled as an online model
predictor steering the predicted trajectory contributed by the driver.

In authority allocation, a shared controller with fixed weights has been adopted in [20], where a
predictive path planning method is used for lane-keeping and collision avoidance. In [21], the driver
is assumed to be cooperative and the shared controller is trusted, and the effect of driver’s adaptation
is evaluated according to the weight variation of the machine. A framework based on model predictive
control (MPC) has been formulated in [22] to perform trajectory planning, threat assessment, and collision
avoidance. The control shares of the driver and controller are adjusted through threat assessment.
However, factors caused by the driver are not taken into account. In [23], a semi-autonomous controller
based on nonlinear MPC has been proposed. The approach utilizes a driving model to generate the driver’s
behavior in the prediction horizon and integrates the threat assessment into the constraints of the MPC
controller. The objective of the controller is to provide minimal intervention without compromising safety.
This mechanism ignores the feasibility of the prediction of driver’s behaviors and fails to consider the
quality of planned path and driver’s acceptance of the controller. The main difference of our approach lies
in the fact that the shares of control contributed by humans and machines can be explicitly optimized in
the proposed approach. Recent contributions described in [24,25] have also shown the capability of MPC
in solving path-following control problems of autonomous driving vehicles as well as other constrained
and nonlinear control systems. In [26], an approximate dynamic programming (ADP)-based approach
has been proposed to solve the human-machine shared control problem for robot arms. Indeed, ADP is
an effective tool for solving adaptive control problems. However, in this paper an important perspective
is to enforce dynamic optimization and active transitions of the control authority between the intelligent
system and human driving under safety constraints. This might be difficult with ADP owing to the
trial-and-error learning nature and to the approximate neural network adopted.

To better select the occasion to assist the driver, an automated system needs to predict the trajectory
of the host vehicle and evaluate its safety online. Time-to-collision (TTC) is the earliest method utilized
to judge the time to take evasive action to avoid a collision, see [27] for instance, which is the ratio of the
distance from the host vehicle to the obstacle and the speed difference. According to [28], the distance
can also be divided based on the variations of speeds and accelerations. The difficulty is that neither the
method based on constant velocity nor constant acceleration can accurately predict the trajectory of the
host vehicle, especially when there are varying maneuvers. A method to predict the future states of a
vehicle has been proposed in [29]. This approach depends on precise vehicle models and deterministic
driving behaviors. However, a realistic vehicle dynamical model is usually time-varying and the driver’s
behavior is probabilistic. In [30], two probabilistic algorithms have been proposed for measuring collision
risk and predicting collision probability. The results reveal that Markov chain and Monte Carlo-based
methods are applicable to estimate the subsequent maneuver and the maneuver time of collision avoidance
system. One of the drawbacks of probabilistic methods is that they are computationally intensive. In
this work, we propose a new quantization function for risk event assessment, according to which a simple
triggering law is established.

In the viewpoint of collision avoidance, fruitful studies have been devoted to enforcing safety control
in the human-machine shared framework. Among them, in [31], a constrained planning and control
method for semi-autonomous vehicle collision avoidance has been proposed, which allows the operator
to navigate freely within safe homotopies and introduces control actions when necessary. Different from
the idea of minimally-invasive control in [31], an MPC algorithm that considers the constraints on the
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Figure 2 (Color online) The simplified “bicycle” model: c.g. is the center of gravity of the vehicle, x and y are the longitudinal

and lateral positions of the vehicle in the body-fixed coordinates, respectively, X and Y are positions in the global coordinates,

respectively, ϕ is the vehicle yaw angle, δf is the steering angle for the front wheel, lf and lr are the distance from the front and

rear axles to c.g., respectively.

front wheel steering angle and the lateral tire force has been proposed in [32] for tracking a time-varying
desired path. In addition to the aspect of dealing with constraints, adjusting the force in human-machine
interaction process is another important way to avoid collisions. In [33], a joystick impedance control
method has been proposed for semi-autonomous obstacle avoidance of unidirectional wheelchair. In [34],
a haptic steering direction guidance system for pedestrian-vehicle collision avoidance has been discussed.
Relying on the prediction of the future intervention time, a haptic steering feedback approach has been
proposed in [35], where the trade-off between following the driver’s action and steering a reference path is
considered. It is highlighted that the implementation of haptic shared control requires additional motors
and controllers to the steering wheel and gas pedal to interact with human drivers in real-time, which
increases the complexity of the system. Differently, the method proposed in this paper belongs to indirect
shared control, which is easy to implement on vehicles using X-by-wire control technology.

3 Linear time-varying vehicle model and control objective

In this section, we first present the linear time-varying version of the lateral vehicle model, and then
introduce the human-machine shared control objective.

3.1 Linear time-varying vehicle model

As we are interested in the lateral control methods of passenger vehicles, in line with [36, 37], a bicycle
model of the lateral vehicle dynamics is considered, which is illustrated in Figure 2.

