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Abstract Detection of interictal epileptic discharges (IED) events in the EEG recordings is a critical

indicator for detecting and diagnosing epileptic seizures. We propose a key technology to extract the most

important features related to epileptic seizures and identifies the IED events based on the interaction between

frequencies of EEG with the help of a two-level recurrent neural network. The proposed classification network

is trained and validated using the largest publicly available EEG dataset from Temple University Hospital.

Experimental results clarified that the interaction between β and β bands, β and γ bands, γ and γ bands,

δ and δ bands, θ and α bands, and θ and β bands have a significant effect on detecting the IED discharges.

Moreover, the obtained results showed that the proposed technique detects 95.36% of the IED epileptic events

with a false-alarm rate of 4.52% and a precision of 87.33% by using only 25 significant features. Furthermore,

the proposed system requires only 164 ms for detecting a 1-s IED event which makes it suitable for real-time

applications
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1 Introduction

Epilepsy is the fourth most commonly known neurological disease in the world according to the latest
data from the World Health Organization [1]. It can threaten the patients’ lives with brain failure,
heart and lung failure, head trauma, and sudden unexpected death [2]. The diagnosis and treatment
of epilepsy in hospitals depend on detecting the interictal epileptic discharges (IED) of EEG recordings
and calculating the IED index. The detection of IED is a difficult task because some IED events may
easily be overshadowed by large EEG background, eye movement or artifacts. In addition, varying
spike morphology during the sleep cycle for long-term monitoring increases the difficulty of detecting
the IED discharges. The visual analysis and scoring of the IED events from EEG require experienced
neurophysiologists and are very time-consuming processes, especially in the case of long-term recordings,
and subject to observer error [3]. Hence, developing an automatic system for detecting IED can help
for diagnosing and saving the lives of epileptic patients and also saves the time of neurophysiologists.
The developed system should be multi-modal, low power, flexible, and has a high precision to satisfy
the clinicians’ requirements by detecting all IED discharges of EEG recording with small false positive
detections (i.e., sensitivity above 95% and a false alarm rate below 5%) [4–8]. The challenge is how to
tradeoff between the sensitivity and the false alarm rate to improve the system precision.
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Table 1 State-of-the-art methods for detection of epileptic IED discharges

Method Dataset
Dataset Features Features Classifier ACC SEN SPE FPR PREC F1-score Gmean

availability method type (%) (%) (%) (%) (%) (%)

Zacharaki
et al. [3]

One-subject with
101 spikes
(2 channels)

NO

Locality
preserving
projections
(LPP)

Amplitude-
based

Support
vector
machine
(SVM)

– 97 98.74 1.26% 62.8 76.24 97.87

Golmoham-
medi et
al. [8]

Publicly largest
TUH EEG dataset
(390 subjects,
22 channels)

Yes

Hidden
Markov
models
(HMM)

–
Deep l
earning

– 90.1 95.11 4.89% – – 92.6

Carey et al.
[9]

6 patients
(one-channel)

NO – –

Artificial
neural
network
(ANN)

– 82.68 – – 72.7 77.37 –

Lodder et al.
[10]

23 patients with
723 IEDs

NO
Template
matching

Amplitude-
based

SVM – 90 – 2.36 (min) 23.10 36.76 –

Malik et al.
[11]

13 subjects NO
Gradient-
based NEO

Amplitude-
based

– 74.1 – – – – – –

Liu et al. [13]
12 epileptic pa-
tients (16 channels)

NO –
Morphological-
based

AdaBoost 93.9 95.5 92.4 7.6% – – 93.94

Douget et al.
[14]

17 subjects
(3 channels)

NO

Discrete
wavelet
transform
(DWT)

Wavelet
coefficient-
based

Random
forest

– 62 – – 26 36.64 –

Antonio
et al. [15]

two-subjects with
96 spikes

NO
Cross-
correlation

Amplitude-
based

Decision tree 97 86 98 2% – – 91.80

*ACC: accuracy, SEN: sensitivity, SPE: specificity, FPR: false positive rate or false alarm rate, PREC: precision, Gmean:
geometric mean.

Many methods have been developed for detecting the IED discharge events from the EEG recordings
as listed in Table 1. It is observed that most of the state-of-the-art methods [3, 8–15] did not satisfy
the clinicians’ requirements. The method in [3] meets the clinicians’ requirements. However, it is based
on only one subject. Also, most methods extracted features from changes in the amplitude of the EEG
signal which is varied during the sleep cycle. Epilepsy originates from recurrent abnormal discharges of
the brain’s electrical activity. These epileptic discharges lead to the subtle changes in the frequencies
of the EEG signal. This prompts us to study the interaction between frequencies of the EEG signal
to track the changes in EEG arising from linear and nonlinear changes under a variety of physiologic
conditions. Recently, the higher-order statistic (HOS) methods [16–21] such as bispectrum (BS) and
wavelet bispectrum (WBS) have been used for extracting features of the bio-signals. HOS methods explore
the existence of quadratic (and cubic) nonlinear coupling between the different frequency components of
a signal. In contrast to the traditional power spectrum, HOS analysis preserves the phase information
and detects the nonlinearity and deviation from Gaussianality of the non-stationary signals.

