
SCIENCE CHINA
Information Sciences

June 2021, Vol. 64 169305:1–169305:3

https://doi.org/10.1007/s11432-019-2891-3

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. LETTER .

On efficient key tag writing in RFID-enabled IoT

Pengfei ZHANG, Hao LIU & Jihong YU*

School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China

Received 6 November 2019/Revised 12 February 2020/Accepted 22 April 2020/Published online 26 April 2021

Citation Zhang P F, Liu H, Yu J H. On efficient key tag writing in RFID-enabled IoT. Sci China Inf Sci, 2021,

64(6): 169305, https://doi.org/10.1007/s11432-019-2891-3

Dear editor,

Radio-frequency identification (RFID) can provide data in

an energy-efficient and low-cost way for data-driven intel-

ligent decisions in emerging Industrial IoT [1]. In RFID

systems, tags store information of physical objects and can

be attached to these objects [2–5]. Tags can capture energy

in the RF signal of a nearby RFID reader for data trans-

mission [6]. This article studies a variant of classical group

writing problems. In contrast to the classical problem that

writes group data to all tags in the system, the new prob-

lem deals only on how to write group data to partial tags

effectively, named key tags. The existence of the key tags

and the normal tags in the RFID systems is well known, and

it is preferable to manage the key tags separately from the

normal tags. The writing problem associated with the key

tag is more challenging than the classical one since the map-

pings of the normal tags that are in majority in the system

lead to considerable interference to the key tags and reduce

time efficiency.

The tag writing is a prerequisite for effective RFID-

enabled applications, such as Group-ID as a service and

group password update. Yet, little effort has been devoted

to this cornerstone service. The protocol named concurrent

grouping (CCG) [7, 8] exploits the effective slots that are

selected by multiple tags of the same group to build an indi-

cator vector. This vector can inform each tag when it should

receive its group data. The CCG has to transmit the whole

indicator vector and thus wastes much time on the trans-

mission of non-effective slots that are in majority. Multiple

seeds are used in [9] to increase the ratio of the effective slots

at the cost of high computational complexity. None of the

prior studies can address the key tag writing problem effi-

ciently for two reasons: they cannot eliminate the interfer-

ence of the normal tags and a large body of communication

overhead is wasted on the transmission of noneffective slots

in the indicator vector.

To solve the key tag writing problem, we present a pro-

tocol named K-Write. K-Write can reduce the activities of

the normal tags while compressing the reader-to-tag indi-

cator vector. The superiority of K-Write is in two-folds:

the active normal tags in the existing studies can be deac-

tivated in our work so that the interference is reduced and

only the slots useful to inform key tags of when they should

receive their group data are transmitted instead of all slots in

the existing studies. This significantly reduces transmission

cost.

Proposed protocol. Consider the RFID system of k key

tags and n normal tags. The k key tags are divided into G

disjoint groups referred to as key groups. The size of key

group i (1 6 i 6 G) is gi. Our interest is to address the key

tag writing problem of devising a protocol to send data of

each key group only to all its members (key tags) accurately

within the minimum time.

(1) Protocol description. To address the key tag writ-

ing problem, we use multiple hashing operations to build a

Bloom filter to deactivate normal tags for interference re-

duction and construct a compressed filter to reduce trans-

mission of noneffective slots. The proposed protocol named

K-Write consists of two phases referred to as filtering phase

and writing phase, respectively.

Phase 1. To begin, the reader maps k key tags into an l-

bit null array using the h hash functions with seed s1 and set

the value of the mapped positions to “1”s. After hashing all

the key tags, the reader constructs a Bloom filter defined as

BF. The parameter configuration will be analyzed shortly.

The reader broadcasts the BF, its size (i.e., frame length)

l, h, and s1 to all the tags. Each tag then maps its ID

to h slots pseudo-randomly at positions hash1(l, ID, s1),

hash2(l, ID, s1), . . . , hashh(l, ID, s1), and checks the corre-

sponding positions in the BF. If all of the h positions are

“1”s, then the tag regards itself as a key tag. Otherwise, it

is normal and then remains silent in the rest of the protocol.

After all the tags conduct a membership test, all key tags

and partial normal tags will be active since Bloom filter has

no false-negative and has only false-positives that tags not

used to build the Bloom filter may also pass the test.

Phase 2. It operates in multiple rounds each with two

steps, namely, the preparatory step and the writing step.

The first step is to inform the key tags of their correspond-

ing pure slots and the group data is then sent to the ready

key tags in the second step.

Consider an arbitrary round j in the execution of Phase 2.

