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Dear editor,

The study of nonlinear time-delay systems made great

progress in the past few decades [1] and some effective meth-

ods were presented for special systems such as the approxi-

mate linear method, sum of squares decomposition method,

and nonlinear matrix inequality method. Furthermore, as

there exists an uncertainty and failure mode, the simulta-

neous stabilization problem attracted the attention of some

scholars and some results were obtained [2]. The obtained

results are infinite-time rather than finite-time ones. Differ-

ent from the infinite-time results, the finite-time closed-loop

system can reach zero within a finite-time interval, which im-

plies that it has faster convergence and better robustness [3].

Because of these, in a recent article [4], the authors extended

the finite-time issue to a simultaneous stabilization problem

for a port-controlled Hamiltonian (PCH) system and pre-

sented some finite-time simultaneous stabilization results on

the PCH system without delay.

However, the results developed in existing literature are

mainly based on some special forms such as linear main part

and are for systems without delay. There are fewer finite-

time simultaneous stabilization results on general nonlinear

time-delay systems. Motivated by this, we study the finite-

time adaptive robust simultaneous stabilization problem for

a set of nonlinear systems with general form and time delay

and present some corresponding results on the issue.

Preliminaries. Consider the set systems

Ẋi(t) = fi(Xi(t), ε) + ζi(Xi(t))pi(Xi(t − h), ε)

+gi(Xi(t))u + qi(Xi(t))w, (1)

where Xi(t) = [xi1(t), . . . , xini
(t)]T ∈ Ωi ⊂ R

ni (i =
1, . . . , N) denotes the state vector with Ωi being some

bounded convex neighborhood of the origin in the space

R
ni . The continuous vector field fi(Xi, ε) ∈ R

ni , smooth

vector field pi(Xi, ε) ∈ R
ni , and ζi(Xi) ∈ R

ni×ni satisfy

fi(Xi, 0) = fi(Xi), pi(Xi, 0) = pi(Xi), and ζi(0) = 0, re-

spectively. gi(Xi) and qi(Xi) are weighted matrices with

appropriate dimensions, h is a positive constant delay, u is

the control input, w is the external disturbance with ap-

propriate dimensions, and ε denotes the constant structure

uncertainty of the systems (1).

Lemma 1 ([5]). Assume that ẋ = f(t, xt) has a forward

unique solution with f being continuous and f(t, 0) = 0.

If there exists a Lyapunov functional V , constant numbers

β > 1 and κ > 0 such that V̇ (t, φ) 6 −κ(V (t, φ))
1
β holds,

then the system is finite-time stable.

Lemma 2 ([6]). For xj ∈ R (j = 1, 2, . . . , n), and real

numbers 0 < p 6 1, 0 < q < 2, we have (1)
∑n

j=1 |xj |
q >

(
∑n

j=1 |xj |2)
q
2 , and (2) (

∑n
j=1 |xj |)p 6

∑n
j=1 |xj |p.

Lemma 3 ([3]). If a given system is globally asymptot-

ically stable and locally finite-time stable, then the system

is globally finite-time stable.

Lemma 4 ([7]). If h(x) ∈ R with h(0) = 0 has continuous

n-th order partial derivatives, then h(x) = a1(x)x1 + · · · +

an(x)xn, where ak(x) ∈ R (k = 1, 2, . . . , n).

Remark 1. Based on Lemma 4, ζi(Xi) can be expressed

as ζi(Xi) = Mi(Xi)D{Xi,Xi, . . . , Xi}(ni×ni)×ni
.

Lemma 5 ([8]). Let X = (x1, x2, . . . , xn)T; then λmax

{XXT} 6 x2
1 + x2

2 + · · ·+ x2
n.

