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Abstract This paper presents a control design approach for optimizing the comfortability of hybrid electric

powertrains in acceleration mode. A parallel hybrid electric vehicle powertrain system with two motors and

a single turbo-charged engine is considered. In acceleration mode, it is assumed that the desired acceleration

rate cannot be satisfied by using the electrical motor individually. The first challenge is managing the

combustion engine to assist power generation and power split such that the system satisfies comfortability,

and the second challenge is modeling the comfortability (e.g., analytically describing the human feeling).

This paper exploits a black-box module typically used in the automotive industry to quantitatively evaluate

comfortability. A genetic algorithm is applied to find the optimum power split and gear schedule that can

improve the comfortability evaluated by the module in acceleration mode. The simulation results conducted

on a simulator with a practical background demonstrate the significance of the proposed design approach.
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1 Introduction

Automobiles have become a necessity with imperceptible influence, promoting the development of trans-
portation at the expense of consuming plenty of fossil fuel and contributing to air pollution [1, 2]. A
hybrid electric vehicle (HEV) is a type of new energy automobile that has attracted significant attention
in recent decades because of its potential ability to reduce fuel consumption. HEVs are usually classified
into three categories according to their architectures [3]: (1) parallel HEV; (2) series HEV; and (3) power-
split HEV. The fundamental configuration of a typical hybrid powertrain system includes a traditional
internal combustion engine, clutch, battery, and an electric machine. The electric machine serves as an
extra energy source because of its ability to recover energy; hence, it can either assist the engine or work
separately. Therefore, most studies on HEVs have focused on the energy management strategy (EMS)
for optimizing power split between energy sources to satisfy a driver’s demand.

A wide variety of optimization algorithms for HEV control have been published. Among them, dynamic
programming (DP) is often used as a benchmark by providing a globally optimal solution offline. Several
studies have used DP for more extensive applications on HEVs [4,5]. However, DP cannot be applied in
practice because a predefined driving route is required. As such, optimization-based controllers that can
be implemented online have attracted attention in recent years. Equivalent consumption minimization
strategy (ECMS) is an instantaneous optimization that determines an equivalent factor that converts
the battery energy to fuel such that the fuel consumption is minimized. Some papers have focused on
finding adaptive laws to tune the equivalent factor online [6, 7]. Musardo et al. [8] demonstrated that
ECMS can perform very close to the global optimum obtained by DP. Model predictive control (MPC) is
another promising approach that is popularly used in EMS by solving a nonlinear optimization problem
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over a finite horizon. In [9], a hierarchical control strategy that considers battery aging was proposed to
improve fuel economy with the controller designed under the MPC scheme. Because of its characteristics
of predicting the future system behavior, MPC is usually combined with other prediction schemes, such
as neural network-based velocity prediction, model-based traffic flow prediction, and extreme learning
machine-based torque demand prediction [10–12]. Moreover, other research efforts for EMS, such as
reinforcement learning, fuzzy control, and logical model-based approaches, have also been proposed in
the last few years [13–15].

It should be noted that the above mentioned studies focused on optimization strategy and fuel efficiency
without considering human sensory evaluation. However, some studies have indicated that uncomfortable
driving may cause traffic accidents and may lead to negative effects on the driver or passengers [16].
For a traditional automobile with a single energy source, vehicle ride comfort is usually evaluated in
terms of stability performance [17, 18]. Discontinuous dynamics during mode transitions of the different
architectures of a hybrid powertrain system usually results in severe jerk and unpleasant ride feeling.
Wang et al. [19] proposed a dual-loop self-learning fuzzy control framework to manage the gear-shift
process. The designed controller moves the gear position as fast and smoothly as possible, improving ride
comfort to some extent. In addition, it has been suggested that both jerk and acceleration contribute
significantly to the performance of ride comfort [20]. In general, an electric motor cannot provide enough
power during acceleration. The management of the combustion engine, such as the intervention time
and the power distribution, contributes to the rate of acceleration and leads to a different driving feeling.
Some existing studies about the ride comfort of HEVs with different mode schedules have only considered
vehicle acceleration as a measure of riding sensation. For instance, Luo et al. [21] introduced vehicle
acceleration into the control constraints to keep it in a reasonable interval. They found that ride comfort
was indirectly improved by generating a flat acceleration series. Tajeddin et al. [22] optimized the energy,
safety, and comfort by considering the fuel consumption, velocity tracking, and acceleration restriction
in the cost function. However, only a few studies have quantitatively evaluated the comfortability. In
addition, the variation in rotational speeds during the mode shift of a hybrid powertrain has also been
considered as a crucial factor that affects ride comfort. The reasonable variation could prompt a vehicle
to avoid an unpleasant ride comfort and vehicle jerk [23].

