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Abstract In order to protect the privacy and data security of mobile devices during the transactions in the

industrial Internet of Things (IIoT), we propose a mobile edge computing (MEC)-based mobile blockchain

framework by considering the limited bandwidth and computing power of small base stations (SBSs). First,

we formulate a joint bandwidth and computing resource allocation problem to maximize the long-term utility

of all mobile devices, and take into account the mobility of devices as well as the blockchain throughput. We

decompose the formulated problem into two subproblems to decrease the dimension of action space. Then,

we propose a deep reinforcement learning additional particle swarm optimization (DRPO) algorithm to solve

the two subproblems, in which a particle swarm optimization algorithm is leveraged to avoid the unnecessary

search of a deep deterministic policy gradient approach. Simulation results demonstrate the effectiveness of

our method from various aspects.
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1 Introduction

The advancements of the industrial Internet of Things (IIoT) make it receive great attention in recent
years and have been utilized in various fields, e.g., retailing, manufacturing, industrial monitoring, smart
transportation, and so on [1–3]. It is inevitable to make transactions between smart devices in IIoT owing
to the success of e-commerce [4]. In order to solve the disadvantages of existing traditional centralized
market, e.g., privacy and security issues [5,6] as well as a single point of failure [7], a distributed ledger, i.e.,
blockchain, is proposed. Since it has the characteristics of trustness, decentralization, transparency and
tamper-resistant, blockchain enables secure and privacy protected transactions between two untrusted
nodes without a third party, which has been applied in many fields, e.g., finance, healthcare and Internet
of Things (IoT) [8]. However, in blockchain, each node commonly needs to solve a complex problem
puzzle, i.e., proof-of-work (PoW) to complete the priority for appending blocks to get rewards, which is
impractical in mobile devices owing to their limited computing power and energy. Then, some researchers
turn their eyes to the mobile edge computing (MEC) technique [9, 10].
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MEC technique can make up the high delay defect of remote cloud when processing tasks for end
devices by pulling computing capacity from remote cloud to end devices. Based on blockchain and MEC
techniques, mobile blockchain is proposed; i.e., blockchain application is deployed in mobile devices and
high computational intense mining puzzle task of each device is offloaded to its nearby MEC servers.
With the advances of deep reinforcement learning (DRL) [11, 12], it has been widely investigated and
employed in many fields, e.g., IoT and unmanned aerial vehicle (UAV) [13, 14], and can solve decision-
making problems with high state and action dimensions, e.g., base station selection, channel selection,
and caching as well as offloading decisions to maximize the long-term rewards [15]. In order to optimize
the performance of MEC-based system, e.g., reducing system energy as well as computing latency and
improving the social welfare as well as the quality of service (QoS) of end devices [16], DRL technique
can be leveraged to allocate the resources of MEC servers, e.g., computing power and bandwidth.

Some literature has studied the implementation of mobile blockchain by leveraging the MEC and DRL
techniques. Nguyen et al. [17] formulated the system privacy and system cost into two computing modes,
i.e., local execution and offloading to MEC servers, and leveraged a deep Q-learning network (DQN)-based
algorithm to maximize the system privacy as well as minimize the system cost. A macro base station-based
framework is proposed for device-to-device content caching in [18], where DRL technique is employed to
obtain the optimal content caching policy to maximize the caching resource utility. An asynchronous
advantage actor-critic (A3C)-based algorithm is designed in [19] to maximize the computation rate of
MEC system and blockchain throughput by optimizing the offloading decision, power allocation, block size
and interval. Qiu et al. [20] jointly considered two computing modes, i.e., local execution and offloading to
servers for block mining and task processing of mobile devices, and employed a deep deterministic policy
gradient (DDPG)-based algorithm, named DRGO to solve the task offloading problem to minimize the
system cost. However, these researches commonly considered the mining task offloading and computing
power allocation, while ignoring the limited bandwidth resource of MEC servers as well as device mobility.
The DRL-based solutions in [17, 18] cannot solve the formulated problem in this paper with continuous
action space. The reason is that the action space of problems in these researches is discrete, and the
considered DRL algorithms are value-based which cannot evaluate all the strategies (actions) and select
the best one when training the neural networks in the continuous action space. Although DRGO and A3C-
based algorithms both can solve decision-making problems with continuous action space, the asynchronous
in A3C algorithm may reduce its performance and converge to a locally optimal solution, since the workers
(copies of agents) use overdue versions of parameters, and DDPG is more suitable for the small-scale tasks
compared with A3C algorithm. Thus, we choose DRGO as the benchmark method. However, DRGO still
has some disadvantages to be improved, such as poor performance, convergence speed and instability.
This is because the randomness of the searched actions of adaptive genetic algorithm in DRGO, and
the performance of the improved actions cannot be well guaranteed. In this paper, we propose a deep
reinforcement learning additional particle swarm optimization (DRPO) algorithm to solve the formulated
problem by integrating DDPG and particle swarm optimization (PSO) algorithms (if the critic net of
DDPG cannot evaluate an action well, i.e., the loss of the critic net is larger than a threshold, we leverage
DDPG to generate actions to expand the number of training samples). Otherwise, PSO algorithm is
leveraged to obtain an improved action so that DDPG can converge to a better solution, to avoid the
unnecessary random search of DDPG, speed up the convergence, and improve the performance as well
as stability compared with DDPG and DRGO algorithms.