Based on the assumptions of small front wheel steering angles and a linear tire model, as presented
in [37], the differential equations of vehicle dynamics for a vehicle with a constant longitudinal speed can
be written as

mÿ = −mẋϕ̇+ 2

[

Ccf

(

δf −
ẏ + lf ϕ̇

ẋ

)

+ Ccr

lrϕ̇− ẏ

ẋ

]

,

mẍ = 0,

Izϕ̈ = 2

[

lfCcf

(

δf −
ẏ + lf ϕ̇

ẋ

)

− lrCcr

lrϕ̇− ẏ

ẋ

]

,

Ẏ = ẋ sinϕ+ ẏ cosϕ,

Ẋ = ẋ cosϕ− ẏ sinϕ,

(1)

where m is the mass of the vehicle, Ccf and Ccr are the cornering stiffness of the front and rear tires,
respectively, Iz is the yaw moment of inertia. The mapping of the front wheel angle δf and the steering

wheel angle Θ is simplified to δf = Θ/γ, where γ is the steering ratio. Let ξ = [ẏ, ẋ, ϕ, ϕ̇, Y,X ]
T

and
u = Θ denote the state and input, respectively, and to reduce the online computational load, system (1)
is discretized with a sampling interval T , and written as

ξ(k + 1) = A(k)ξ(k) +B(k)u(k), η(k) = Cξ(k), (2)

where k is the discrete-time index, ξ(k) and u(k) represent the current state and input information,
respectively, ξ(k + 1) is the successive state at the next sampling time, η(k) is the output which consists
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of the global position Y and the yaw angle ϕ, and
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,

where a11 = 1 + T
−2(Ccf+Ccr)

mẋ
, a12 = T (

2Ccf (ẏ+lf ϕ̇)+2Ccr(ẏ−lrϕ̇)
mẋ2 − ϕ̇), a14 = T (−ẋ +

2(lrCcr−lfCcf )
mẋ

),

a41 = T
2(lrCcr−lfCcf )

Iz ẋ
, a42 = T

2lfCcf (ẏ+lf ϕ̇)−2lrCcr(ẏ−lrϕ̇)
Iz ẋ2 , a44 = 1 + T

−2(lf
2Ccf+lr

2Ccr)
Iz ẋ

, a51 = T cosϕ,
a52 = T sinϕ, a53 = T (ẋ cosϕ − ẏ sinϕ), a61 = −T sinϕ, a62 = T cosϕ, a63 = −T (ẏ cosϕ + ẋ sinϕ),

b1 = T
2Ccf

mγ
, b4 = T

2lfCcf

γIz
.

3.2 Control objective

The control objective considered is to design an event-triggered shared controller to assist drivers for safe
maneuver in case potentially dangerous events occur. Along the line with [21], we propose an indirect
shared control integration to be applied to the steering-by-wire system of the vehicle as

u = αΘd + βΘm, (3)

where Θd and Θm are the steering wheel angles derived from the driver and intelligent system, respectively,
α ∈ [0, 1] and β ∈ [0, 1] are the shares of the efforts by the human and intelligent system, satisfying

α+ β = 1, (4)

where α = 0 means the vehicle is in fully autonomous driving mode, while β = 0 corresponds to only
human taking over the vehicle. α and β are regarded as decisive variables in the finite-horizon optimization
problems later described.

Remark 1. Different from the work in [21] where α and β are set as constants, the advantage of
the design in our paper is that the control shares of the driver and intelligent system can be explicitly
expressed and be continuously optimized, which is fundamental to achieve smooth transitions between
shared control and human driving.

4 Collision risk assessment

In this section, we present the trajectory prediction and collision detection of the host vehicle to determine
the timing for intervention and the limit of the share of the driver.

4.1 Trajectory prediction

In the shared control framework, the prediction of future trajectory evolution is necessary for risk as-
sessment and collision avoidance control. One way to achieve this is to analyze and predict the driver’s
actions to be applied to the vehicle dynamic model in order to compute the trajectory of the vehicle,
see [7, 38]. However, this might lead to inaccuracy of the prediction as subjective human driving shows
strong uncertainty. Directly predicting the vehicle trajectory with past maneuver information is advisable
in this case. As described in [39], traditional physical-based motion prediction methods utilize dynamic
and kinematic models to predict future trajectories. There are usually two common models adopted, the
constant velocity and constant acceleration ones. Approaches with the above models perform well when
the driving behavior changes slowly, for instance in the case of lane-keeping. However, they have obvious
deadlocks when the driving behavior varies continuously. Hence, the performance is only satisfactory for
short-term prediction. Learning-based algorithms such as recurrent neural networks in [40] and dynamic
Bayesian networks in [41] have been developed to achieve long-term prediction and even interaction with
the environment.
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Along the same line, we design the BRANN to learn the lateral errors between predicted trajectories
and real trajectories. The idea of using Bayesian regularization for curve interpolation was firstly pro-
posed in [42]. Recent studies using BRANN have been proposed for predicting complex models with
noises, see [43, 44], which shows its capability in reducing the possibility for overfitting and improving
the prediction quality and generalization. The prediction of vehicle trajectory is a similar problem and
nontrivial task owing to the existence of uncertainties caused by human driving and the surrounding
environment and to the requirement of reliable prediction results that is to be used in the shared con-
troller. Hence, we propose for the first time to use the BRANN with a single hidden layer for learning
and predicting vehicle trajectory with past vehicle information. The network is trained with a training
set of inputs and targets in the form {φ1, e1} , {φ2, e2} , . . . , {φN , eN}, where N is the number of data
samples, for i = 1, . . . , N , ei ∈ R