Due to features of HOS techniques for the non-stationary signals, we propose an automatic system for
detecting epileptic events based on studying the interaction between the frequencies of EEG recordings
using the WBS method with a combination of recurrent neural network (RNN). Also, selecting a minimum
number of features and optimizing the classification network will be considered to reduce the complexity
of the proposed system and make it a low power system. The proposed system is trained and tested
using the largest publicly available EEG dataset of Temple University Hospital (TUH) [22] for classifying
the EEG signal into six different events as three epileptic events and three background events. The main
contributions of this paper can be summarized as follows:

• Proposed a key technology for extracting features based on the interaction among frequency-bands
of the EEG’s events by combining DWT and WBS techniques.

• Proposed a two-level classification network using an RNN architecture based on a long short-term
memory (LSTM) for tracking features changing over time and classifying the extracted features into the
different events with an average accuracy of 95.45%.

The paper is organized as follows. The detail of the EEG TUH dataset is presented in Section 2.
Section 3 describes the details of the proposed IED detection system. In Section 4, the obtained results
are explained. Section 5 offers some conclusions and future work.
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Figure 1 (Color online) Six events of TUEV EEG dataset. (a) SPSW; (b) GPED; (c) PLED; (d) EYEM; (e) ARTF; (f) BCKG.

Table 2 Distribution of EEG’s events in the TUEV EEG dataset

Training set Testing set
Event

Count Percentage (%) Count Percentage (%)

SPSW 645 0.91 567 1.93

GPED 7050 9.54 4677 15.9

PLED 4120 5.58 1998 6.79

EYEM 940 1.27 329 1.12

ARTF 9329 12.63 2204 7.49

BCKG 51790 70.11 19646 66.78

Total 73874 100 29421 100

2 Dataset

According to the state-of-the-art method mentioned in Table 1, all methods used their dataset except [8]
used the publicly TUH dataset. The TUH is the only available annotated spike dataset, so we used it
in this study. The TUH dataset contains over 30000 sessions from over 16000 patients collected from
the Department of Neurology at Temple University Hospital. These EEG recordings were recorded using
several generations of Natus Medical Incorporated’s NicoletTM EEG recording technology with the 10/20
international electrode placement method. The sampling frequency of the raw EEG varies between 256 Hz
and 1 kHz and the number of channels in each recording varies between 20 and 128 channels. The EEG
recordings are given in an averaged reference (AR) montage. A portion of TUH-EEG data (390 patients),
called TUEV dataset, was annotated manually at the TUH Hospital into six 1-s epileptic events as
shown in Figure 1, namely spike and/or sharp waves (SPSW), periodic lateralized epileptiform discharges
(PLED), generalized periodic epileptiform discharges (GPED), eye movement (EYEM), artifacts (ARTF),
and background (BCKG). The annotation of the six events is given for the two common reference points
(TCP) montage [23]. Hence, all EEG recordings should be converted to 22 channels TCP montage and
are resampled at 250 Hz. The distribution of the six 1-s events in both the training and the testing sets
is given in Table 2. The total duration of all events in both training and testing sets is 28.69 h.
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Figure 2 (Color online) Auto-interactions of the whole frequency range of six different IED events using the WBS method.

(a) SPSW; (b) GPED; (c) PLED; (d) EYEM; (e) ARTF; (f) BCKG.

3 The proposed detection system

The development of a high precision system for detecting the IED discharges mainly depends on the
extracted features and the classification network. This paper proposes a key technology for extracting
accurate features based on studying the interactions between frequencies of EEG recordings. Figure 2
shows the interaction between the whole frequency range of the different six events shown in Figure 1
using the WBS method. It is observed that the WBS of SPSW and GPED events are similar and have
one peak at frequencies below 4 Hz, but GPED has some high-level values within frequencies 4 to 32 Hz
as compared to SPSW. The WBS of the EYEM event is similar to that of the SPSW event, but the
magnitude of the peak is high. Also, we can observe that SPSW and BCKG events have similar WBS.
This means that exploring the whole frequency range may not enough to distinguish between the different
events.

The study of the interaction among different frequency-bands (δ, θ, α, β, and γ) using the WBS method
gives valuable details for distinguishing between different events as shown in Figure 3. It is seen that
zones of the highest interaction obtained in WBS of different frequency-bands have different values and
shapes and occurred at different locations for each event. The WBSγγ of SPSW has three high interaction
zones, while the GPED has a wide interaction zone in the WBSδδ. PLED has the highest interaction zone
around 8 Hz in the WBSαα. At 10 Hz, there is a high interaction zone in the WBSαα of the EYEM event.
Two interaction zones at frequencies 28 Hz and 48 Hz in the WBSγγ of ARTF. While in BCKG event, the
WBSαα and the WBSββ have distinguishable shapes. This means that the interaction between frequency-
bands of the EEG signal is more effective than exploring the whole frequency for distinguishing between
the considered events. To characterize each event, we need to measure the magnitude and location of
the interaction zone, the power distribution, the energy, and the regularity of each WBS. In this study,
12 linear and non-linear features are computed from the bispectrum domain in addition to 10 features
that are calculated from the time domain to measure the morphology shape of each event. These features
are discussed late in this section.