In this paper, we propose an MEC-based mobile blockchain framework for security and privacy pro-
tection of mobile devices (e.g., smartphones and tablets) during transactions. Herein, each device with
limited computing power acts as a miner, and the mining task of each miner is offloaded to nearby MEC
servers. In order to maximize the total utility of all devices in long-term, we focus on the problem of
joint computing power and bandwidth resource allocation of MEC servers and consider device mobility
as well as blockchain throughput. Then, a DRPO algorithm is proposed to solve the formulated problem
by decomposing it into two subproblems. The main contributions of this paper can be summarized as
follows.

(1) We propose a practical MEC-based mobile blockchain framework to protect privacy and data
security of mobile devices by considering the limited computing power and bandwidth of small base
stations (SBSs), in which trustless mobile devices can trade with each other directly without a third
party.

(2) We jointly consider the allocation problems of computing power and bandwidth of MEC servers
to maximize the total utility of mobile devices in long-term, and take into account the device mobility as
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Figure 1 (Color online) System model.

well as blockchain throughput, in which the decision variables are continuous values.
(3) We propose a DRPO algorithm to obtain the optimal computing power and bandwidth allocations

for each mobile device by decomposing the problem into two subproblems, which integrates the PSO
scheme to avoid the unnecessary random search of DDPG, speed up the convergence, and improve the
performance as well as stability.

(4) We conduct various experiments in peer edge device networks to evaluate the effectiveness of our
solution. Experiment results demonstrate that our method can converge at a fast speed and maximize
the total utility of all mobile devices compared with the existing ones.

The remainder of this paper is organized as follows. Section 2 elaborates the system model and the
formulated problem, and a DRL-based algorithm is proposed in Section 3. The experiment results are
demonstrated in Section 4. Finally, Section 5 draws the conclusion.

2 System model and problem formulation

In this section, we first elaborate the system model, followed by our formulated problem.

2.1 System model

There are three modules in our framework, i.e., mobile blockchain module, task offloading module and
decision making module, as illustrated in Figure 1. Since public blockchain has the disadvantage of
low throughput, and private blockchain has the flaw of centralization, this paper considers a kind of
consortium blockchain, which is implemented in mobile devices to protect the privacy and data security
of mobile devices during transactions. In the mobile blockchain module, all mobile devices construct a
blockchain network, in which they can make transactions with each other directly, and each device acts
as a miner. Owing to the limited computing capacity and energy of mobile devices, they need to offload
their mining tasks to nearby MEC servers, which are deployed in SBSs for the mining rewards in the
task offloading module. SBSs have limited computing power and bandwidth resources, and they need to
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Table 1 Summation of main notations

