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Dear editor,

Fault-tolerant tracking control has recently become an area

of research interest, in which fault detection, fault-tolerant

control (FTC), and tracking-control techniques are inte-

grated [1, 2]. It is noteworthy that disturbance is a criti-

cal factor that degrades system performance [3]. Therefore,

disturbance attenuation is indispensable when designing a

controller scheme. A common method is to develop a com-

pensator, i.e., an anti-disturbance mechanism could be con-

structed to compensate for the effects of the disturbance.

In previous studies, the disturbance observer based control

has been reported as an efficient disturbance-attenuation

method [4].

In a fault-tolerant tracking control area, the sliding mode

control method has been extensively applied to achieve use-

ful results [5], in which the observer-based sliding mode con-

trol has become a popular control approach because of the

outstanding features of its disturbance rejection and fault

tolerance abilities.

This study aims to design an effective FTC scheme for

a class of dynamic systems with actuator fault and distur-

bance by reducing the transmission loads. Consider the fol-

lowing dynamic system:










ẋ(t) = Ax(t) + Bλ(h)ud(t) + ςk

+∆f(x, t) + ξ(x, t),

y(t) = Cx(t),

(1)

where x(t) ∈ R
n denotes the state vector, y(t) ∈ R

q de-

notes the output of the system, and u(t) ∈ R
p denotes the

control input. ∆f(x, t) denotes a nonlinear function that

can be considered as the unmodeled dynamics, ξ(x, t) de-

notes the mismatched nonlinearity, λ(h) = diag{hi}, and

i = 1, . . . , p. 0 < h1 6 hi 6 h2 < 1 denotes the actuator

fault efficiency factor, and h1 and h2 are two constants. As-

sume that ‖ḣi‖ 6 hn, and hn is a positive constant. ud(t)

denotes the designed control input. ςk denotes the lumped

disturbance. A, B, and C are known constant matrices.

Assumption 1 ([6]). The nonlinear function satisfies the

following condition:

∆f(x, t) = γ0f̄(x) + υ0, (2)

where f̄(x) denotes a known Lipschitz function, while γ0
and υ0 are two unknown but bounded constants.

Assumption 2. Assume that the lumped disturbance sat-

isfies ‖ςk(t)‖ 6 θ‖z(t)‖, where θ denotes an unknown param-

eter, and z(t) denotes a vector to be defined later.

Assumption 3. The nonlinear function ξ(x, t) satisfies

the following condition:

ξ̃(x, t)TR1ξ̃(x, t) 6 x̃(x, t)TR2x̃(x, t), (3)

where R1 and R2 denote two positive symmetry matrices,

ξ̃(x, t) = ξ(x1, t)− ξ(x2, t), and x̃(x, t) = x1(x, t)− x2(x, t).

In this study, the observer is defined as follows:

˙̂x(t) = Ax̂(t) +Bλ(ĥ)ud(t) + ξ(x̂, t) + γ̂0f̄(x)

+ υ̂0 + L(y(t) − ŷ(t)) + δn(t), (4)

where x̂(t), ĥ(t), γ̂0, υ̂0, and ξ(x̂, t) denote the estimations

of x(t), h(t), γ0, υ0, and ξ(x, t), respectively. L denotes ma-

trix gain. δn(t) denotes an estimation error compensator.

γ̂0 = −f̄(x)TPex, υ̂0 = −Pex. ex = x(t) − x̂(t), and P

denotes a positive symmetry matrix. ĥ(t) is updated by

˙̂
h(t)=

{

lx,

0,
if lx>0, ĥ(t)=h2 or lx<0, ĥ(t)=h1, (5)

where lx = −(λ(ud(t)))
TBTPex. δn is given as

δn =
Pex(t)

‖ex(t)TP‖
θ̂‖z(t)‖+

Pex(t)

‖ex(t)TP‖2
ηk , (6)

where ηk = 2(h2 − h1)(hn + h2 − h1), and θ̂ denotes the

estimation of θ.
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The disturbance is estimated as follows:

ς̂k = −γ̃0f̄(x)− υ̃0 − ξ̃(x, t)− ψ(t), (7)

where γ̃0 = γ0 − γ̂0, υ̃0 = υ0 − υ̂0, ξ̃(x, t) = ξ(x, t)− ξ(x̂, t),

ψ(t) = −(αk + θ̂)z(t)−γ̃0 f̄(x)−υ̃0−ξ̃(x, t), z(t) = ex−n(t),

and αk > 0. θ̂ and n(t) are updated in the following form:

˙̂
θ = αc

(

‖z(t)‖2 + ‖ex(t)
TP‖‖z(t)‖

)

, (8)

where αc > 0.

ṅ(t)=(A−LC)ex+Bλ(h̃)ud(t)−δn(t)−ψ(t). (9)

The proof of the convergence performance of the estimation

error is similar to that in [7].

In the following, the design of a novel sliding mode con-

troller is described. In the controller architecture, the esti-

mated information is utilized to construct the sliding mode

controller.