l is a vector of the future values of lateral errors, while the corresponding
φi ∈ R

2n contains the past n steps of information of steering wheel angles and velocities. Assuming that
the targets are generated by ei = g (φi) + εi, where g (φi) is an unknown function approximated by the
network and εi is an independent Gaussian noise. The objective is to minimize the following regularized
cost function, i.e.,

V = γ1

N
∑

i=1

‖ei − f(φi)‖
2 + γ2

(

l
∑

i=1

‖coli{Wb}‖
2 + ‖b‖2

)

, (5)

where the first term is the sum of squared errors, the second term is the regularization term, γ1 > 0
and γ2 > 0 are regularization parameters, f (φi) = WT

b h(φi) + b, Wb ∈ R
p×l. The optimization problem

with cost (5) is trained in the framework of Bayesian learning. Specifically, we utilize David MacKay’s
Bayesian techniques and the Gauss-Newton approximation described in [45] to train the network, while
the implementing details are neglected for space limitations.

Note that, different from the simplified dynamical model (2), we add steering wheel velocity as one of
the inputs in order to capture the precise variation of lateral errors. In the online test process, at any
time instant, the steering wheel angles and steering wheel angular velocities in the last n time steps are
used as the input variables to be applied to the neural network to compute the future lateral prediction
errors in the next l time steps.

The data sets used for training and testing the neural network are collected in a driving simulator,
which will be described in detail in Section 6. Figure 3 shows the predicted trajectories of the host
vehicle in a lane change process obtained by the physical-based methods with constant velocity and
acceleration respectively and the proposed approach. It can be seen from Figures 3(a) and (b) that
the trajectories predicted by the method using the constant velocity model cannot reflect the change
of vehicle’s acceleration, while the trajectories predicted by that with the constant acceleration model
perform better. It can be seen in Figure 3(c) that the trajectory of the host vehicle can be accurately
predicted with the proposed method even in a longer prediction horizon.

To better show the performance of the proposed trajectory prediction approach, the mean square errors
(MSE) computed in the training and testing processes are collected and shown in Figure 4. The MSE is
0.53 at the 12th epoch, which is the terminating point where the MSE stops decreasing. Also, it can be
shown in Figure 5 that the gap between the training and testing is small, which reveals the generalization
capability of the proposed approach.

4.2 Collision detection

When a potential risk occurs, it is crucial to intervene at an appropriate time instant. This requires
the detection of future collisions with resorting to the predicted trajectory computed. In the following,
we introduce the main idea to perform future collision prediction, and then define the intervention time
according to the risk evaluation. To simplify the problem, it is assumed that all the dynamic obstacles
in the environment move at a constant speed. Also, the positions and velocities of the obstacles can be
measured by on-board sensors in real-time.

In principle, it is advisable to regard the vehicle as a point and reformulate the environment using the
configuration space concept. However, as the shape of vehicle is rectangular, it is difficult to perform exact
transformation in configuration space. For this reason, along the line with [37], we use the circumradius
of the vehicle to expand the size of obstacles in longitudinal direction and use 0.6 times the width of the
vehicle to expand the size of obstacles in lateral direction and to shrink the size of road boundaries. The
main idea is shown in Figure 6.
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Figure 5 (Color online) The error distribution of the training

and testing results at the 12th epoch.

With this design, it is ready to detect collisions using predicted trajectories. Consider the trajectory
series (x1, y1), . . . , (xNp

, yNp
), where Np is the prediction horizon. We say a potential collision is detected
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if there exists a number i = 1, . . . , Np such that

(xi, yi) ∩ Ω 6= ∅, (6)

where Ω represents the set of obstacles.

Let Ii, i = 1, . . . , Np denote an indicator function, which is given as follows:

Ii =

{

1, for (xi, yi) ∩ Ω 6= ∅,

0, otherwise.