In summary, energy management is inevitable during the acceleration process because of the character-
istics of the HEV powertrain system. The noticeable jerk or torque fluctuation caused by the operations
lead to an uncomfortable driving sensation. Therefore, a reasonable arrangement of the power gener-
ated by multiple energy sources is needed that can improve system comfortability. However, the main
challenge is modeling and evaluating ride comfort directly. This work aims to address these issues to
improve ride comfort and hold a smooth transition operation during the desired acceleration process. The
main contributions of this work are as follows. A parallel HEV powertrain model with two motors and a
single turbo-charged engine is built. Then, a module for comfort evaluation is presented to quantitatively
describe the performance of ride comfort; it is a black-box module designed by experts from the Toyota
Research and Development Center. Because the evaluation function is an implicit function with respect
to acceleration and jerk, a genetic algorithm (GA) technique is employed to find the optimal power split
and gear schedule that satisfy the desired constraints in acceleration mode. As a result, this paper pro-
vides a novel optimal ride comfortability control scheme for a hybrid powertrain system with two motors.
Moreover, the black-box module of the evaluation function can reflect human senses quantitatively.

The rest of the paper is organized as follows. Section 2 discusses the built parallel HEV powertrain
model and the optimization problem. Section 3 introduces the GA for solving the formulated optimization
problem. Section 4 describes the simulations and provides a discussion of results. Finally, Section 5
concludes this work.

2 Hybrid powertrain model and optimization problem

2.1 Powertrain model

A parallel HEV uses both an electric motor and a combustion engine to deliver power to the vehicle
wheels; hence, it is suitable for passenger cars. The architecture of the considered parallel HEV powertrain
is shown in Figure 1. The system comprises two motors (MG1 and MG2) and a turbo-charged engine,
where MG1 and MG2 have different motor characteristics. The combustion engine and MG1 are coaxially
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Figure 1 (Color online) Structure of the powertrain system.

connected to the gear box with a clutch. The propulsion torques from the motors and engine are coupled
and transmitted to the drive shaft through the differential gear. The variables in Figure 1 have the
following meanings: τe, τm1, and τm2 are the torques of the engine, MG1, and MG2, respectively; ωe,
ωm1, and ωm2 are the speeds of the engine, MG1, and MG2, respectively; τc and τt are the input and
output torques of the gear box, respectively; τd and τw are the input and output torques of the differential
gear, respectively; ωd and ωw are the relevant rotation speeds, respectively; and v is the longitudinal speed
of the HEV.

It should be noted that a turbo-charged engine is applied as an energy source. The components of
a turbo-charged engine include a turbine and an air compressor, which are used to efficiently harness
the exhausted gas emitted from the engine. Because more air enters the cylinders, more power can be
generated by the engine. Compared to a conventional naturally-aspirated (NA) engine, a turbo-charged
engine provides greater output torque and better fuel economy. The air is drawn into the engine by
natural air pressure, while the targeted engine can utilize a turbo to hasten the process. In brief, a
turbo-charged engine can significantly increase the engine power and torque at the same emission and
can generate power more economically. Moreover, it also addresses environmental protection issues in
modern society due to its ability to reduce fuel consumption per unit of power to a greater extent than
NA engines. Therefore, turbo-charged engines are popularly used in modern automobiles for reducing
emissions and improving fuel economy.

We use CL = 0 to denote the clutch is off and CL = 1 means the clutch is on. According to Newton’s
second law and the powertrain structure, the dynamics of the powertrain system shown in Figure 1 is
derived as the following equations.