*Corresponding author (email: jihong.yu@bit.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2891-3&domain=pdf&date_stamp=2021-4-26
https://doi.org/10.1007/s11432-019-2891-3
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2891-3
https://doi.org/10.1007/s11432-019-2891-3


Zhang P F, et al. Sci China Inf Sci June 2021 Vol. 64 169305:2

Let Kj and gi,j denote the number of the remaining un-

written key tags in the system and unwritten key tags of

the group gi at the beginning of this round, respectively.

Denote by G′ the number of the groups with unwritten key

tags.

Preparatory step. First, the reader offline builds a com-

pressed filter. Given the frame size fj , the reader maps each

active tag with one hashing operation to an fj -bit null vec-

tor and sets the value of pure slots that are selected by the

key tags of the same groups to “1”s while keeping empty

and non-effective slots “0”s. After constructing the fj-bit

original vector, the reader starts compressing it instead of

directly broadcasting the whole original vector in the previ-

ous studies, which is more time efficient. For compression,

we use the distance between two “1”s to indicate the posi-

tions of “1”s, i.e., pure slots. To do this, the reader finds the

longest segment of the consecutive zeros, the length of which

is defined as z0, and replaces each segment of the consecutive

zeros with a decimal value of its length in ⌈log(z0 + 1)⌉ bits.

Consequently, only the pure slots are recorded in the com-

pressed filter and are transmitted, thereby reducing commu-

nication overhead.

The reader sends the original vector size fj , segment

length ⌈log(z0 + 1)⌉ and the compressed filter to all the ac-

tive tags. On receiving these, a tag calculates the decimal

value of each disjoint ⌈log(z0 + 1)⌉-bit segment assumed to

be D and knows there are D consecutive zeros with one “1”

followed. Repeat this for all segments, a tag can learn all

the positions of the value “1” among [1, fj ]. It then checks

from the compressed filter whether its hashed slot is a pure

slot. Specifically, the tag hashes itself to a slot among [1, fj ].

If the corresponding position is “1”, it is hashed to a pure

slot and will receive its group data in this round. Otherwise,

it does not participate in the second step and waits for the

start of the next round.

Writing step. After the preparatory step, only the key

tags that are hashed to pure slots can participate in this step

and are ready to receive their group data. Since each key

tag that selects a pure slot in the original vector can learn

the number of “1”s before its chosen position, assumed to

be q, then it will wait for its group data at (q+1)-th slot in

the writing frame. Let Sj be the number of “1”s (pure slots)

in the original vector, the reader starts a writing frame of

Sj slots. For any slot in this frame, the reader knows which

group of key tags is waiting at this slot and sends their as-

sociated group data. Meanwhile, each key tag passing the

compressed filter knows at which slot the reader will trans-

mit its group data, and can thus, receive the data at that

slot.

After the current round, the reader moves to the next

round, which is identical except that the written key tags

will remain silent. The above process repeats round after

round until all key tags receive their corresponding group

data.

(2) Performance optimization and parameter con-

figuration. We examine how to configure the used parame-

ters in the protocol to minimize the communication overhead

spent in completing the key tag writing task.

Parameter configuration in Phase 1. Phase 1 aims to sift

out the normal tags; the communication overhead is thus

equal to the length of the broadcast Bloom filter. Owing

to the fact that Bloom filter has no false-negatives, we only

need to consider its false-positive rate, denoted as Pfp; we

have Pfp = (1 − e−kh/l)h.

The total time spent in this round can thus be calculated

as l× t1, where t1 denotes the time needed by the reader to

transmit one bit to tags. We denote C1 as the average time

cost consumed to reduce a normal tag; it can be expressed

as C1 = −t1kh/(n(1 − Pfp) ln(1 − P
1

h
fp )). The C1 is mini-

mized when h = − logPfp. Therefore, the execution time

T1 of Phase 1 and the expected number n′ of normal tags

still active after Phase 1 can be calculated as T1 = kht1/ln 2

and n′ = n0.5h.

Parameter configuration in Phase 2. Since Phase 2 would

operate round by round, we optimize the time efficiency of

each round for feasibility analysis. Consider an arbitrary

round j, the number of active key tags is Kj , and there

are still gi,j key tags in the group i. The execution time

of round j, denoted as T2,j , comprises the time to trans-

mit the compressed filter and the group data. Let f ′

j be

the compressed filter size in the round j, and denote by Sj

the number of the pure slots in the original vector, which is

also the frame size in the writing step. We define wj as the

number of key tags receiving their group data in this round,

then the time efficiency ηj of round j can be expressed as

ηj = wj/(f ′

j t1 + Sjdt1), and we can derive the optimum fj
maximizing ηj .

Theorem 1. When the time efficiency ηj of round j

reaches its maximum value, the corresponding fj must fall

into the interval
[

1,
(Kj+n′)2

0.5Kj+n′

]

where Kj 6 k is the number

of active key tags at the beginning of round j, and n′ 6 n

is the number of active normal tags after Phase 1.