Let yr(t) denote the desired trajectory. The tracking er-

ror can be formulated as follows: e(t) = y(t) − yr(t). Then

the following tracking error system can be deduced:

ė(t) = CAx(t) + CBλ(h)ud(t) + Cςk

+ C∆f(x, t) + Cξ(x, t)− ẏr(t). (10)

In this study, the sliding mode surface is defined as

s(t) = σ(t) +

∫ t

0
σ(t)βdτ , (11)

where σ(t) = De(t) + Dws

∫ t

0
e(t)αdτ , 0 < α < 1, and

0 < β < 1. D denotes a designed matrix such that

DCB is invertible. ws denotes a weighted factor defined

as ws = δm
δm+δn exp(−c‖ς̂k‖)

, where δm > 0, c > 0, and

δn > 0.

Suppose the current control output is denoted by x̂(j)

(j = 0, 1, . . .), and the latest output released signal is de-

noted by x̂(tk) (k = 0, 1, . . . , t0 = 0), where k denotes the

number of event triggering.

The event-triggering condition in this study is defined as

follows:

‖DCA‖‖ek‖ 6 ‖x̂(tk)‖+ δs, (12)

where ek = x̂(t) − x̂(tk) and δs > 0.

Then the next release time is given by

tk+1= tk+min
l>0

{l | ‖DCA‖‖ek‖>‖x̂(tk)‖+δs}. (13)

The proposed event trigger-based fault-tolerant controller

is given in the following form:

ud(tk)

=−(DCBλ(ĥ(tk)))
−1

(

D
(

CAx̂(tk) + Cς̂k(tk)

+ C∆f̂(x, tk)+Cξ̂(x, tk)−ẏr(tk)
)

+Dwse(tk)
α

+ σ(tk)
β + µ(tk)sign(s(tk))

)

, (14)

where µ(tk) = χ̂ + ‖x̂(tk)‖ + δm, χ̂ denotes the estimation

of χ, χ denotes a variable to be defined later, and δm > δs
is a positive constant.

Theorem 1 gives the main results of this study.

Theorem 1. Consider the sliding manifold (11) and con-

trol law (14); the sliding motion and tracking performance

can be guaranteed by inequality (12).

Proof. The following Lyapunov candidate function (15) is

considered:

V (t) =
1

2
s(t)Ts(t) +

1

2
(χ− χ̂)2, (15)

where χ̂ is updated by ˙̂χ = ‖s(t)T‖.

The time derivative of (15) for t ∈ [tk, tk+1] can be ob-

tained as follows:

V̇(t)= s(t)TD
(

CAek(t)+Cςk−Cς̂k(tk)+C∆f(x, t)

− C∆f̂(x, tk) + Cξ(x, t)− Cξ̂(x, tk)

− ẏr(t) + ẏr(tk) + wse(t)
α −wse(tk)

α
)

+ s(t)T
(

σ(t)β − σ(tk)
β
)

+ s(t)Tµ(tk)sign(s(tk))−(χ−χ̂) ˙̂χ−s(t)TΞ

6 s(t)TDCAek + s(t)TM

− µ(tk)s(t)
Tsign(s(tk))− (χ− χ̂) ˙̂χ, (16)

where

M = D
(

Cςk − Cς̂k(tk) + C∆f(x, t)− C∆f̂(x, tk)

+ Cξ(x, t)− Cξ̂(x, tk)− ẏr(t) + ẏr(tk)

+ wse(t)
α −wse(tk)

α
)

+ σ(t)β − σ(tk)
β +Ξ,

Ξ = F
(

DC(Ax̂(tk) + ς̂k(tk)+∆f̂(x, tk))

+DCξ̂(x, tk)−Dẏr(tk) +Dwse(tk)
α

+ σ(tk)
β + µ(tk)sign(s(tk))

)

,

F = DCBλ((eh + h̃)(ĥ − eh)
−1)(DCB)−1.

The estimation errors converge to zero according to The-

orem 1. From the definition of M , we can deduce that M is

bounded, i.e., ‖M‖ 6 χ, where χ is an unknown constant.

When s(t) > 0 or s(t) < 0, sign(s(tk)) = sign(s(t)) holds.

Therefore, Eq. (16) can be simplified as follows:

V̇ (t) 6 ‖s(t)T‖(‖DCA‖‖ek‖+ χ− χ̂− ‖x̂(tk)‖)

− (χ− χ̂) ˙̂χ

6− ‖s(t)T‖(δm − δs). (17)

This implies that the sliding motion occurs and the tracking

error converges to zero. This completes the proof.

Simulation. In this study, the robotic manipulator sys-

tem in [1] is addressed. The mechanical system is given as

follows:

ẋ1 = x2, ẋ2 = zuf (t) + f(x) + d(t), (18)

where x1 = τ , x2 = τ̇ , and z = 1/J , f(x) =

pgLτ sin(x1)/J−Gx2/J . These variables can be found in [1],

and the results are shown in Figure 1. From Figure 1, it can

be observed that the tracking performance of the proposed

method is better than those of the methods in [1, 3, 5]. Ad-

ditionally, the proposed observer has good estimation per-

formance.

Conclusion. This study investigated an event-triggered

adaptive observer-based sliding mode control scheme. First

the states and lumped disturbance were estimated, in which

the disturbance upper bound information was not required.

Then a novel sliding mode control scheme was constructed
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Figure 1 (Color online) (a) Control structure; (b) tracking results of yr1; (c) tracking results of yr2; (d) estimation of the

disturbance; (e) estimation of the fault factor; (f) released time intervals of the input.

with a good trajectory tracking performance. Additionally,

we introduced an event trigger technique in the controller to

the actuator channel to reduce unnecessary transmissions.
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