Notation Description

M The set of MEC servers

Nm The set of devices requesting from MEC server m

Fm The total computing power of MEC server m

Bm The total bandwidth of MEC server m

Tn The mining task of device n

Dn The original data size of mining task of device n

Yn The computation intensity of mining task of device n

Gn The budget of device n for its mining task

In The data size of mining result of device n

fn,m The allocated computing power of device n

bn,m The allocated bandwidth of device n

pn,m The unite operating price of MEC server m for device n

allocate these resources to mobile devices for solving the mining tasks. In the decision-making module,
the dedicated controller can gather the whole information of SBSs as well as their corresponding mobile
devices to make decisions for resource allocation (i.e., computing power and bandwidth) of each MEC
server to maximize the total utility of all devices. When SBSs receive the resource allocation decisions
from the dedicated controller, they need to inform each mobile device about its allocated bandwidth
and computing power for payment. Then, MEC servers compute the tasks of mobile devices and return
the mining results to them. Let m ∈ M = {1, . . . ,M} denote the set of MEC servers, and the set of
mobile devices requesting services from MEC server m is n ∈ Nm = {1, . . . , Nm}, where M and Nm are
the numbers of MEC servers and mobile devices requesting services from MEC server m, respectively.
The mining task of device n is represented by Tn = (Dn, Yn, Gn, In), where Dn is the data size of the
original mining task. We consider it equals to the data size of the mined block, since the mining task
contains the whole information of the block. Yn is the task computation intensity, i.e., the required CPU
cycles, and In is the data size of the computation result. In this paper, we consider a more practical
scenario than previous studies; i.e., each miner has its mining budget Gn, so that SBSs can allocate
bandwidth and computing power based on it individually. MEC server m has limited computing and
bandwidth resources. Herein, Fm and Bm are the total computing power and bandwidth of MEC server
m, and fn,m and bn,m are the allocated computing power and bandwidth of device n from MEC server
m, respectively. For device n whose allocated computing power is fn,m, it needs to pay for the operating
expense of MEC server m, which is divided into different levels based on the allocated computing power,

i.e., pn,m = τ(fmin + ⌊ ε(fn,m−fmin)
fmax−fmin

⌋ fmax−fmin

ε
), where pn,m is the unit operating price of MEC server m

for device n (token per second), τ is a constant parameter, ε is the number of price levels, and fmax and
fmin are the upper and lower bounds of the allocated computing power for a mobile device, respectively.
For clarity, the main notations of this paper are summarized in Table 1.

Each SBS leverages the orthogonal frequency division multiplexing (OFDM) technique to transmit
data when its connected devices require services. In order to offload the mining task to an MEC server,
device n needs to upload its original mining task to MEC server m. We consider the state of wireless
channels is time-varying which can be modeled as a Markov process, and the signal-to-noise ratios (SNRs)
during the uploading of mining task and the downloading of mining result at decision epoch k can be
denoted by SNRn,m(k) and SNRm,n(k), respectively.

Then, the task uploading rate rupn,m(k) can be represented by

rupn,m(k) = bn,m(k)log2(1 + SNRn,m(k)), (1)

where bn,m(k) is the allocated bandwidth of device n at decision epoch k. Since each device can offload
its mining task to only one MEC server, each device can leverage its whole bandwidth to download the
computation result of its mining task from the MEC server. Thus, the downloading rate of mining result
is

rdown
m,n (k) = bnlog2(1 + SNRm,n(k)), (2)

where bn is the bandwidth of device n. Furthermore, we can obtain the task uploading time tupn,m(k) and
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the required time for downloading the mining result tdown
m,n (k), i.e.,

tupn,m(k) =
Dn

rupn,m(k)
, (3)

tdown
m,n (k) =

In
rdown
m,n (k)

. (4)

The mining task computing time of device n in MEC server m at decision epoch k is

tcomp
n,m (k) =

Yn
fn,m(k)

. (5)

Thus, the mining time of device n, i.e., the sum of task uploading time, task computing time and task
result downloading time can be expressed as

tmine
n,m (k) = tupn,m(k) + tcomp

n,m (k) + tdown
m,n (k). (6)

The mining cost of device n consists of the task uploading cost and hiring cost of MEC servers, i.e.,

Cn,m(k) = ǫEnt
up
n,m(k) + pn,m(k)tcomp

n,m (k), (7)

where En is the transmit power of device n, and ǫ is the cost of unit energy (token per Joule).
The rewards of a miner obtained in PoW consensus, in which each miner needs to solve a difficult

puzzle, contains two parts, i.e., a fixed reward and a variable reward about the fees of all transactions
related to the number of transactions in the block [21]. Obviously, the variable reward can be reflected by
the data size of the block. Thus, the reward of device n obtained in the mining process of our consensus
mechanism can be represented by