Now, we propose a risk assessment function as

w =

Np
∑

i=1

Iiwi, (7)

where wi =
tanθi
eti ti2

, θi ∈ [0,π/2] is the difference between the heading angle of the host vehicle and the
tangential direction angle of the curb or obstacle boundary at the i-th time step, and ti > 0 is the
predicted time corresponding to the predicted trajectories such that ti = iT . The variations of wi in
three-dimension with respect to ti and θi are shown in Figure 7, which shows that the smaller ti or
the larger θi, the larger wi. Given a constant value w0, if w is greater than w0, we consider that the
driver cannot guarantee safe driving, hence intervention is required, i.e., the shared lateral controller is
triggered. To ensure safety in shared control mode, the share of control effort by human is limited, i.e.,

α 6 αmax, (8)

where






αmax = 1, for w < w0,

αmax =
w0

lnw + w0
, otherwise,

where the value of w0 is chosen by experience, here we set w0 = 1. Figure 8 shows a specific example
of the risk assessment result in a frontal collision scenario. The risk of a collision is detected as long as
Eq. (6) is verified. In this case, the value of θi is close to π/2, which means the shared controller can be
triggered immediately. Otherwise, as seen in Figure 8(b), if no intervention is allowed, a collision event
will finally occur. The proposed risk assessment method can be also suitable for detecting a side collision,
as shown in Figure 9. In this case, the value of θi can be smaller compared to the previous case, which
means the value of w might be much smaller. This will lead to the intervention time much later, which
is exactly the case in the side collision scenario. In this way, frequent interventions can be avoided, this
is the advantageous point compared with the TTC method.
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Figure 8 (Color online) The risk assessment for a frontal col-

lision (tc = 1.5 s, w = 36.63, αmax = 0.22), where tc is the

collision time starting from the current time instant. (a) The

host and forward vehicles at a current time t0 = 0: the solid

black and solid blue rectangles represent the host and forward

vehicles, respectively. (b) The host and forward vehicles at

the collision time: the dashed black and dashed blue rectan-

gles respectively represent the host and forward vehicles at the

collision time.

Figure 9 (Color online) The risk assessment for a side colli-

sion (tc = 0.8 s, w = 1.38, αmax = 0.76). The solid black and

dashed black rectangles respectively represent the host vehicle

at the current and collision time.

5 Risk event-triggered shared lateral control

In this section, we firstly describe the prediction of driver’s behaviors using the predicted future trajectory
contributed by the driver. Then the main algorithm, the smooth transition strategy, as well as the
implementation steps of the event-triggered shared lateral control are introduced.

5.1 Prediction of driver’s behaviors

As it has been noted in [12, 17, 46], the driver’s behaviors can be very useful for improving control
performance, especially in a predictive control framework. To predict the driver’s behaviors, in this
paper, we utilize the predicted trajectory of the host vehicle to obtain the input intention of the driver
via solving an MPC optimization problem. The main idea is to model the human driver’s action as a
model predictor.

The predicted trajectory is regarded as the reference to be followed, which is denoted as ηr. Note that,
as in the shared control mode the predicted trajectory of the host vehicle is resulted by the integrated con-
trol action from the human and the intelligent driving system. In this special case, only the driver’s past
action information is used as the input of the trained BRANN algorithm to generate the corresponding
trajectory prediction ηr. At any time instant k, considering −→u (k : k +Nc − 1) = u(k), . . . , u(k+Nc − 1)
as the future control sequence, the following optimization problem can be stated:

min
−→u (k:k+Nc−1)

Np−1
∑

j=1

‖η(k + j)− ηr(k + j)‖2Qη
+

Nc−1
∑

j=0

(‖u(k + j)‖2QΘ
+ ‖u(k + j)− u(k + j − 1)‖2R) (9)

s.t. dynamics (2),

Θmin < u(k + j) < Θmax, j = 0, . . . , Nc − 1,

where Np is the prediction horizon, Nc 6 Np is the control horizon, Qη, QΘ, and R are positive-definite
tuning matrices, Θmin and Θmax are the lower and upper bounds of the steering wheel angle, respectively.
In optimization problem (9), the first item of the objective function is to minimize the errors between
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the reference and the predictive trajectories generated by the vehicle dynamics model. In the second
item, ‖u(k + j)‖2QΘ

is to optimize the amplitude of the steering action, which devotes to minimizing the

energy input required by the human driver. The third item ‖u(k + j)− u(k + j − 1)‖2R is to minimize
the increment of the steering action, which is used for generating smooth driving behaviors.