The challenge of detecting IED is isolating the epileptic events from the EEG background. It is
not efficient to classify all epileptic and background events at the same time. We propose a two-level
classification network for reducing the problem of imbalanced data of the different events. The first-
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Figure 3 (Color online) Auto-interactions of six different IED events using the WBS method: rows represent the interactions

of five frequency-bands of (a) SPSW, (b) GPED, (c) PLED, (d) EYEM, (e) ARTF, and (f) BCKG respectively, while columns

represent the interactions between δ vs. δ, θ vs. θ, α vs. α, β vs. β, and γ vs. γ respectively.

level concerns on classifying data into epileptic and non-epileptic events by grouping training data of
all events into epileptic class and non-epileptic class. This allows us to isolate the epileptic events from
the background events which is the main issue for diagnosing epileptic seizures. After that, the second
classification level uses two 3-way classifiers for classifying the epileptic waves into SPSW, PLED, and
GPED events and the non-epileptic waves into EYEM, ARTF, and BCKG events. Figure 4 shows
the block diagram of the proposed system. Firstly, the EEG recordings are filtered using an infinite
impulse response (IIR) elliptic bandpass filter with cutoff frequencies [0.5 49] Hz to remove the unwanted
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Table 3 Time-domian based featuresa)

Number Feature Equation Number Feature Equation

1
Mean of absolute

value
Xavg = 1

N

∑N
n=1 |xf | 6 Kurtosis of data Xkurt = 1

NX4
σ

∑N
n=1(|xf − µx|)

4

2 Maximum value Xmax = max(xf ) 7 Hjorth mobility Xmob = mob(xw(n)) =

√

( var(x′

f
)

var(xf )

)

3
Sum of logarithmic

amplitude
Xslog =

∑N
n=1 |xf | 8 Hjorth complexity Xcomp =

mob(x′

f )

mob(xf )

4 Variance of data Xσ = var(xw(n) = 1
N

∑N
n=1(|xf − µx|)

2 9
Fractal dimension

index
XFD =

log10(N−1)

log10(d/L)+log10(N−1)

5 Skewness of data Xskew = 1
NX3

σ

∑N
n=1(|xf − µx|)

3 10 Sample entropy XSE = − log(A/B)

a) N is the length of xf , L is the total length along xf , d is the distance between the first point in xf and the point that gives

the maximum distance and µx = 1

N

∑N
n=1

xf is the mean of xf . A and B are number of pairs having distance less than tolerance

(r) for m+ 1 and m matches of xf .

frequencies, baseline wander, and power line noise (50 Hz). Then, different features are extracted from
the labeled segments and passed to the classification network are shown in Figure 4.

3.1 Feature extraction

Spike and sharp waves occur in the region where seizures originate by producing an abrupt change in
polarity over several milliseconds. The duration of a spike-wave is between 20 and 70 ms, while a sharp
wave lasts between 70 and 200 ms. PLED events are repetitive periodic, focal, or hemispheric epileptiform
discharges like sharp waves and spike waves, at intervals of between 0.5 and 3 s. GPED can be periodic
short or long-interval diffuse discharges or suppression-burst patterns. To monitor the narrow transients
of the epileptic discharges within 1-s epoch and extract accurate features, each 1-s epoch is divided into
fr frames (timesteps) (xf (i), i = 1, 2, . . . , fr) using a Tw-s window with 50% overlapping as shown in
Figure 5. For each frame, different time- and bispectrum-based features are extracted.

3.1.1 Time-domain based features

The time-domain based features are calculated by applying statistical analysis to each frame signal xf .
Ten features are considered to measure characteristics of the spike morphology in the time-domain. These
features are the mean of absolute value, maximum value, sum of logarithmic amplitude values, variance,
skewness, kurtosis, Hjorth mobility and complexity, fractal dimension index [24], and sample entropy [25]
as listed in Table 3.
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Figure 5 (Color online) Feature extraction of the proposed system. The first step is segmenting the 1-s epoch into multiple

timesteps (frames), then each timestep is decomposed into five bands and the WBS among the different bands are calculated.

180 features are calculated from the obtained 15 bispectrums and 10 features are extracted from the time domain.

3.1.2 Bi-frequency-domain based features

As illustrated in Figure 5, the DWT [26, 27] is utilized with db4 wavelet function and 5 decomposition
levels to decompose the EEG signal of each frame xf into the five frequency-bands. The signals of the
different bands are reconstructed from the wavelet domain (wrcoef) to the time-domain, namely δ (xf-δ),
θ (xf-θ), α (xf-α), β (xf-β), and γ (xf-γ) signals. The WBS method is used for calculating the auto-
interaction of each band signal and the cross-interaction between the different band signals. As a result, 15
bispectrums are formed from the relation of different bands, namely 5 auto-bispectrums {WBδδ, WBθθ,
WBαα, WBββ, WBγγ}, and 10 cross-bispectrums {WBδθ, WBδα, WBδβ, WBδγ, WBθα, WBθβ, WBθγ,
WBαβ, WBαγ, WBβγ}. For each WBS, 12 linear and non-linear features are computed to extract the
quantitative and regularity information from the non-redundant region as follows:

(a) Mean magnitude of bispectrum:

XBS-avg =
1

L

∑

Ω

|WB(a1, a2)|, (1)

where L is the number of points in the non-redundant region (Ω), and WB(a1, a2) represents the WBS
matrix.