(a) CL = 0:
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(b) CL = 1:
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(2)

where I denotes the rotational inertia of the relevant mechanical structure, IΣd1, IΣd2, and IΣw denote
the accumulated inertia functions of the components, which are presented as IΣd1 = (Ie + Im1)ηti

2
g,

IΣd2 = Id + Im2G
2
m and IΣw = ηfG

2
fIz1 + Iz2, respectively, M , Rtire and ηf represent the vehicle mass,

the radius of the tire and the transmission efficiency, respectively, ig and ηt denote the gear ratio and
efficiency of the gear box, and F (v) is the road load that can be written as

F (v) = µrmg cos θ +
1

2
ρACdv

2 +mg sin θ, (3)
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Figure 2 (Color online) The visual examples of human feeling function. (a) The structure and application of the function block;

(b) the acceleration curve with score = 60.5141; (c) the acceleration curve with score = 11.7848.

where ρ, A, and Cd denote the air density, the frontal area of the vehicle, and the air drag coefficient,
respectively, µr and g are coefficients of rolling resistance and gravitational acceleration, and θ is the road
slope. It should be noted that the powertrain dynamics (1) and (2) are derived under the assumption
that all connections are rigid.

In addition, the power loss is inevitable during charging or discharging in the battery. Define the loss
power of MG1 and MG2 as Pm1,loss and Pm2,loss, respectively. The power loss is governed by the speed
and torque of the motors. For simplified calculation, the power loss of the two motors can be modeled
based on experimental data and be expressed as the following polynomial function,

Pm1,loss = c1τm1 + c2ωm1 + c3τm1ωm1 + c4ω
2
m1, (4)

Pm2,loss = d1τm2 + d2ωm2 + d3τm2ωm2 + d4ω
2
m2 (5)

with constant parameters ci and di, i = {1, 2, 3, 4}.

2.2 Comfortability evaluation

Most studies in the automobile control field have applied the frequency response function and total
weighted acceleration root-mean-square value to evaluate driving comfortability. The response function
focuses on the effect of the vehicle body structure, such as the stiffness and damping of the suspension
system, on ride comfort. It is widely used in conventional internal combustion engine vehicles; however, it
cannot analyze ride comfort in HEVs. In addition, ride comfort is observed by analyzing the amplitude-
frequency characteristic without intuitive results. Theoretically, it is difficult to describe human feeling
and model ride comfort. However, in industries, a black-box module has been built to quantitatively
evaluate ride comfort by providing a numerical score with respect to the specific inputs.

To evaluate ride comfort, a human feeling function has been presented by experts and engineers from
Toyota; this function considers the acceleration time, acceleration, and jerk. However, it cannot be
expressed explicitly. The black-box module for comfortability evaluation is shown in Figure 2(a), where
the inputs of the block are the acceleration time vector tacc, the acceleration vector a, and the start time
of acceleration t0; the output is a score in the range [0, 100]. The score corresponds to an evaluation
index of ride comfort such that a higher score means higher comfortability. It should be noted that
the block can only be used to calculate the index with a series of acceleration and time as inputs. To
better explain this, different acceleration curves with different scores are shown in Figures 2(b) and (c),
where the blue and purple lines denote the acceleration process and gear schedule, respectively. The
acceleration processes shown in Figures 2(b) and (c) have identical initial speeds but the index scores are
different; i.e., 60.5141 and 11.7848, respectively. These results mean that ride comfort of the acceleration
curve in Figure 2(b) is much better than that in Figure 2(c). Moreover, it should be noted that the only
differences between Figures 2(b) and (c) are the gear changing time t2 and the acceleration curve, while
the terminal velocity and the whole acceleration horizon are predefined.

2.3 Optimal control problem

In this work, we aim to determine the optimal second shifting time, gear schedule, and power split between
the two motors during acceleration to improve the ride comfort. It is assumed that the electric motors are
unable to generate enough power for the acceleration. To correspond to the actual driving requirements,
the throttle of the engine is required to be fully open after ignition. For improving the engine efficiency
during the acceleration process, gear shifting is necessary after the engine starts. Therefore, the combined



Zhang B, et al. Sci China Inf Sci July 2021 Vol. 64 172201:5

EV mode Acceleration mode

gn
1

gn
2

α

v
f

t
f

t
acc

t
1

t
2

t
0

v
0

Time

Figure 3 (Color online) The comfortability problem in acceleration mode.

management including the power split, the gear schedule, and the engine assist is crucial for the better
driving feeling.