Proof. Refer to Appendix A.

Next, we introduce how to set the number h of hash func-

tions by analyzing its impact on the overall time cost; Kj

and n′ may not be available for offline computation, then we

can set them with known system parameters to Kj = k and

n′ = n because the upper bound f∗

j increases with both Kj

and n′ and the value of n′ has no impact on the monotonic-

ity of ηj with respect to fj . Therefore, we can derive the

approximate optimum fj offline for each round of Phase 2

following Theorem 1. Consequently, ηj , wj , f ′

j , and T2,j are

the function of only n′, and the execution time of Phase 2,

defined as T2, is determined by n′. Recall in Phase 1, the

overall execution time of the K-Write also depends on h.

Intuitively, a higher h leads to a longer Phase 1, but it re-

duces interferences of normal tags to key tag writing so that

Phase 2 is reduced. Therefore, there exists an optimum h

minimizing the overall execution time of K-Write. We can

obtain such an optimum h through the method explained in

Appendix B.

Performance evaluation. We evaluated the performance

The execution time of protocols (groups: 10, n: 8000)

200 300 400 500 600

The number of key tags in each group

0

0.5

1.0

1.5

2.0

2.5

T
im

e 
(s

)

CCG

K-Write

Figure 1 (Color online) The number of key tags v.s. the ex-

ecution time.



Zhang P F, et al. Sci China Inf Sci June 2021 Vol. 64 169305:3

of the proposed protocol in terms of the execution time in

comparison with the CCG. The simulation parameters are

specified in Appendix C. We displayed how the number of

key tags influences the execution time of protocols. To this

end, we simulated scenarios with k varied from 2000 to 6000

where the tags are evenly partitioned into G = 10 groups.

The simulation results are shown in Figure 1 where we ob-

serve that the K-Write performs better than the CCG even

when the number of the key tags exceeds that of the normal

tags. Specifically, the K-Write can perform 4× better when

compared to the CCG.

Acknowledgements This work was supported by National

Natural Science Foundation of China (Grant No. 61901035),

Beijing Institute of Technology Research Fund Program for

Young Scholars, Young Elite Scientist Sponsorship Program by

CAST, and Chongqing Key Laboratory of Mobile Communica-

tions Technology.

Supporting information Appendixes A–C. The support-

ing information is available online at info.scichina.com and link.

springer.com. The supporting materials are published as sub-

mitted, without typesetting or editing. The responsibility for

scientific accuracy and content remains entirely with the au-

thors.

References

1 Ning H S, Liu H. Cyber-physical-social-thinking space

based science and technology framework for the Internet

of Things. Sci China Inf Sci, 2015, 58: 031102

2 Liu X L, Chen S, Liu J, et al. Fast and accurate detec-

tion of unknown tags for RFID systems-hash collisions are

desirable. IEEE/ACM Trans Netw, 2020, 28: 126–139

3 Yu J H, Gong W, Liu J C, et al. Missing tag identification

in COTS RFID systems: bridging the gap between the-

ory and practice. IEEE Trans Mobile Comput, 2020, 19:

130–141

4 Liu X L, Zhang J W, Jiang S, et al. Accurate local-

ization of tagged objects using mobile RFID-augmented

robots. IEEE Trans Mobile Comput, 2019. doi:

10.1109/TMC.2019.2962129

5 Yu J H, Gong W, Liu J C, et al. On efficient tree-based

tag search in large-scale RFID systems. IEEE/ACM Trans

Netw, 2019, 27: 42–55

6 Gao X Z, Niyato D, Wang P, et al. Contract design

for time resource assignment and pricing in backscatter-

assisted RF-powered networks. IEEE Wirel Commun Lett,

2020, 9: 42–46

7 Liu J, Chen M, Xiao B, et al. Efficient RFID grouping

protocols. IEEE/ACM Trans Netw, 2016, 24: 3177–3190

8 Liu J, Xiao B, et al. Fast RFID grouping protocols.

In: Proceedings of the 34th Conference on Computer Com-

munications, Hong Kong, 2015. 1948–1956

9 Yu J H, Liu J C, Zhang R R, et al. Multi-seed group label-

ing in RFID systems. IEEE Trans Mobile Comput, 2019.

doi: 10.1109/TMC.2019.2934445

info.scichina.com
link.springer.com
link.springer.com
https://doi.org/10.1007/s11432-014-5209-2
https://doi.org/10.1109/TNET.2019.2957239
https://doi.org/10.1109/TMC.2018.2889068
https://doi.org/10.1109/TNET.2018.2879979
https://doi.org/10.1109/LWC.2019.2940942
https://doi.org/10.1109/TNET.2016.2514361