(b) Maximum magnitude of bispectrum:

XBS-max = max(|WB(a1, a2)|). (2)

(c) Location of the maximum magnitude of bispectrum:

XBS-loc = loc(max(|WB(a1, a2)|)). (3)

(d) Sum of the squared magnitude of bispectrum:

XBS-eng =
∑

Ω

|WB(a1, a2)|
2. (4)

(e) Skewness of magnitude bispectrum:

XBS-skew =
1

(L− 1)σ3
s

∑

Ω

(WB(a1, a2)− µs)
3, (5)



Sabor N, et al. Sci China Inf Sci June 2021 Vol. 64 162403:8

σs =
1

L

∑

Ω

(WB(a1, a2)− µs)
2, µs =

1

L

∑

Ω

WB(a1, a2), (6)

where µs and σs are the mean and the variance of the WBS.
(f) Kurtosis of magnitude bispectrum:

XBS-kurt =
1

(L − 1)σ4
s

∑

Ω

(WB(a1, a2)− µs)
4. (7)

(g) Phase entropy:

XBS-Pe =
∑

m

p(ψm) log(p(ψm)), (8)

p(ψm) =
1

L

∑

Ω

I(φ(WB(a1, a2)) ∈ ψm), (9)

ψm = φ| − π+
2πm

M
6 φ 6 −π+

2π(m+ 1)

M
, m = 0, 1, . . . ,M − 1, (10)

where, φ is the phase angle of the bispectrum, I(φ) is an indicator function that gives 1 when the value
of φ is within the range of bin ψm, and M is the number of bins for ψm.

(h) Normalized bispectrum entropy:

XBS-ent1 = −pn log(pn), where pn =
|WB(a1, a2)|

∑

Ω |WB(a1, a2)|
. (11)

(i) Normalized bispectrum squared entropy:

XBS-ent2 = −ps log(ps), where ps =
|WB(a1, a2)|

2

∑

Ω |WB(a1, a2)|2
. (12)

(j) Normalized bispectrum cubic entropy:

XBS-ent3 = −pc log(pc), where pc =
|WB(a1, a2)|

3

∑

Ω |WB(a1, a2)|3
. (13)

(k) First-order spectral moment of the magnitude of diagonal elements:

XBS-FOSM =

N
∑

K=1

K log(|WB(aK , aK)|). (14)

(l) Sum of the squared magnitude of diagonal elements:

XBS-engdiag =

N
∑

K=1

|WB(aK , aK)|2. (15)

As a result, a 190 × fr features matrix is extracted at fr timesteps. These features are normalized
using z-score [28] to have zero mean and standard deviation of 1. Since not all extracted features are
significant, the one-way ANOVA test is used to study the significance of the extracted features. The
significant features should have p values less than 0.05. Then, the minimum redundancy maximum
relevance (mRMR) technique [29] uses the mutual information criteria to give a high rank for features
that have minimum redundant and maximum relevance to the target output. Since the number of features
affects the complexity and the performance of the system, we will explain this effect in Subsection 3.2.3.

3.2 Classification network

As the IED are transient events in the EEG signal and their morphological change over time, the
LSTM [30] is considered for tracking the features of these events at different timesteps and detecting
their variations over time. LSTM is a specific type of RNN [31,32] architecture. A two-level classification
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Figure 6 (Color online) The proposed classifier of the proposed system.

network based on LSTM is proposed to trace the features of each event over time and extract the temporal
dependency features as shown in Figure 4. The structure of LSTM consists of five components, namely
the memory cell ct, the candidate value c̃t for updating the memory cell at each timestep, forget gate
(G1), update gate (G2), and output gate (G3) as shown in Figure 6. These gates are set using sigmoid
functions.

Data of EEG is classified into epileptic and non-epileptic events using the 2-way classifier of the first
classification level. The output epileptic waves are grouped into SPSW, GPED, and PLED events and the
non-epileptic waves are classified into EYEM, ARTF, and BCKG events using the two 3-way classifiers of
the second classification level. This network structure allows us to distinguish all epileptic events from the
background firstly, then determines the type of epileptic event and also models the background events.

3.2.1 Classifier structure

The proposed classifier is shown in Figure 6 consists of eight layers, namely an input sequence layer, two
cascade LSTM layers, two dropout layers, a fully connected layer, a softmax layer, and a classification
output layer. The first LSTM layer has a sequence-to-sequence architecture with Nlstm1 units, while
the second LSTM layer is a sequence-to-label architecture with Nlstm2 units. These LSTM layers are
used to measure the context correlation and dependence between the timesteps of the input sequence of
features (Nf ). The fully connected layer is used to convert the output size of the previous layers into the
number of events to classify (No). The softmax layer calculates the probability of each target class over
all possible target classes. Finally, the classification output layer estimates the cost function to detect
the target. In order to avoid the overfitting of LSTM layers, one dropout layer is added after each LSTM
layer.