The proposed acceleration process is shown in Figure 3, where the blue line a represents the acceleration,
the purple line gn represents the gear schedule, and the orange line represents the velocity curve. The
powertrain system operates at a constant speed v0 under the electric vehicle (EV) mode; i.e, MG2 provides
the power. The acceleration process from t0 to tf can be described as follows. At the initial time t0, the
vehicle begins to speed up to a specified terminal velocity vf under the HEV mode. Here, t1 and t2 denote
the first and second shifting time. During the acceleration process, the motors and engine work together
to propel the vehicle. Although the engine is on from the initial time t0, it is allowed to provide power
until the engine speed reaches a reasonable value at time t1. An initial gear number gn1 is chosen at
time t1 with the clutch being on at this point. Then, at time point t2, another gear number gn2 is chosen
to obtain a comfortable acceleration. The vehicle speeds up to the terminal velocity vf at the terminal
time tf ; note that tf is a specified value. Moreover, the whole acceleration time is denoted as tacc and
the initial gear schedule gn1 is given to reduce mechanical friction in acceleration mode. Thus, the power
split ρ between the two motors, the second shifting time t2, and the gear schedule gn2 influencing the
acceleration curve should be optimized during the acceleration process.

GA is a nature-inspired search-based algorithm used in solving combinatorial optimization problems.
The parameters in the considered optimization problem should be able to maximize/minimize the output
of the black box [24,25]. Here, the method is applied to optimize an unknown cost function. A GA-type
control scheme is proposed to maximize the index of the comfortability evaluation function. The system
block diagram of the GA-based optimal comfortability system is illustrated in Figure 4, where the left
block with a blue undertone represents the basic optimization process of the GA approach and the right
block with a gray undertone represents the evaluation process. The block is designed for calculating the
objective function and evaluating the fitness value with the proposed parallel HEV model and implicit
comfortability evaluation function. The initial population of the algorithm is randomly generated based
on several parameters within a predefined range. The initial population includes a given number of
individuals. For each individual, the objective function value is calculated and a fitness value with respect
to each individual is obtained to validate its performance. The calculation process of the objective function
is shown in the right part of the flowchart. The outputs of each individual are the control inputs, which
include the power split ρ, the second shifting time t2, and the gear schedule gn2. Then, the acceleration
curve and time can be provided. The related sequences describing the acceleration process are fed into
the proposed black-box module to generate an index score for comfortability evaluation. The score is
used to evaluate the fitness of each individual. After completing the block of fitness evaluation, basic GA
operations are performed. Then, a new population is formulated to execute the new iteration process.
Detailed physical meanings of the parameters in Figure 4 are given in the following section.

Moreover, the powertrain dynamics should satisfy the physical constraints. The electric motors should
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Figure 4 (Color online) Block diagram of the proposed design approach.

satisfy the corresponding characteristic curves as follows:

τm1,min 6 τm1 6 τm1,max,

τm2,min 6 τm2 6 τm2,max,

Pm1 + Pm1,loss + Pm2 + Pm2,loss = Pbattery,

(6)

where Pm1 and Pm2 represent the power of MG1 and MG2, respectively, Pm1,loss and Pm2,loss are the
power loss which are modeled as (4) and (5), Pbattery is the rated power of the battery, it means that
the output power of MG1 and MG2 should be satisfied by the battery rated power, and “max/min”
represents the maximum/minimum torque of the motors. In addition, the turbo-charged engine has to
follow the engine characteristic,

ωe,min 6 ωe (t) 6 ωe,max. (7)

Finally, the optimization problem is formulated as follows:

max
u

J(a)

s.t.
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[v̇ (t) , ω̇e (t)]
T
= f [τe (t) , τm1 (t) , τm2 (t) , gn2, t2],

a (t) = v̇ (t),

v (t0) = v0, v (tf ) = vf ,

vf = v0 +∆v, ∆v > 0,

Pm1 (t) = ρ (t)Pbattery,

Pm2 (t) =
Pbattery − Pm1 (t)− Pm1,loss (t)

ωm2 (t)
− Pm2,loss (t),

τm1,min (t) 6 τm1 (t) 6 τm1,max (t),

τm2,min (t) 6 τm2 (t) 6 τm2,max (t),

τe (t) = τe,max (t),

ωe,min 6 ωe (t) 6 ωe,max,

tf 6 tmax,

0 6 ρ (t) 6 1,

t1 + 0.7 6 t2, t2 + 0.7 6 tf ,

(8)

where J denotes the unknown human feeling function, and J : A → R is a functional on a function
space A, x = [v, ωe]