Consider the system (1) and choose a suitable Hamilto-

nian function Hi(Xi). Using Lemma 4 and the orthogonal

decomposition method [7], we have

Ẋi = Di(Xi, ε)∇Xi
Hi(Xi) + gi(Xi)u+ qi(Xi)w

+Bi(Xi, X̃i, ε)∇X̃i
Hi(X̃i, ε) +Qi(Xi, ε), (2)

where Di(Xi, ε) =
〈fi(Xi,ε),∇Xi

Hi(Xi)〉

‖∇Xi
Hi(Xi)‖

2 Ini
, Qi(Xi, ε)

= fi(Xi, ε) − Di(Xi, ε)∇Xi
Hi(Xi), Bi(Xi, X̃i, ε) =

ζi(Xi)Li(X̃i, ε), pi(Xi, ε) = Li(Xi, ε)∇Xi
Hi(Xi, ε).

Thus, Eq. (1) is equivalent to (2).

Main results. We present several assumptions.
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Assumption 1. Let B(X, X̃, ε) = Diag{B1(X1,

X̃1, ε), . . . , BN (XN , X̃N , ε)} and assume that there ex-

ists a matrix Φ(X, X̃) with an appropriation dimension

such that B(X, X̃, ε)△H(X̃, ε) = G(X)Φ(X, X̃)θ :=
G(X)Φθ holds, where X = [XT

1 , . . . , XT
N ]T, H(X, ε) :=

H1(X1, ε)+· · ·+HN(XN , ε),∇X̃H(X̃, ε) = ∇X̃H(X̃)+

△H(X̃, ε), G(X) = [gT1 (X1), . . . , g
T
N(XN )]T with G(X)

being full column rank, and θ represents an uncertain con-

stant vector on ε.

From Assumption 1, Bi(Xi, X̃i, ε)△Hi
(X̃i, ε) =

gi(Xi)Φ(X, X̃)θ := gi(Xi)Φθ holds for i = 1, . . . , N .

Assumption 2. Assume that w of the system (2) satisfies

Θ = {w ∈ R
q : µ2

∫ +∞

0
wT(t) w(t)dt 6 1}, where µ is a

positive constant number.

Assumption 3. For Hi(Xi), assume that ̺i‖Xi‖
2 >

Hi(Xi) > αi‖Xi‖2, ηi‖Xi‖2 > ∇T
Xi

Hi(Xi) ∇Xi
Hi(Xi) >

ιi‖Xi‖2 hold for i = 1, 2, . . . , N , where ̺i, ιi, αi and ηi are

positive constant numbers.

Based on Assumption 1, the system (2) is expressed as

Ẋi = Di(Xi, ε)∇Xi
Hi(Xi)+Bi(Xi, X̃i, ε)∇X̃i

Hi(X̃i)+

gi(Xi)u+ qi(Xi)w + gi(Xi)Φθ +Qi(Xi, ε).
Choose z = Λ(X)GT(X)∇XH(X) with Λ(X) being a

weighted matrix of appropriate dimension, and let Ωi :=

{Xi : (σi
k)

TXi 6 1, k = 1, 2, . . . , ni}, where σi
k (i =

1, . . . , N) denotes ni edges of Ωi.

Assume that (i1, i2, . . . , iN ) stands for any one arrange-

ment of {1, 2, . . . , N} and the positive integer L satisfies

1 6 L 6 N − 1. Let M1 = i1 + i2 + · · · + iL and

M2 = iL+1 + · · · + iN , and divides the N subsystems into

two sets: i1, . . . , iL and iL+1, . . . , iN ; then the N subsys-

tems can be rewritten as

Ẋm(t) = Bm(Xm, X̃m, ε)∇
X̃m

Hm(X̃m)

+Dm(Xm, ε)∇Xm
Hm(Xm) +Qm(Xm, ε)