The classification network is trained and tested using the TUEV corpus as shown in Figure 7. The
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Figure 7 (Color online) Preparing data for training and testing the classification network using a 10-fold cross-validation method.

training set includes 73874 1-s epochs of six events which are grouped into an epileptic class of 11815 sam-
ples and a non-epileptic class of 62059 samples for training the 2-way classifier. Then, the epileptic data
is divided into SPSW class of 645 samples, PLED class of 4120 samples, and GPED class of 7050 samples
for training the first 3-way classifier. While the second 3-way classifier is trained using the three classes
of the non-epileptic data, namely EYEM class of 940 samples, ARTF class of 9329 samples, and BCKG
class of 51790 samples. The 10-fold cross-validation method is used for dividing the training dataset
of each classifier into a training set (90%) and a validation set (10%) for training and validating the
model through 10 iterations. Due to the imbalance data of different events, a resampling technique [33]
is used to increase the training samples of the minority group before training the model. The training
set was split into smaller training subsets during backpropagation called mini-batches to speed up the
optimization algorithm. While the testing dataset described in Table 2, is used for testing the system at
each iteration and the average of the obtained accuracy, sensitivity, specificity, precision, false-positive
rate, F1-score, and the geometric mean for the ten iterations was taken as the final result. The adap-
tive moment estimation (ADAM) training algorithm was adopted for backpropagation with a maximum
number of epochs is 30. The main hyperparameters used for the ADAM algorithm were: learning rate
is 0.004 which is dropped out by a factor of 0.001 after every 10 epochs, decay factors of gradient and
squared gradient are 0.9 and 0.999, epsilon is 10−8 for numerical stability and the mini-batch size is set
to 256.

3.2.2 Classifier performance

Based on the input positive (P) and negative (N) samples to the classifier, the output will be true positive
(TP), false positive (FP), true negative (TN), and false negative (FN). TP and TN are the numbers of
correctly positive and negative detections respectively, FP and FN are the numbers of samples that are
incorrectly detected as positive and negative respectively. The following metrics are considered depending
on the outputs of the classification network to evaluate the performance of the proposed system:

• Accuracy (ACC = (TP + TN)/(P + N)) is the total number of correct detections divided by the
total number of samples provided to the classifier.

• Sensitivity (SEN = TP/(TP+FN)) or true positive rate (TPR) is the total number of correct
positive detections divided by the total number of positives.

• Specificity (SPE = TN/(TN+FP)) or true negative rate (TNR) is the total number of correct
negative detections divided by the total number of negatives.

• Precision (PREC = TP/(TP + FP)) is the total number of correct positive detections divided by
the total number of positive detections.

• False positive rate (FPR = FP/(TN+FP) = 1− SPE) or false alarm rate is the total number
of false-positive detections divided by the total number of negatives.

• F1-score (F1-score = 2× (SEN× PREC)/(SEN+ PREC)) is the harmonic mean of sensitivity and
precision. F1-score is preferred than accuracy in the imbalanced classification case [34].
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Figure 8 (Color online) Performance results for varying units of the LSTM layers. (a) 2-way classifier; (b) 3-way classifier.

• Geometric mean (Gmean =
√

(SEN× SPE)) is the square root of sensitivity and specificity.
Gmean is used to measure the functionality of the proposed system due to the imbalance of the testing
dataset.

3.2.3 Classifier model optimization

Reducing the complexity and power of the system depends on the number of features and the classification
network. In order to optimize and improve the classification network, 55 networks for each classifier with
different units for both the LSTM layers are developed in MATLAB (MATLAB and Neural Network
Toolbox Release 2019a, The MathWorks, Inc., Natick, MA, USA). All networks have an input sequence
layer with 25 neurons for the 25 significant features, that are selected using the mRMR technique, and
the fully connected layer is set by 2 and 3 neurons for the 2-way and 3-way classifiers respectively. Each
1-s event is divided into 49 frames using a 40-ms window with a 50% overlap. The obtained results of
the 55 networks for both classifiers are shown in Figure 8. As observed in Figure 8(a), the best results of
the 2-way classifier are obtained when the units of both two LSTM layers are 90 (i.e., Model 1). These
results are Gmean of 95.62%, F1-score of 91.4%, SPE of 95.68%, and SEN of 95.55%. While for the 3-way
classifier, the best values of Gmean, F1-score, SPE, and SEN are 75.16%, 64.16%, 85.86%, and 67.07%,
respectively, and are obtained when the units of the two LSTM layers are set to 90 and 80 respectively
(i.e., Model 3), as shown in Figure 8(b).

The tradeoff between the model complexity and our target can be further optimized by selecting
architectures with a small number of units that achieve the clinicians’ requirements as shown by dashed
boxes in Figure 8. It is observed that the optimized network (i.e., Model 2) of the 2-way classifier gives
Gmean of 95.42%, F1-score of 91.17%, SPE of 95.48%, and SEN of 95.36%, when the units of the two
LSTM layers are set by 60 and 20, respectively. For the 3-way classifier, results of Gmean, F1-score, SPE,
and SEN are obtained by 74.28%, 61.67%, 84.74%, and 65.88% when the units of the two LSTM layers
are optimized to 60 and 40 (i.e., Model 4), respectively.

Varying the number of input features has a significant effect on the performance and complexity of
the system. So, 18 networks are developed for each of the 2-way and 3-way classifiers with a different
number of neurons for the input layer. The units for the two LSTM layers are fixed by the previously
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Figure 9 (Color online) Performance results for varying the neurons of the input layer. (a) 2-way classifier; (b) 3-way classifier.