T denotes the state variables, and the input u = [ρ, t2, gn2]
T represents the power

split ratio between the two motors, the second shifting time, and the second gear number, moreover,
the powertrain dynamic should satisfy the physical constrains, f represents the powertrain dynamic
equations, the physical meaning of the constraints are shown as (1) and (2). This work aims to find a
proper input u that can maximize the unknown human feeling function. However, the power split ratio
ρ between two motors during the acceleration process is a function, ρ : [t0, tf ] → R, where the terminal
time tf should satisfy the condition: tf 6 tmax. Consider that a linear delay within 0.7 s of shifting is
inevitable for the proposed parallel powertrain structure. Therefore, the time interval between the two
shifting should be over 0.7 s. Moreover, τe is predefined to be the maximum torque as the throttle of the
engine is fully open in acceleration mode, in other words, τe = τe,max.
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3 GA solution

It should be noted that in this application, the function ρ is discretized in each 0.5 s. Thus the input
ρ is discretized into a vector, for instance, ρ is a vector with 12 elements when tmax is set to 6 s. The
optimization problem (8) has high dimensions (over ten inputs), and a set of constraints. Moreover,
the function is non-analytic and may have multiple local extreme points. Hence, classical optimization
methods such as gradient-based methods are incapable to deal with this problem. Heuristic algorithms,
for example, genetic algorithm, particle swarm optimization algorithm, and colony optimization algorithm
are usually employed to solve such kind of problems. In this application, an enhanced GA is adopted.

GA is a probabilistic global search method that mimics the process of natural biological evolution,
i.e., survival of the fittest. The flowchart of GA is shown in Figure 5. The process begins with an initial
population of individuals that are randomly generated within the range of parameters. An objective
function value of each individual is calculated, and then a fitness value is associated with each individual to
evaluate the performance of each individual. Next, three basic genetic operators: reproduction, crossover,
and mutation, will be executed. After these operators, a new population is produced, namely, the next
generation. The better the fitness value is, the higher the survival probability will be generated. Then,
the probability goes into the next generation. GA is a parallel and global search method that searches
multiple solutions, so it is expected to achieve a globally optimal solution or a sub-optimal solution.

The crossover and mutation probabilities are two key parameters that significantly affect the searching
process of GA. In the early stage of searching, larger crossover and mutation probabilities are beneficial
for the diversity of individual. However, in the later stage of searching, large crossover and mutation
probabilities may destroy the optimal individual [26]. Moreover, when the best individual or solution
is repeated for a number of generations, the algorithm may get stuck at a local minimum. Therefore,
adaptive crossover and mutation probabilities are required. Simple but effective adaptive mechanisms
are

pc (k) = [pc0 + αckfrozen]×

√

1− (k/kmax)
2
,

pm (k) = [pm0 + αmkfrozen]×

√

1− (k/kmax)
2
,

(9)

where k, kfrozen, and kmax are the current generation number, the repeated generation number of the
best individual, and the maximum number of generation, respectively, pc0 and pm0 represent the initial
values, and αc and αm are tiny constants. One can observe that with increasing generation numbers,
the crossover and mutation probabilities tend to decrease. Moreover, the probabilities increase with the
increase of repeated generation number of the best individual.

4 Results and discussion

In this work, three types of acceleration process are designed for a velocity increment of ∆v = 30 km/h.
First, the simulations for a specific condition are demonstrated with detailed discussion for analyzing
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Table 1 List of GA parameters

Parameter Value

Dimension of input 14

Maximum generation number, kmax 100

Population size 70

Initial crossover probability, pc0 0.7

Initial mutation probability, pm0 0.1

Constant, αc 0.02

Constant, αm 0.005

Table 2 List of vehicle parameters

Parameter Nomenclature Value Unit

Vehicle mass M 2850 kg

Engine inertia Ie 0.22 kg·m2

MG1 inertia Im1 0.06 kg·m2

Accumulated inertia IΣd2 0.92 kg·m2

Accumulated inertia IΣw 6.1 kg·m2

Mechanical parameter Gm 5.75 –

Mechanical parameter Gf 3.307 –

Transmission efficiency ηf 0.87 –

Tire radius Rtire 0.39 m

Air density ρ 1.2 kg/m3

Frontal vehicle area A 2.239 m2

Drag coefficient Cd 0.32 –

Rolling resistance µr 0.022 –

Gravity acceleration g 9.8 N/kg

Gear ratios ig 4.93; 3.26; 2.35; 1.95; 1.50;