Rn,m(k) = Θn,m(k)(R+ ηDn), (8)

where R is the fixed reward, ηDn is the variable reward and η is the factor of the variable reward.
Variable Θn,m(k) is the probability that device n successfully mines the block at decision epoch k, which
is influenced by two processes, i.e., puzzle solving process in mining and propagation process in consensus.
In the puzzle solving process, the probability of a miner successfully solving the puzzle is related to its
allocated computing power as well as bandwidth, i.e.,

δn,m(k) = α
fn,m(k)

∑M
i=1

∑Ni

j=1 fj,i(k)
+ β

bn,m(k)
∑M
i=1

∑Ni

j=1 bj,i(k)
, (9)

where weight parameters α and β represent the significance of the factors of the allocated computing
power and bandwidth to the possibility of successfully solving a puzzle, and they meet α+ β = 1. In the
propagation process, if the propagation time of a mined block is too long owing to its large data size,
the block is very likely to be abandoned; i.e., the mined block becomes an orphan one. Considering the
occurrence of successfully block mining follows a Poisson process with mean t0 similar to [22], the proba-
bility, that a successfully mined block is orphan in the propagation process, is related to the propagation
time of blocks, i.e.,

ξn,m = 1− e
− 1

t0
tpropn,m , (10)

and

tpropn,m = φDn

M
∑

i=1

Ni, (11)

where φ is a constant parameter related to the propagation time,
∑M

i=1Ni is the total number of devices
in the mobile blockchain network, and tpropn,m is the propagation time of a block [23]. Thus, the possibility
of device n successfully mining a block, i.e., appending a block to the blockchain, can be expressed as

Θn,m(k) = δn,m(k)(1 − ξn,m). (12)

The utility of device n, i.e., the difference between its reward Rn,m(k) and cost Cn,m(k), can be denoted
as

Un,m(k) = Rn,m(k)− Cn,m(k). (13)
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2.2 Problem formulation

In our framework, we aim to optimize the allocation of computing power and bandwidth of all MEC
servers to maximize the long-term utility of all mobile devices, i.e.,

P : max
BN,M ,FN,M

lim
K→+∞

1

K

K
∑

k=1

M
∑

m=1

Nm
∑

n=1

Un,m(k) (14)

s.t. C1 :

Nm
∑

n=1

(fn,m(k)tcomp
n,m (t)) 6 Fm, ∀m ∈ M,

C2 :

Nm
∑

n=1

bn,m(k) 6 Bm, ∀m ∈ M,

C3 : Cn,m(k) 6 Gn, ∀m ∈ M, n ∈ Nm,

C4 :
Dn/ℓ

min∀n{t
span
n,m + tmine

n,m (k) + tpropn,m }
> Ω,

C5 : d2n,m + (vnt
mine
n,m (k))2 − 2dn,mvnt

mine
n,m (k) cos ρn,m 6 ω2,

∀m ∈ M, n ∈ Nm,

where BN,M = {bn,m(k)|bn,m(k) ∈ [bmin, bmax]}, k = 1, . . . ,K,m = 1, . . . ,M, n = 1, . . . , Nm, and FN,M =
{fn,m(k)|fn,m(k) ∈ (fmin, fmax]}, k = 1, . . . ,K,m = 1, . . . ,M, n = 1, . . . , Nm are decision variables, i.e.,
the allocated bandwidth and computing power of all devices at each decision epoch, where bmin, bmax,
fmin and fmax are the lower and upper bounds of allocated bandwidth and computing power for a mobile
device, respectively.

Constraint C1 limits the allocated computing power of all devices from one MEC server cannot exceed
its total computing power at each decision epoch, and constraint C2 restricts the allocated bandwidth
of devices from one MEC server cannot exceed its total bandwidth. The mining cost of each device is
no more than its mining budget, as guaranteed in constraint C3. Constraint C4 ensures the blockchain
throughput, i.e., the number of processed transactions per second, where ℓ is the average data size of
a transaction, tspann,m is the time span from the last successfully mined block to the time when device n
begins mining, and Ω is the lower bound of the blockchain throughput. In constraint C5, we consider the
mobility of devices, i.e., device n moves toward a direction with speed vn. dn,m is the distance between
device n and MEC server m, ρn,m is the angle between the direction of device moving and that of device
n to MEC server m, and ω is the radius of communication range of SBSs. Constraint C5 can guarantee
the mining task of each device is finished by one MEC server; i.e., there is no handover of MEC servers
for solving the mining task of each device. We consider the speed of mobile devices equals to that of
people’s movement, and miners commonly require a short time to solve the problem puzzle. Thus, the
locations of miners can be guaranteed in the communication range of SBSs during block mining; i.e.,
constraint C5 is practical and rational in this paper.