Table 4 Results of the optimized models

Classifier model Results

Nf Nlstm1 Nlstm2 Gmean (%) F1-score (%) SPE (%) SEN (%)

Model 1 25 90 90
2-way classifier

95.62 91.4 95.68 95.55

Model 2 25 60 20 95.42 91.17 95.48 95.36

Model 3 25 90 80

3-way classifier

75.16 64.16 85.86 67.07

Model 4 25 60 40 74.28 61.67 84.74 65.88

Model 5 20 60 40 75.16 63.27 85.4 67.33

obtained values (60, 20) and (60, 40) for the 2-way and 3-way classifiers respectively, while the neurons of
the input layer (Nf ) are varied from 5 to 90 by step 5. Figure 9 shows the classifier performance against
the number of neurons of the input layer for the 2-way and 3-way classifiers, respectively. It can be seen
that the optimized number of neurons that achieves the clinicians’ requirements is 25 neurons for the
2-way classifier and 20 neurons for the 3-way classifier.

Table 4 lists the obtained results of the best and optimized network models for the two classifiers.
Note that Models 2 and 5 are the optimized models for the 2-way and 3-way classifiers. These models
consist of a small number of LSTM units and neurons and give approximately the same results of models
with a high number of neurons and LSTM units which lead to a low power system. The 2-way model
consists of an input layer with 25 neurons, two LSTM layers with 60 and 20 units respectively, and a
fully connected layer with two neurons. This model achieves Gmean of 95.42%, F1-score of 91.17%, SPE
of 95.48%, and SEN of 95.36%. While the optimized model of the 3-way classifier consists of an input
layer with 20 neurons, two LSTM layers with 60 and 40 units respectively, and a fully connected layer
with three neurons. The obtained results of this model are Gmean of 75.1%, F1-score of 63.27%, SPE of
85.4%, and SEN of 67.33%.

To examine the informativeness of the selected features using the mRMR technique based on the
degradation of the classification performance, we have replaced the value of one feature to zero while
keeping the same values for the remaining features in each experiment. Thus, the experimental result is
shown in Figure 10(a). The classifier performance has degraded for features #2, #12, #13, #14, #19, and
#22. Furthermore, we did the opposite of the above test by considering only one feature and replacing
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Figure 10 (Color online) Examining the informativeness of the selected features on the performance of the 2-way classifier.

(a) Replacing each feature by zero; (b) considering only one feature at each case.

the remaining features by zeros in each experiment. Figure 10(b) shows the classifier performance for each
feature. We observe that feature #2, #12, #14, #19, #20, #22, or #23 is not enough for the classifier,
so it cannot distinguish between the epileptic and non-epileptic events. The highest sensitivity of 90.7% is
occurred at the feature #5, while the lowest sensitivity of 54.3% is achieved at the feature #21. It is clear
that combining the selected features by the mRMR technique can give the best performance and satisfy
the clinicians’ requirements. So, the mRMR technique is used here for selecting the best informative
features.

4 Results and discussion

The proposed system is tested using the TUEV dataset and compared to the developed system in [8].
Since the critical issue for diagnosing epileptic seizures is detecting the epileptic discharges, the six events
are grouped into epileptic (E) and non-epileptic (NE) classes. The epileptic class contains SPWS, GPED,
and PLED events, while the non-epileptic class includes EYEM, ARTF, and BCKG events. Five cases
are considered to study the effect of tracing features at different timesteps on the performance of the
proposed system. In case 1, the 1-s epoch of each event is considered as one timestep (i.e., fr = 1 and
Tw = 1-s). While in case 2, the 1-s epoch is divided into 4 frames to be considered as 4 timesteps (i.e.,
fr = 4 and Tw = 400 ms). Cases 3 and 4 consider the 1-s event as 9 timesteps (i.e., fr = 9 and Tw =
200 ms) and 19 timesteps (i.e., fr = 19 and Tw = 100 ms), respectively. Finally, in case 5 each event is
divided into 49 timesteps (i.e., fr = 49 and Tw = 40 ms) for extracting accurate features.

Table 5 shows the average of the 10-folds for the obtained validating and testing results of the 2-way
classification at five cases of the proposed system compared to the results of Golmohammedi’s system [8].
It is observed that increasing the timesteps for each 1-s epoch event improves the system performance
from SEN of 90.86% with FPR of 9.14% in case 1 to SEN of 95.36% with FPR of 4.52% in case 5. This
due to decreasing the duration of timestep that helps for extracting accurate features and allows the
LSTM to track the narrow transient (20 ms) of spike waves at the different timesteps. Compared to the
other systems, it is observed that cases 4 and 5 of the proposed system outperform the Golmohammedi’s
system. Case 5 detected 95.36 % of the IED events with an FPR of 4.52% and case 4 detected 93.81%
of the IED events with an FPR of 4.63% compared to 90.1% with a 4.89% FPR of the other system [8].
This means that the proposed system with 49 timesteps improves sensitivity by 5.84% and decreases
FPR by 7.57% compared to the Golmohammedi’s system. Figure 11 shows the detection error tradeoff
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Table 5 Results and confusion matrix of 2-way classification

Results

Proposed system

Golmohammedi’s

Nf=25, Nlstm1= 60, Nlstm2=20

system [8]

Case 1 Case 2 Case 3 Case 4 Case 5

(1 timesteps) (4 timesteps) (9 timesteps) (19 timesteps) (49 timesteps)

Validating Testing Validating Testing Validating Testing Validating Testing Validating Testing