+Gm(Xm)u+ qm(Xm)w +Gm(Xm)Φθ, (3)

where m = a, b, Xa = [XT
i1
, . . . , XT

iL
]T, Xb = [XT

iL+1
, . . . ,

XT
iN

]T, Ba(Xa, X̃a, ε) = Diag{Bi1 (Xi1 , X̃i1 , ε), . . . , BiL

(XiL , X̃iL , ε)}, Bb(Xb, X̃b, ε) = Diag{BiL+1
(XiL+1

,

X̃iL+1
, ε), . . . , BiN (XiN , X̃iN , ε)}, Da(Xa, ε) =

Diag{Di1 (Xi1 , ε), . . . , DiL (XiL ), ε}, Db(Xb, ε) =

Diag{DiL+1
(XiL+1

, ε), . . . , DiN (XiN , ε)}, Qa(Xa, ε) =

[QT
i1

(Xi1 , ε), . . . , Q
T
iL

(XiL , ε)]T, Qb(Xb, ε) =

[QT
iL+1

(XiL+1
, ε), . . . , QT

iN
(XiN , ε)]T, Ga(Xa) =

[GT
i1
(Xi1 ), . . . , GT

iL
(XiL )]T, Gb(Xb) = [GT

iL+1
(XiL+1

),

. . . , GT
iN

(XiN )]T, qa(Xa) = [qTi1(Xi1 ), . . . , qTiL
(XiL )]T,

qb(Xb) = [qTiL+1
(XiL+1

), . . . , qTiN (XiN )]T.

We present two main results.

Theorem 1. Under Assumptions 1, 2, and 3, consider

the system (3). If there exist two symmetric matrices Υ > 0

and K, constant real numbers γ > 0, k1 > 0, ζ > 0, and

α ∈ (0, 1), such that γ2 > ζ−1,

(i) Ξ :=

[

Ξ1 + Aaa Aab

AT
ab Ξ2 + Abb

]

6 0 holds, and

(ii) There exist constant numbers s > 0, µ > 0, αa >

0, αb > 0, σκ > 0, such that




2s − γ2

2µ2 max{αa,αb}
−s(σκ)

T

−s(σκ) Ini1
+···+niN



 > 0,

then the system (3) is a finite-time adaptive robust simul-

taneous stabilization under the following controller: u =

v−Φθ̂−K[GT
a (Xa)∇XaHa(Xa)−GT

b (Xb)∇Xb
Hb(Xb)],

˙̂
θ = ΥΦT(GT

a (Xa)∇XaHa(Xa) + GT
b (Xb)∇Xb

Hb(Xb)),

where Amn = ζqm(Xm)qTn (Xn) −
1
γ2 Gm(Xm)GT

n (Xn)

(m,n = a, b), Ξ1 = Ba(Xa, X̃a, ε)B
T
a (Xa, X̃a, ε) −

2Ga(Xa)KGT
a (Xa) + Da(Xa, ε) + DT

a (Xa, ε), Ξ2 =
Db(Xb, ε) + DT

b (Xb, ε) + 2Gb(Xb)KGT
b (Xb) + Bb(Xb,

X̃b, ε)B
T
b (Xb, X̃b, ε), G(X) = [GT

a (Xa), G
T
b (Xb)]

T,

X = [XT
a , XT

b ]T, H(X) = Ha(Xa) + Hb(Xb), v =

v1 + v2, G(X)v1 = −k1sign(∇XH(X))|∇XH(X)|α −

∇T
X̃
H(X̃)∇X̃ H(X̃) ∇XH(X)

2‖∇XH(X)‖2
(X 6= 0), G(X)v2 =

−G(X)[ 1
2
ΛT(X)Λ(X) + 1

2γ2 Im]GT(X)∇XH(X),

sign(∇XH(X))|∇XH(X)|α := [sign( ∂H(X)
∂x11

)|∂H(X)
∂x11

|α,

. . . , sign( ∂H(X)
∂xNnN

)| ∂H(X)
∂xNnN

|α]T.