3 DRL-based approach

In problem P , we aim at maximizing the long-term utility of all mobile devices, whose optimization
objective is equivalent to

min
BN,M ,FN,M

lim
K→∞

K
∑

k=1

M
∑

m=1

Nm
∑

n=1

−Un,m(k), (15)

where

−Un,m(k) =Cn,m(k)−Rn,m(k)

=
ǫEnDn

bn,m(k)log2(1 + SNRn,m(k))
+ τ

(

fmin +

⌊

ε(fn,m(k)− fmin)

fmax − fmin

⌋

fmax − fmin

ε

)

Yn
fn,m(k)
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−

(

α
fn,m(k)

∑M
i=1

∑Ni

j=1 fj,i(k)
+ β

bn,m(k)
∑M
i=1

∑Ni

j=1 bj,i(k)

)

e
− 1

t0
φDn

∑M
i=1

Ni(R+ ηDn). (16)

We set

Φn,m(k) = τ

(

fmin +

⌊

ε(fn,m(k)− fmin)

fmax − fmin

⌋

fmax − fmin

ε

)

Yn
fn,m(k)

, (17)

Υn,m(k) = −α
fn,m(k)

∑M
i=1

∑Ni

j=1 fj,i(k)
e
− 1

t0
φDn

∑M
i=1

Ni(R+ ηDn), (18)

and

Ψn,m(k) =
ǫEnDn

bn,m(k)log2(1 + SNRn,m(k))
− β

bn,m(k)
∑M

i=1

∑Ni

j=1 bj,i(k)
e−

1
t0
φDn

∑M
i=1

Ni(R+ ηDn). (19)

By computing the Hessian matrices of Φn,m(k), Υn,m(k), and Ψn,m(k), we find they are not positive
semidefinite matrices and these three functions are not convex. Thus, our optimization problem is a non-
convex optimization problem. The optimization objective of our formulated problem is to maximize the
long-term utility of all mobile devices. Once the DRL model is established in an offline way, it can output
the corresponding solutions based on various input states quickly, i.e., fast response, which is suitable
for the time-sensitive mobile blockchain. Therefore, we leverage a DRL-based algorithm, i.e., DDPG
which has been employed in many decision-making problems with continuous action space, to allocate
continuous computing power and bandwidth for mobile devices. In our framework, the resource allocation
decisions are made in a dedicated controller which is integrated with all SBSs. The DDPG algorithm
can be deployed in the dedicated controller to obtain the global information, and allocate the computing
power and bandwidth resources of each MEC server for its requesting service devices to maximize the
total utility of all devices. However, we have to deal with the challenge of leveraging DDPG, i.e., high
dimension action space. The reason is twofold: (1) there are enormous number of mobile devices in the
mobile blockchain system; (2) the action space is continuous, i.e., the allocated bandwidth and computing
power of each mobile device are continuous values. In order to tackle the challenge, we consider the fact
that the data size of a block is little in the blockchain system and commonly no more than 1 MB, which
results in a low uploading time, i.e., tupn,m(k). The low uploading time has no influence on the obtained
reward of device n based on (8), and in practice it is inappreciable compared with the computing time,
i.e., tcomp

n,m (k). Thus, we approximately decompose the above problem into two subproblems, i.e. P1 and
P2.

P1 : min
BN,M

lim
K→+∞

1

K

K
∑

k=1

M
∑

m=1

Nm
∑

n=1

ǫEnt
up
n,m(k) s.t. C2 in P. (20)

In P1, we intend to minimize the total mining task uploading cost of all devices in long-term by
allocating the bandwidth of each MEC server, which is consistent with the objective of P, i.e., maximizing
the total utility of all devices. In P2, we only need to consider the allocation of the computing power of
each MEC server to maximize the total long-term utility of all devices, i.e.,

P2 : max
FN,M

lim
K→+∞

1

K

K
∑

k=1

M
∑

m=1

Nm
∑

n=1

Un,m(k) s.t. C1,C3,C4,C5 in P. (21)

In order to solve P1, i.e., minimizing the long-term mining task uploading costs of all devices, we can
transform the problem into minimizing the uploading costs of all devices at each decision epoch. Since
each MEC server has no coupling with others when allocating their own bandwidth, P1 can be decomposed
into multiple subproblems associated with each MEC server. At decision epoch k, the subproblem to be
solved in MEC server m can be expressed as

P3 : min
{bn,m(k),n∈Nm}

Γn,m(k) s.t.