Gmean (%) 91.68 90.86 94.27 92.13 96.21 93.94 96.69 94.59 96.33 95.42 92.6

F1-score (%) 90.47 83.04 93.42 85.92 95.58 89.17 96.14 90.21 95.76 91.17 –

SPE (%) 91.07 90.86 94.09 93.15 95.60 94.93 96.20 95.37 96.21 95.48 95.11

SEN (%) 92.29 90.86 94.46 91.12 96.84 92.96 97.19 93.81 96.44 95.36 90.1

FPR (%) 8.93 9.14 5.91 6.85 4.4 5.07 3.8 4.63 3.79 4.52 4.89

Event E NE E NE E NE E NE E NE E NE

E 90.86 9.14 91.12 8.88 92.96 7.04 93.81 6.19 95.36 4.64 90.1 9.9

NE 9.14 90.86 6.85 93.15 5.07 94.96 4.63 95.37 4.52 95.48 4.89 95.11
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Figure 11 (Color online) DET curve of the five cases of the proposed system and the Golmohammedi’s system.

curve (DET) for the two systems. It is noticed that increasing the timesteps within the 1-s epoch closes
the penalty points of the proposed system toward the area of the clinicians’ requirement. Case 5 of
the proposed system meets the clinicians’ requirements because it attained a sensitivity of 95.36% and
FPR of 4.52% compared to that of the Golmohammedi’s system (90.1%, 4.89%). This due to extracting
features from the frequency interaction of narrow timesteps which allows the proposed system to track
the transient changes of IED events. The Golmohammedi’s system used a 0.9-s frame for measuring
the differential energy between the maximum and minimum energy of each frame. The time frame is
not sufficient to track the narrow transient changes of the IED events. According to the output of
the mRMR technique, it has been seen that most of the selected 25 significant features are related to
the bispectrum phase entropy, bispectrum energy, bispectrum diagonal energy, and first-order spectral
moment. Moreover, WBββ, WBβγ, WBγγ, WBδδ, WBθα, and WBθβ are the significant bispectrums
for classifying the epileptic IED events. Figure 12 shows an example of IED detection using the proposed
system of a 10-s epoch. According to the given annotation, there are four IEDs with a duration of 1-s
for all 22 channels except A1-T3 and T4-A2 channels at 2.1, 3.1, 4.1, and 5.1 s. Note that our proposed
system detects most of the IED events across the 22 channels of a 10-s epoch. This helps clinicians to
detect IED events from the epileptic patients by counting the detected IED events and calculating the
spike index [35]. The spike index for each recording is defined as the average percentage of each 1-s epoch
containing the spike of epileptic discharges. Since we use a non-overlap 1-s window for segmentation,
thus some FP detections have occurred when IED fall in two consecutive frames.
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Figure 12 (Color online) Detection of IEDs for 10-s epoch of EEG recording in TUEV dataset. Red events are the TP detections,

Green events are the FP detections, Pink events are the FN detections and Blue events are the TN detections.

Table 6 Classification results of the six IED events

Method Proposed system (case 5) Golmohammedi’s system

Event EYEM ARTF BCKG SPSW GPED PLED EYEM ARTF BCKG SPSW GPED PLED

EYEM 89.65 4.76 1.07

4.52

79.31 2.30 17.24 1.15 0 0

ARTF 0.69 76.09 18.70 10.18 14.04 72.98 2.81 0 0

BCKG 0.46 5.48 89.54 8.93 3.42 81.40 5.95 0.30 0

SPSW

4.64

51.99 15.49 27.88 13.33 10 33.33 33.33 10 0

GPED 8.16 66.14 21.05 0 0.3 3.65 17.63 65.05 13.37

PLED 13 11.72 70.64 0.49 0 10.76 13.69 9.78 65.28

In order to classify the epileptic events, the detected epileptic events of the first-level 2-way classifier
are passed to the first 3-way classifier of the second classification level to be classified into SPSW, GPED,
and PLED events. On the other hand, the detected non-epileptic events in the first classification level
are modeled into EYEM, ARTF, and BCKG events using the second 3-way classifier of the second
classification level. Table 6 lists the results of the 3-way classification of epileptic and non-epileptic for
the Golmohammedi’s system and case 5 of the proposed system. The obtained true detection rates using
the proposed system for SPSW, GPED, and PLED are 51.99%, 66.14%, and 70.64% respectively, while
those of the Golmohammedi’s system are 33.33%, 65.05%, and 65.28%. It has been seen that 27.88%,
and 15.49% of SPSW waves are detected as PLED and GPED respectively using the proposed system.
In the other system, 33.33%, 10% and 13.33% of SPSW waves are detected as BCKG, ARTF, and EYEM
events. This means that the proposed system has the ability to isolate the background events from the
target epileptic events, which is the target of clinicians for diagnosing epileptic seizures.

On the other hand, the EYEM, ARTF, and BCKG events are correctly detected using the proposed
system by 89.65%, 76.09%, and 89.54%, respectively compared to 79.31%, 14.04%, and 81.4% of the
Golmohammedi’s system. The obtained results illustrate that the interaction between frequency bands
of EEG gives the ability to distinguish between different events of the EEG signal. Hence, using the
LSTM network increases the robustness of the proposed system because it traces all present values in its
memory to detect the spike transients and generate the target output.