At any time instant k, assume the optimal solution of (9) can be computed, that is −→u (k : k+Nc−1|k).
Then the predicted driving behavior is given as

Θd(k + j) =

{

u(k + j|k), for j 6 Nc − 1,

u(k +Nc − 1|k), otherwise.
(10)

5.2 Design of the shared lateral controller

Assume at a generic time instant t, a potential risk is detected, i.e., w > w0, the shared lateral controller
is activated. This requires to solve an online MPC optimization problem stated as follows:

min
α,β,−→u (t:t+Nc−1)

J(ξ(t),−→u (t : t+Nc − 1)), (11)

s.t. dynamics (2),

constraints, (3), (4), (8), (10),

Θmin < u(t+ j) < Θmax, j = 0, . . . , Nc − 1,

0 6 α 6 αmax,

0 6 β 6 1,

where

J(ξ(t),−→u (t : t+Nc−1)) =

Np−1
∑

j=0

(‖η(t+ j)− ηref(t+ j)‖2Qη
+Jobs(t+j))+

Nc−1
∑

j=0

‖u(t+ j)− u(t+ j − 1)‖2R,

ηref is the reference path generated by a pre-assumed path planning module of the automated system, the
input u in this case is the integration of the human behavior and the control action of the intelligent sys-
tem. In (11), the first optimizing item minimizes the errors between reference and predictive trajectories.
Jobs in the second item is a soft barrier function for obstacle avoidance, which is defined as

Jobs(t+ j) =
M
∑

i=1

Sobs

(X(t+ j)−Xo
i (t+ j))2 + (Y (t+ j)− Y o

i (t+ j))2 + ǫ
,

where (Xo
i , Y

o
i ), i = 1, . . . ,M are the positions evenly chosen from the set of expanded obstacles (as

shown in Figure 6), M is the number of points adopted, Sobs > 0 is a weighting coefficient, and ǫ > 0 is
a small positive scalar to ensure the denominator being not zero. Similar to that of (9), the third term
is to generate smooth shared control actions for the vehicle.

At any time instant t, assume the optimal solution of (11) is computed as −→u (t : t + Nc − 1|t). At
the current time t, the control action to be applied to the system (2) is u(t|t). Then at the subsequent
time instant t+ 1, the optimization problem (11) is solved repeatedly according to the receding horizon
strategy.

Remark 2. The stability of the shared controller can be verified under mild assumptions. First note that
the future reference trajectory ξref can be known from the motion planning module. Hence, it is possible
to write (2) with coordinate transformation, i.e., e(k) = Ā(k)e(k) + B̄(k)u(k) + d, eη(k) = C̄(k)e(k),
where e = ξ(k + 1) − ξref , eη = η − ηref , Ā(k), B̄(k), and C̄(k) can be computed according to [36], d is
a function of the yaw rate. It is assumed d is (nearly) constant. Then the pair (eη,s, δus) = (0, 0) is the
origin of the incremental version of the transformed model, where δu(k) = u(k)− u(k− 1). Assume that
Np = Nc, Sobs → 0, Np → +∞, and there exists a feedback gain K such that F (k) = Ā(k) + B̄(k)K

is Schur stable, and then the cost function in (11) can be rewritten as J =
∑N̄p−1

j=0 (‖eη(t+ j)‖2
Qη

+

‖δu(t+ j)‖2R) + ‖eη(t + N̄p)‖2P , where P =
∑+∞

j=0((F (k)j)TQηF (k)j +KTRK), N̄p < Np is sufficiently
large. In this case, Eq. (11) is equivalent to a quasi-infinite MPC problem. Hence the stability can be
guaranteed according to [47, 48].
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5.3 Smooth transitions to human driving

The transition from shared control to human driving mode is one of the difficult issues in human-machine
cooperative driving. In the transition process, safety and smoothness are the two factors to be considered.
For this reason, the transition is activated if the following conditions are satisfied: (i) the risk level w < w0;
(ii) the past shares of human behaviors α(t − i) > ᾱ, for i = 1, . . . , r, where r is a positive number and
ᾱ > 0 is the threshold value. The first condition can be easily verified as long as there is no potential
frontal risk. But the second condition is not guaranteed to be satisfied by (11). Hence, we propose an
optimization-based approach to enforce this. We simply add two more terms in the objective function
of (11), i.e.,

J̄ = J + ε1β + ε2(β − βpre)
2, (12)

where βpre is the share of the intelligent system in the previous time instant. The item ε1β is added to
enforce β → 0 such that a safe smooth transition from the shared control mode to human driving mode
can be achieved. The last term is to penalize the deviation between the previous and current share of
the intelligent system, which can be beneficial for achieving smooth motion trajectories. The objective
function J̄ is used instead of J in (11) if no potential risk is detected. That is to say, the weighting scalars
ε1, ε2 are chosen as

(ε1, ε2) =

{

0, for w > w0,

(ε̄1, ε̄2), otherwise,

where ε̄1 and ε̄2 are tuning parameters.

5.4 Implementation of the event-triggered shared control algorithm

The main implementation steps of the event-triggered shared lateral control are described in Algorithm 1.
Some remarks on the implementation of the proposed shared controller are in order, i.e., some trade-offs
are highlighted.