Nm
∑

n=1

bn,m(k) 6 Bm, (22)



Ning Z L, et al. Sci China Inf Sci June 2021 Vol. 64 162303:8

where Γn,m(k) =
∑Nm

n=1 ǫEnt
up
n,m(k) =

∑Nm

n=1
ǫEnDn

bn,m(k)log2(1+SNRn,m(k)) . It is obvious that function Γn,m(k)

is a derivative multivariate function of {bn,m(k), n ∈ Nm}, and its gradient function can be calculated by

∇Γn,m(k) =

(

−ǫE1D1

b21,m(k)log2(1 + SNR1,m(k))
, . . . ,

−ǫEnDn

b2n,m(k)log2(1 + SNRn,m(k))
, . . . ,

−ǫENm
DNm

b2Nm,m
(k)log2(1 + SNRNm,m(k))

)

. (23)

Furthermore, we can obtain the Hessian matrix of Γn,m(k) since its gradient function is derivative, i.e.,

HΓn,m(k) =











2ǫE1D1

b31,m(k)log2(1+SNR1,m(k))
· · · 0

...
. . .

...

0 · · ·
2ǫENmDNm

b3Nm,m(k)log2(1+SNRNm,m(k))











. (24)

Since variables ǫ, En, Dn, SNRn,m(k) and bn,m(k) are positive numbers, the diagonal matrix HΓn,m(k)

is a positive definite matrix. Thus, the objective function in P3, i.e., Γn,m(k) is a strictly convex function.
In addition, the constraint in P3 is an affine function. Therefore P3 is a convex optimization problem,
which is not difficult to be solved.

To solve P2 which is a non-convex optimization problem, the DDPG algorithm is leveraged to allocate
optimal computing power for devices to optimize the total utility. DDPG integrates deterministic policy
gradient (DPG) and DQN algorithms, and can deal with the decision making problems with continuous
action space. DDPG is composed of two main networks, i.e., the actor net and critic net. The actor net
is responsible for the action generation, while the critic net can guide the actor net, i.e., estimating the
state-action value. The critic net can evaluate the quality of the action and guide the actor net to adjust
the network parameters towards a better action. Similar to the target and online nets in DQN, the actor
net and critic net both have the target subnet and online subnet, and the two subnets have the same
network structure.

At each decision epoch t in DDPG, we define the state as st, the action as at, and the reward function
as r(st, at). The action’s policy of DDPG is deterministic which can be represented by µ : S → A, and
then the recursive relationship in DRL, i.e., Bellman equation can be written as

Qµ(st, at) = Ert,st+1∼ψ[r(st, at) + ℏQµ(st+1, µ(st+1))], (25)

where ℏ denotes the discounted factor and ψ is the expectation distribution for st+1 and rt [24].
When the function approximator is parameterized by θQ, the loss function of critic net used to evaluate

the difference between the two sides of the Bellman equation can be expressed as

L(θQ) = Est∼̺ϕ,at∼ϕ,rt∼ψ[(Q(st, at|θ
Q)− yt)

2], (26)

where ̺ϕ is the distribution of state st under deterministic policy ϕ, and yt is defined as

yt = r(rt, at) + ℏQ(st+1, u(st+1)|θ
Q). (27)

The policy update of actor net needs the aid of critic net, and the policy gradient of actor net can be
calculated by

∇θµJ(µ) ≈ Est∼̺ϕ [▽aQ(s, a|θQ)|s=st,a=µ(st)▽θµµ(s|θ
µ)|s=st ], (28)

where µ(s|θµ) is the parameterized actor function that can determine the current action by mapping the
state to a specific action and θµ is the variables of online actor net. Performance objective J(µ) is used
to evaluate the performance of policy µ, which can be expressed as

J(µ) = Est∼̺ϕ [Q(st, µ(st|θ
µ))]. (29)