According to the literature, there are many methods developed for scoring the IED of epileptic EEG
recordings. Table 7 presents the comparison of the proposed method with serval research studies. It
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Table 7 Comparison of the proposed system with existing methods

Method ACC (%) SEN (%) SPE (%) FPR PREC (%) F1-score Gmean

Zacharaki et al. [3] – 97 98.74 1.26% 62.8 76.24 97.87

Golmohammedi et al. [8] – 90.1 95.11 4.89% – – 92.6

Carey et al. [9] – 82.68 – – 72.7 77.37 –

Lodder et al. [10] – 90 – 2.36 (min) 23.10 36.76 –

Malik et al. [11] 74.1 – – – – – –

Liu et al. [13] 93.9 95.5 92.4 7.6% – – 93.94

Douget et al. [14] – 62 – – 26 36.64 –

Antonio et al. [15] 97 86 98 2% – – 91.80

Proposed system 95.45 95.36 95.48 4.52% 87.33 91.17 95.42
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Figure 13 (Color online) DET curve of the proposed method and the existing methods.

is noted that all existing methods used their own EEG recording with a different number of subjects
and channels, except the Golmohammedi’s system [8] that used the EEG dataset of Temple University
Hospital. It has been seen that the proposed method has the highest precision of 87.33% compared to
the other methods. Figure 13 shows the DET curve for the existing developed methods. It is observed
that only two methods satisfy the clinicians’ requirements by gaining sensitivity more than 95% with
FPR less than 5%, namely the proposed system and Zacharaki’s method [3]. However, the latter method
used one subject dataset compared to the largest dataset used on the proposed system as described in
Table 7. Moreover, the precision and F1-score of Zacharaki’s method are smaller than that are obtained
using the proposed system. Compared to Golmohammedi’s method that used the same TUEV dataset,
the proposed system improved sensitivity by 5.84% and FPR by 7.57% which improved the Gmean by
3.05%.

For our implementation using Matlab 2019a, the proposed algorithm requires 131 ms and 164 ms
using case 4 (19 timesteps) and case 5 (49 timesteps) of the proposed system on Desktop with an Intelr
CoreTM i5-7500 3.4 GHz processor and 16 GB RAM for detecting 1-s IED event at a sampling rate of
250 Hz. Since the durations of IED discharges are very small compared to the total time of EEG recording,
the segmentation method using a moving 1-s window will increases the computational complexity and
the consumption power. So in the real-time system, the nonlinear energy operator (NEO) [36, 37] and
differentiation techniques are considered to identify locations of the transient changes of EEG recording
and determine the candidate IED discharges as a first phase. Then, the candidate IED segments are
passed to the proposed system as a second phase for classifying them into epileptic and non-epileptic
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Figure 14 (Color online) Comparison between the traditional window segmentation method and the NEO-diff segmentation

technique. (a) Moving Window segmentation method; (b) NEO-diff segmentation technique.

events. The locations of the candidate IED discharges are determined by finding the samples of XNEO-diff

signal given by (15) that have amplitude larger than a threshold (thr). The value of thr depends on the
mean and standard deviation of XNEO-diff signal as given by (18), where C ∈ [0 1] is a user-defined factor.

XNEO-diff = sign(x′(n))× (x′(n))2 ×XNEO, (16)

XNEO = x2(n)− x(n− 1)x(n+ 1), (17)

x′(n) = x(n+ 1)− x(n), (18)

thr =MXNEO-diff
+ C × SDXNEO-diff

. (19)

Figure 14 shows an example of using the NEOmethod for finding the candidate IED segments compared
to the traditional segmentation. The 11-s epoch of the EEG signal is segmented into 21 segments using
a moving window with a 50% overlap which are passed to the proposed system for classification. On the
other hand, the NEO-diff technique finds only the locations of three candidate IED segments. This means
the NEO-diff technique saves the power of the system because it reduces the computational complexity
by 86% compared to the moving window method. Thus, this system can be implemented as part of
wearable devices for monitoring epileptic patients.

5 Conclusion

The tradeoff between the sensitivity and the false alarm rate is still a challenge for detecting the IED
events. This paper proposed an automated system for detecting three types of IED events (i.e., SPSW,
PLED, and GPED) and distinguishing them from three background events (i.e., EYEM, ARTF, and
BCKG) based on the interaction between different frequency-bands of EEG recordings and two-level
recurrent neural network. Based on the EEG dataset of Temple University Hospital, the obtained results
showed that the frequency interaction between θ and α bands, θ and β bands, δ and δ bands, β and β
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bands, β and γ bands, and γ and γ bands have a significant effect on detecting the IED discharges. The
experimental results proved that the proposed system achieves the clinicians’ requirements by detecting
95.36% of the IED events with a false-alarm rate of 4.52%. Moreover, it correctly classified the epileptic
IED into SPSW, GPED, and PLED by 52.99%, 66.14%, and 70.64% respectively, and the non-epileptic
waves into EYEM, ARTF, and BCKG by 89.65%, 76.09%, and 89.54% respectively. This means that the
performance of the proposed system is clinically accepted and can be used to help the medical staff for
making the job of the neurological experts easy. Moreover, the proposed system required only 164 ms for
detecting a 1-s IED event which makes it suitable for real-time applications.
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