• The first trade-off is between control performance and real-time property: large values of Np and
Nc might be chosen to improve the control performance, but with an increasing computational burden.

• The second one is between tracking performance and collision avoidance: a suitable value of Sobs is
advisable to ensure safe collision avoidance, without degrading the tracking performance.

• The last one is between fast and smooth transitions: setting ε̄1 larger than ε̄2 will enforce fast
switches from the shared control to human driving mode, but might lead to non-smooth transitions.

Algorithm 1 Implementation steps of the event-triggered shared lateral control

Require: set tuning parameters Qη, QΘ, R, Sobs, ε̄1, ε̄2, Np, Nc, ᾱ, r;

1: for k = 1, . . . do

2: Generate ηr(k + 1), . . . , ηr(k + Np) using BRANN algorithm;

3: Compute the risk level w with (7);

4: if w < w0 then

5: Remain in human driving mode;

6: else

7: Obtain Θd(k + 1), . . . ,Θd(k + Np − 1) with (9);

8: Compute the shared control action u(k|k) with the shared controller (11);

9: Apply u(k|k) to the vehicle;

10: if w < w0 then

11: Compute u(k|k) with the shared controller (11) using cost (12);

12: Apply u(k|k) to the vehicle;

13: if α(k − i) > ᾱ, i = 1, . . . , r then

14: Break and switch back to human driving mode;

15: end if

16: end if

17: end if

18: end for

6 Simulation studies

In this section the event-triggered human-machine cooperative shared lateral control system was tested on
a driving simulator in the PreScan environment for collision-free maneuver in the following three typical
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Table 1 The value of the parameters

Parameter Value Unit Parameter Value Unit

m 1820 kg Qη 200 –

lf 1.170 m QΘ 100 –

lr 1.770 m R 10000 –

Ccf 72653 N/rad Sobs 10 –

Ccr 121449 N/rad M 45 –

Iz 3746 kg·m2 ᾱ 0.8 –

Θmin −450 ◦ r 5 –

Θmax 450 ◦ ε̄1 50 –

γ 20 – ε̄2 10 –

n 10 – N 3147 –

p 100 – κ 0.005 –

l 15 –

scenarios: (i) rear-end collision on a straight-road caused by the driver’s distraction; (ii) lane-departure
on a curved road owing to wrong driving behaviors; (iii) assistance driving for unskilled drivers. For
comparison, a shared lateral controller with the LQR described in [6] was considered. The control share
of the human is given as

α = exp

(

−
e2L
κ2

)

,

where eL is the lateral error with respect to desired path and κ is a tuning parameter. The linear error
model in [36] is used, where the input is the front wheel angle δf , while the state is ζ = [eL, ėL, eH , ėH ]T,
and where eH is the heading error with respect to the desired path.

6.1 Driving simulator

In order to test the proposed algorithm, we built a two-lane one-way road in the PreScan environment,
as shown in Figure 10. The simulated road consists of several straight roads and curves covering the
considered three scenarios. To perform real-time simulation, a simulation framework using Simulink
(in MATLAB R2019a) and PreScan was established, and all the experiments were run on a computer
with 3.2 GHz Intel Core i7 processor and 16 GB 3200 MHz DDR4 RAM. In addition, the training and
testing processes of the BRANN were implemented using deep learning toolbox of MATLAB. In the
experiments, human drivers interact with the simulation environment through a LogitechG29 steering
wheel. The parameters γ1 and γ2 in the BRANN were initialized with γ1 = 1 and γ2 = 0, and the
network weights Wb and biases b were initialized using the Nguyen Widrow method. At each iterative
step, the Levenberg-Marquardt algorithm was used to compute the update of network weights and via
minimizing (5). Then the parameters γ1 and γ2 were updated via estimating the posterior probability
with the computed network weights and biases. The optimization problem (9) in each prediction horizon
was solved with the Quadprog solver, while Eqs. (11) and (12) that contain nonlinear terms in the
objective function were solved using the fmincon solver with an interior-point algorithm.

The parameters of the vehicle model used in this study were chosen as the same as the Audi A8 Sedan
model provided by the PreScan software. The prediction and control horizon were selected as Np = 15
and Nc = 5, the sampling time was chosen as T = 0.1 s. The velocity of the vehicle is relatively fixed
at 10 m/s (36 km/h), which is a normal speed for urban road. To improve readability, the values of the
parameters used in the controller are listed in Table 1.

6.2 Rear-end collision avoidance

In principle, driving on a straight road is an easy task. However, drivers might be distracted from the
road owing to talking on the phone and texting messages. This might lead to obstacle detection failure
and collision. We first tested our shared control method in this scenario. As shown in Figure 11, suppose
that the host vehicle is driving along a straight road and the distracted driver fails to perceive the front
truck that the driver is approaching.