1.20; 1.00; 0.80; 0.66; 0.61 –

Table 3 Optimization process with v0 = 70 km/h

Index value Shifting time t2 Gear number gn2 Terminal time tf Iteration step k

75.4020 2.06 4 3.60 1

75.6269 2.03 5 3.88 4

76.2351 2.34 4 3.61 30

76.6778 2.29 4 3.57 40

76.8027 2.33 4 3.57 53

76.8045 2.34 4 3.61 101

the performance of ride comfort and powertrain control. In the first case, the initial velocity is set as
v0 = 70 km/h, and the maximum terminal time and desired terminal velocity are set as tf = 6 s and
vf = 100 km/h. Based on a number of simulation tests, it is logical to connect the clutch when the engine
speed reaches 2000 rpm after ignition, because the speed deviation on both sides of the clutch is in a
reasonable interval and the unnecessary friction is avoided at this moment. Therefore, the first shifting
time t1 is defined as the time when the clutch is on. An initial gear gn1 = 3 is given, in other words, the
initial gear shift is “3” at the moment t1. During the acceleration process, another shifting is required,
and the vehicle should reach the desired terminal velocity before the time tf , and the second gear shift
gn2 is generated at the time t2 by the designed controller. The basic parameters of GA and the main
physics parameters of the powertrain system are presented in Tables 1 and 2.

The optimization process using GA is shown in Figure 6. The detailed iteration results for the seeking
process of the proposed GA are summarized in Table 3 for analyzing the optimization performance. This
condition is marked as Case 1. It can be found from Figure 6 that the index value is much greater as
the iteration increases. It means that the ride comfort is improved as the iteration process proceeds step
by step. The result shows that after 40 iterations, the increment speed of the index becomes slow. The
iteration result trends to the final optimal result J = 76.8045.

Moreover, the optimal result of the powertrain control for the index value J= 76.8045 can be observed
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Figure 6 (Color online) The optimization process using GA for v0 = 70 km/h.

from Figures 7 and 8, where the terminal acceleration time is tf = 3.61 s, the second shifting time is
t2 = 2.34 s and the second gear number is gn2 = 4. Figure 7 demonstrates the velocity curve, the
acceleration changing, and the power split among the energy sources. From Figure 7(d), it can be noted
that MG1 operates with the maximum power to drive the engine at the initial stage. It is reasonable to
obtain such a result, as the engine and MG1 work under a coaxial structure. Figure 7(c) shows that the
engine starts to offset the mechanical resistance at the very beginning. After arriving a certain speed,
the engine works under the turbo-charged status to generate the maximal power. It can be observed that
the throttle of the engine is fully open in the acceleration mode. During this initial stage, the clutch is
off although the engine works. Simulation shows that it consumes 0.33 s when the engine speed reaches
2000 rpm, and the clutch is on at the same time. Figure 7(b) illustrates that the acceleration is quite
small before the time t1, due to that the motors are unable to provide enough power to speed up at such
a high driving speed. Therefore, it is inevitable to cooperate the engine and motors for an HEV at such
a high initial speed under an acceleration condition. Moreover, it should be noted that the acceleration
obviously fluctuates during the second short phase of shifting at 2.34 s. The results are caused by the
response of the gear ratio and shifting efficiency, which are shown in Figures 8(a) and (b). Therefore, the
fluctuation is inevitable due to the specific physical constraints but could be significantly reduced by a rea-
sonable gear schedule in theory. Furthermore, the power split between the motors shown in Figures 7(d)
and (e) reveals that the motors assist the engine to force the powertrain in the acceleration process.

