• Supplementary File •

Silicon-based inorganic-organic hybrid optoelectronic synaptic devices simulating cross-modal learning

Yayao LI¹, Yue WANG¹, Lei YIN¹, Wen HUANG¹, Wenbing PENG¹, Yiyue ZHU¹, Kun WANG¹, Deren YANG¹ & Xiaodong PI^{1,2*}

¹State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
²Advanced Semiconductor Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China

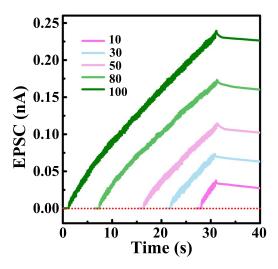


Figure S1 EPSC of a synaptic transistor triggered by i (i = 10, 30, 50, 80 and 100) optical spikes. Each optical spike has the wavelength, power density and duration of 532 nm, 3.5 mW/cm² and 200 ms, respectively.

^{*} Corresponding author (email: xdpi@zju.edu.cn)

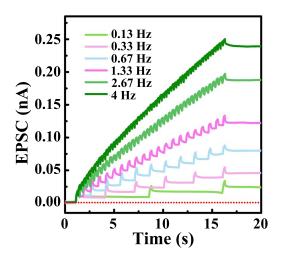


Figure S2 EPSC of a synaptic transistor triggered by optical spikes with frequencies ranging from 0.13 to 4 Hz. Each optical spike has the wavelength, power density and duration of 532 nm, 3.5 mW/cm^2 and 200 ms, respectively.

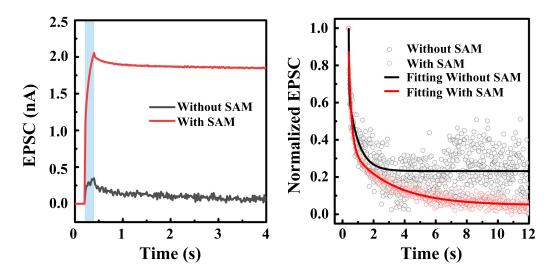


Figure S3 (a) EPSCs of the synaptic devices with/without the surface modification of the gate oxide of SiO₂. (The EPSC without the surface modification has been multiplied by 10.) (b) Normalized EPSC decay curves of the synaptic devices with/without the surface modification of the gate oxide of SiO₂. (3-aminopropyl) trimethoxysilane (APTMS) is used for the surface modification.