Fortunately, the risk assessment module continuously predicts the trajectory of the host vehicle and
evaluates its hazard level. When the risk value surpasses the threshold, i.e., w > w0, the shared lateral
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Figure 10 (Color online) The road used in the simulation

study. The lane width is 3.5 m, and there are 5 slow-moving

vehicles (represented by red rectangles) on the road, while the

yellow star is the starting position.

Figure 11 (Color online) Simulation scenario of a rear-end

collision avoidance. The black vehicle is the host vehicle and

the blue truck is the front vehicle.
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Figure 12 (Color online) The rear-end collision avoidance with the proposed controller and the LQR-based one. The dashed

black and dashed blue rectangles depict the real states of the host and forward vehicles at the predicted collision time. t = 6.6 s is

the triggering time instant, t = 8.2 s and t = 9.2 s correspond to the time instants when α > ᾱ.
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Figure 13 (Color online) The control variables of the rear-

end collision avoidance with the proposed controller and the

LQR-based one.

Figure 14 (Color online) The control shares of the driver

during the rear-end collision avoidance with the proposed con-

troller and the LQR-based one.

controller will be triggered to actively assist the driver in avoiding an imminent collision. As shown in
Figure 12, when the simulation time reaches 6.6 s, the risk assessment module identifies the collision
risk for the first time. Therefore, the shared controller starts to take action until the safety hazard is
eliminated and the driver takes over the vehicle. The results show that both controllers can successfully
avoid the potential rear-end collision. But the LQR-based controller takes more time to realize the
switching condition α > ᾱ.

The steering wheel angles contributed by the driver and the shared steering wheel angles in this rear-
end collision avoidance process are shown in Figure 13. It can be seen that the curve of the shared
steering wheel angles generated by the proposed controller is smoother. Figure 14 shows the change in
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Figure 15 (Color online) The transitions of rear-end collision

avoidance for ε̄2 = 0 with different ε̄1.

Figure 16 (Color online) The transitions of rear-end collision

avoidance for ε̄1 = 50 with different ε̄2.

the driver’s control share and its upper bound during this process. At the beginning of shared control
with the proposed approach, i.e., t = 6.6 s, the value of the upper bound of α, i.e., αmax drops rapidly
owing to the increase of risk level. Then in the time interval [7.4, 7.8] s, the driver behavior can support
the lane change process. In this case, the risk assessment module confirms that the behavior of the
driver can ensure the safety of the vehicle in the prediction horizon, and the upper bound of α is set to 1
again. Since the condition of the transition from shared control to human driving mode, α(t− i) > ᾱ, for
i = 1, . . . , r, is not met, the shared control mode is still remained. At the simulation time t = 8.2 s, the
safety hazard is reduced and the risk assessment module confirms that the driver behavior can guarantee
the safe driving of the host vehicle, and the objective function (12) is to be used. When the host vehicle
accomplishes collision avoidance, the value of α is approaching to 1 until the transition condition is met
and the driver retrieves fully control authority again.

It can also be seen in Figure 14 that, the LQR-based controller behaves more aggressively than the
proposed approach in the initial stage after the controller is triggered, i.e., in the time interval [6.6, 6.8] s.
The control share of the driver becomes almost zero, as the lateral error between the real trajectory and
the desired path is reduced in the time interval [7.3, 7.9] s, and the driver gains greater control share and
the shared steering wheel angle is close to the driving behavior. At the time t = 9.2 s, the condition
α > ᾱ is fulfilled, which is 1 s later than that with the proposed approach. Although the LQR-based
controller can finally achieve a smooth transition to the human driving mode, the authority allocation
strategy that depends on the tracking error is passive, which results in a longer intervention time period
than that with the proposed approach.

To show how the values of (ε̄1, ε̄2) affect the smooth transition, we also performed the simulations with
the proposed approach using different values of (ε̄1, ε̄2). As shown in Figure 15, it can be seen that for
the case ε̄2 = 0, when ε̄1 = 0, 10, the variation of steering wheel angle reaches fast to zero, and then
experiences a transient period of about 0.35 s. When it comes to the case that ε̄1 = 50, a smoother
transition of the control action can be achieved. Keeping increasing the value of ε̄1 to 100 does not
guarantee a better transition performance, and this might be because the penalty on β in this case is too
large that it affects the overall control performance. To show that the penalty on the increment of β can
help to achieve a much smoother transition, we also tested the algorithm for the case ε̄1 = 50 but with
different choices of ε̄2. The results depicted in Figure 16 show that a much smoother transition from
shared control to human driving mode can be achieved for the choices ε̄2 = 5, 10, 20, than that for the
case ε̄2 = 0. However, ε̄2 > 50 is not advisable in this scenario.