It should be noted that a section of slope function occurs once each action of gear shifting is given in
Figure 8(a), i.e., at the time t1 and t2. It is caused by the dynamics of the considered hybrid powertrain
system. Therefore, a linear delay during 0.7 s occurs when shifting. Moreover, a dynamic process for
the efficiency of the gear box exists once the shifting action happens. The process is also realized within
0.7 s. The variation of efficiency ηt follows a nonlinear process as shown in Figure 8(b). However, the
acceleration fluctuation at the first shifting time t1 = 0.33 s is much flat. That is due to the following
two reasons: (1) the efficiency ηt is monotonically increasing from EV mode to HEV mode; (2) the initial
gear ratio is reasonable and the variations of the vehicle state variables are within an acceptable interval
when switching the dynamic. Figure 8(c) reveals that the output powers of MG1 and MG2 satisfy the
physical characteristic of the battery. The battery capacity determines the ability of the output power
provided by the two motors during this acceleration process. Figure 8(d) shows MG1 and the engine
always rotate at the same speed because of the coaxial structure. Figure 8(e) represents the speed of MG2
in the acceleration process. Since the vehicle keeps speeding up during this horizon and MG2 maintains
working all the time, the speed of MG2 maintains increasing invariably. Moreover, since the initial speed
v0 is relatively high, MG2 works under a high speed zone in this condition.
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Figure 7 (Color online) The simulation results of a hybrid powertrain. From top to bottom, the figures show the curves including

(a) the velocity, (b) the acceleration, (c) the engine torque, (d) the Motor 1 torque, and (e) the Motor 2 torque, respectively.

For a further demonstration of the ride comfort performance of the proposed optimal controller, ad-
ditional statistical results are shown in the following. To validate the performance of the proposed
GA-based strategy on different conditions, more acceleration scenarios are designed. Table 4 shows the
optimal results with respect to different initial velocities: v0 = 80 km/h and v0 = 90 km/h. The terminal
velocity is set as vf = 110 km/h and vf = 120 km/h, respectively. In Table 4, the terminal time tf
and the second shifting schedule gn2 are shown. The initial gear gn1 is given according to the physical
condition. It should be noted that the first shifting time t1 is also defined as the moment that the clutch
is on. The initial gear number is given as gn1 = 4 for the two conditions. It can be found from Table 4
that the terminal time tf for the two cases is much longer than that in the first case with v0 = 70 km/h.
The second shifting time t2 is much closer to the first shifting time t1. In Case 2, a higher gear shift gn2

is generated than that in Case 3. It is because that the gear ratio decreases as the gear shift increases,
and it is unable to select a high gear shift to reach the desired terminal speed within such a short horizon
6 s. Moreover, the results demonstrate that the feeling index shows potential for reduction as the initial
vehicle speed increases.

The simulations for the three acceleration scenarios reveal that a reasonable time of second shifting
shows great potential for improving ride comfort. MG2 could provide limited power under the constraints
of motor characteristics since the speed of MG2 continuously increases in acceleration mode. The engine
provides primary power for speeding up in the above scenarios. In summary, an appropriate gear schedule
contributes a lot of effort to a pleasurable ride feeling. The proposed optimal strategy can provide a
reasonable power split between the motors and the gear schedules with respect to different acceleration
scenarios. Thus, it is concluded that the proposed GA-based optimal comfortability control for HEVs is
effective under different acceleration scenarios.

Moreover, some comments should be addressed. First, the clutch dynamic of the powertrain is not
considered in this work. It is assumed that the powertrain system is with rigid coupling. Second, this
work focuses on investigating the ride comfort during a short-term acceleration process. The problem
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Table 4 Results with different initial speeds

Case Initial speed v0 (km/h) Index value Shifting time t2 (s) Gear gn1 Gear gn2 Terminal time tf (s)

2 80 70.8641 1.26 4 6 5.06

3 90 70.4341 1.43 4 5 5.29

is formulated based on the assumption that the battery can provide enough power during such a short
horizon. Therefore, the battery state of charge (SoC) curve during the acceleration is not considered
here.

5 Conclusion

In this paper, a GA-based comfortability control scheme for a hybrid powertrain system was presented.
The considered HEV transmission system includes two electric motors, a single turbo-charged engine,
and a clutch that jointly decides the operating mode (i.e., EV or HEV). Two dynamic models were built
to characterize the behavior of the powertrain under different operating modes. The combination of
mode shift, power split, and gear schedule resulted in fluctuations in velocity and acceleration, leading
to an uncomfortable driving feeling. Thus, an optimal comfortability controller was designed to avoid
unreasonable jerk and acceleration and improve ride comfort in acceleration mode. A black-box module
was used to quantitatively evaluate ride comfort. Then, a GA technique was used to obtain the optimal
power split and gear schedule for an unknown performance function to improve ride comfort. To demon-
strate the effectiveness of the proposed strategy, several simulations with different initial conditions were
employed under a predefined acceleration scenario. The results show that the proposed strategy can
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improve ride comfort and hold smooth transition operations in a specific acceleration mode.
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