Theorem 2. Under Assumptions 1, 2, and 3, consider

the systems (3). If the symmetric matrices Υ > 0, K, and

P > 0 exist with appropriate dimensions, positive constant

numbers γ, k1, ζ, ̺, s, µ, αa, αb, σκ, and α ∈ (0, 1) such

that γ2 > ζ−1, ̺−1ΓιLT(X̃, ε)L(X̃, ε)−2P 6 0 and the con-

ditions (i) and (ii) hold in Theorem 1, then the system (3)

is a finite-time adaptive robust simultaneous stabilization

under the controller u and θ̂ given in Theorem 1, where Γ :=

λmax{MT
i1
(Xi1 )Mi1 (Xi1 ), . . . ,M

T
iN

(XiN )MiN (XiN )}, ι :=

λmax{ι
−1
i1

, . . . , ι−1
iN

} (ιij is given in Assumption 3), L(X̃, ε)

=Diag {La(Xa, ε), Lb(Xb, ε)}, La(Xa, ε) = Diag{Li1 (Xi1 ,

ε), . . . , LiL (XiL , ε)}, Lb(Xb, ε) = Diag{LiL+1
(XiL+1

, ε),

. . . , LiN (XiN , ε)}, Ξ1 = Da(Xa, ε) + DT
a (Xa, ε) −

2Ga(Xa)KGT
a (Xa) + ̺I, Ξ2 = Db(Xb, ε) +

DT
b (Xb, ε) + 2Gb(Xb)KGT

b (Xb) + ̺I, v = v1 +

v2, G(X)v1 = −k1sign(∇XH(X))|∇XH(X)|α

−∇T
X̃
H(X̃)P∇

X̃
H(X̃)∇XH(X), G(X)v2 = −G(X)

[ 1
2
ΛT(X)Λ(X) + 1

2γ2 Im]GT(X)∇XH(X).

Proof. The proof is similar to that of Theorem 1, and is

thus omitted.

Remark 2. Different from Theorem 1, in Theorem 2, we

designed a controller without containing the denominator

‖∇XH(X)‖ in G(X)v1, which implies that it is more appli-

cable.

Illustrative example. Consider the systems

Ẋi = fi(Xi, ε) + ζi(Xi)pi(Xi(t − h), ε)

+gi(Xi)u+ qi(Xi)w, (4)

where i = 1, 2, 3, n1 = 3, n2 = n3 = 2, f1(X1, ε) =

[−(2+ε)x11−(2ε−1)x11x
2
12, (2ε−1)x2

11x12−2x12,−x13]T,

f2(X2, ε) = [−2(2 + ε)x21 + x22,−6x22]T, f3(X3, ε) =

[−4x31,−(2 + ε)x32]T, p1(X1, ε) = [x11, x12, x13]T,

p2(X2, ε) = [2x21, x22]T, p3(X3, ε) = [2(x31 − ε), x32]T,

ζ1(X1) =
[

0.2x11 0.3x11x12 0; 0 0.3x2
12 0; 0 0 0.5x12x13

]

,

ζ2(X2) =
[

x21x22 0; 0.3x21 x2
22

]

, ζ3(X3) = [0 0; x31 0],

g1(x) = q1(x) = [1 0; 1 0; 1 0], g2(x) = q2(x) = [1 0; 1 0],

g3(x) = q3(x) = [1 0; 0 1].

In the example, let X1 = (x11, x12, x13)T ∈ Ω1 =

{(x11, x12, x13) : |x11| 6 1, |x12| 6 1, |x13| 6 1}, Xi =

(xi1, xi2)T ∈ Ωi = {(xi1, xi2) : |xi1| 6 1, |xi2| 6 1} (i =

2, 3).

For simulation purpose, choose K = 0.5Diag{1, 1}, ε =

0.1, ̺ = 0.1, ζ = 6.25, γ = 0.4, Γ = 2, ι = 1, ̺−1 = 10,

α1 = α2 = α3 = 0.5, s = 0.1, and µ = 2. The simulation

result that is the response of the state norm square for the

three systems under the single controller designed is shown

in Figure 1, where we can find that under the simultaneous

stabilization controller designed, the states of all the three
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Figure 1 The response of the state norm square with u.

systems converge quickly to the equilibrium when the dis-

turbance w is removed.
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