6.3 Lane-departure avoidance

Extremely abnormal driving behaviors, that will cause a danger event, do exist, such as the driver
unintentionally turning the steering wheel in the wrong direction, or a passenger trying to grab the
steering wheel. This subsection considers a scenario where the host vehicle is about to enter a curve road
from a straight one with a large force acting on the steering wheel, so the vehicle turns sharply in the
opposite direction, as shown in Figure 17. We verified whether the risk assessment module can respond
quickly and the shared lateral controller can correct the vehicle trajectory to keep in lane.
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Figure 17 (Color online) Simulation scenario of the lane-
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Figure 18 (Color online) The lane-departure avoidance. The
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t = 11.8 s is the triggering time instant.
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Figure 19 (Color online) The control variables of the lane-

departure avoidance with the proposed controller and the LQR-

based one.

Figure 20 (Color online) The control shares of the driver dur-

ing the lane-departure avoidance with the proposed controller

and the LQR-based one.

As illustrated in Figure 18, at the simulation time t = 11.8 s, the risk assessment module recognizes the
collision risk and the driving mode of the vehicle is transferred to shared control. The vehicle successfully
avoids lane-departure in two experiments with both controllers. The driver’s behaviors and the shared
inputs to the steering-by-wire system during the lane-departure avoidance are shown in Figure 19. In
the time interval [10.7, 12.1] s, the driver takes a number of wrong actions, while in the last half time
the driver’s behaviors gradually return to normal. Compared with the LQR-based controller, the shared
steering wheel angles generated by the proposed controller are smoother and the rate of change is smaller.
The variations of α and αmax are presented in Figure 20. The results show that the control authority
returns back to the driver from the proposed controller at time t = 13.8 s, which is about 0.8 s after the
time instant when w < w0. Also, at the end of the shared control, the shared inputs gradually approach
the driver’s behaviors and a smooth transition to human driving mode is achieved. As for the LQR-based
controller, the shared control policy and the transition back to the driver are more aggressive than that
with the proposed one, which might cause excessive lateral acceleration of the vehicle and make the driver
feel uncomfortable.

6.4 Collision avoidance for unskilled driving

In this simulation scenario, we tested whether the proposed shared control system can deal with the
potential collisions owing to the insufficient steering torque which usually happens to unskilled drivers,
as shown in Figure 21.

At simulation time t = 23.4 s, a collision risk is detected by the risk assessment module, and the risk is
estimated to happen in 1.4 s later, as shown in Figure 22. The comparisons of simulation results between
the proposed approach and the LQR-based controller are presented in Figures 23 and 24. Similar to
that of the previous two simulation scenarios, when the intervention is over, the proposed approach can
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Figure 21 (Color online) Simulation scenario of collision

avoidance for unskilled driving on a curve road. The driver
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Figure 22 (Color online) The collision avoidance for unskilled

driving. The dashed black and dashed green rectangles depict

the real states of the host and forward vehicles at the collision

time predicted in collision detection. t = 23.4 s is the triggering

time instant, t = 24.9 s corresponds to the time instant when

α > ᾱ.
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Figure 23 (Color online) The control variables of the collision

avoidance for unskilled driving with the proposed controller and

the LQR-based one.

Figure 24 (Color online) The control shares of the driver

during the collision avoidance for unskilled driving.

successfully switch back to the human driving mode smoothly. However, the LQR-based controller is
failed in this respect, i.e., it cannot give the control authority back to human timely even if the danger
has been passed. The reason behind is that its control share allocation strategy relies on the current
lateral error, which makes the intervention easily happen again.

In addition, in order to show the real-time property of the proposed controller, we have collected the
average computation time in the above three simulation scenarios, i.e., t = 0.0236 s, which is much smaller
than the adopted sampling time interval T = 0.1 s. In fact, a shorter time interval T = 0.025 s is also
applicable with the proposed controller.
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7 Conclusion

In this paper, an event-triggered shared lateral controller has been proposed for collision-free maneu-
ver. In view of its main characteristics, the online risk assessment can be realized by only predicting the
trajectories of vehicles via a Bayesian regularized artificial neural network, no human driving intention in-
formation is required. With this choice, potential risks and the intervention time are properly determined.
A safe-maneuver oriented shared lateral controller has been designed, where the control shares of the hu-
man and intelligent system are optimized continuously via solving an MPC problem. The future driver’s
behavior intention used in the optimization has been modeled as an online model predictor steering the
predicted trajectories contributed by human driving. Also, the smooth transition issue from the shared
control to human driving mode has been dealt with in the optimization problem. Comprehensive studies,
including the comparison with an LQR-based shared controller, have been performed on a high-fidelity
PreScan environment focusing on three typical scenarios. The results show that the proposed approach
can detect the collision risks accurately and correct the control actions to avoid potential collisions timely.
Moreover, the smooth transition back to human driving mode is realized and the control performance in
this respect is better than the LQR-based controller. Future work will focus on the validation on a real
vehicle platform and the use of ADP-based method for the shared control design with safety guarantees.
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