In the training of DDPG, an experience replay buffer is leveraged to store the quadruple (st, at, rt, st+1)
at decision epoch t, where st is the current state, at is the current action and it commonly equals to the
output action of actor net adding noise n0 to increase the randomness of exploration, rt is the obtained
reward when executing action at at state st and st+1 is the next state. During learning, mini-batch
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samples are randomly selected from the experience replay buffer and are input to the actor and critic
nets for updating. For example, when the mini-batch contains W samples, the next state sq+1 obtained
at decision epoch q can be input into the actor target net to achieve action to the critic target net. The
critic target net can further calculate yq in (27) to input the critic online net. The mini-batch action
a = µ(sq) can be obtained by inputting the mini-batch state sq into the actor online net. Then the mini-
batch action is input to the critic online net to generate action a’s gradient, i.e., ∇aQ(s, a|θQ)|s=sq ,a=µ(sq).
Since parameter θµ’s gradient of actor online net can be derived by its own optimizer, i.e., ∇θµµ(s|θµ)|s=sq ,
the actor online net can be updated based on the following rule:

∇θµJ(µ) ≈
1

W

∑

q

[▽aQ(s, a|θQ)|s=sq ,a=µ(sq)▽θµµ(s|θ
µ)|s=sq ]. (30)

The update of critic online net can be finished by its own optimizer, e.g., Adamoptimizer.
Different from the update of the target net in DQN, i.e., directly copying the weights of the online

net, ‘soft’ target update is leveraged in DDPG. Let µ′(s|θµ
′

) and Q′(s, a|θQ
′

) denote the actor and critic
target nets, respectively. At first, they are a copy of the actor and critic online nets. Then, the weights
of the actor and critic target nets can be updated by

θµ
′

← ςθµ + (1− ς)θµ
′

,

θQ
′

← ςθQ + (1− ς)θQ
′

, (31)

where ς is a small constant. In this way, the target weights are constrained to change slowly, greatly
improving the stability of learning [25].

In the following, we describe the three core elements of DDPG in detail, i.e., the state space, the action
space and the reward function.

State space. In DDPG, the environment state Sk in decision epoch k is the union of the state of SBS
Skm, including the offloading task of mobile device Tn(Dn, Yn, Gn, In), the location and moving direction
as well as the speed of each device (dn,m, ρn,m and vn, respectively), the channel state (SNRn,m(k) and
SNRm,n(k)), and the total computing power and bandwidth of SBS (Fm and Bm, respectively), i.e.,
Sk = {Skm|m = 1, . . . ,M}, where Skm can be expressed as

Skm = {(Tn, dn,m, ρn,m, vn, SNRn,m(k), SNRm,n(k),Fm,Bm)|n = 1, . . . , Nm}. (32)

Action space. After each mobile device generates its task for block mining, DRL agent (i.e., the
dedicated controller) needs to make allocation decisions of the computing power resource for each MEC
server. Let Ak = {Akm|m = 1, . . . ,M} denote the action of DRL agent, where Akm is the resource
allocation decision for MEC server m and can be represented by

Akm = {fn,m(k)|n = 1, . . . , Nm, fn,m(k) ∈ (fmin, fmax]}. (33)

Reward function. In order to optimally allocate resources for mobile devices, the reward function
is required to represent the objectives of our system, i.e., maximizing the total utility of all mobile
devices while considering the constraints of limited resources, the mobility of devices and the blockchain
throughput. We use Rk(Sk, Ak) to denote the immediate reward of taking action Ak at state Sk at
decision epoch k, i.e.,

Rk(Sk, Ak) =











1

λ

M
∑

m=1

Nm
∑

n=1

Un,m(k), if constraints C1,C3,C4,C5 in P are satisfied,

0, otherwise,

(34)

where λ is a constant.
DDPG increases the randomness of exploration by adding noise to the output action of actor net, i.e.,

selecting a random action from a normal distribution, whose mean value is the action obtained by the
actor net and variance is a given value that decreases with the number of training episodes. However,
fully exploring all actions in the continuous action space is impractical, and the strict constraints of P2
make it difficult to find a satisfied feasible solution, which leads to a large number of unnecessary random
search in DDPG. The mentioned reasons decrease the data learning efficiency of DDPG and consume a
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great amount of time to achieve convergence. In order to improve the efficiency of the exploration process
to avoid unnecessary search, we introduce the PSO algorithm in the randomness exploration process of
DDPG to generate an improved solution to critic net, and propose the DRPO algorithm.

In PSO, there are Z particles and each particle z has two attributes, i.e., velocity ιz and location xz,
which represent the moving speed and direction of particle z, respectively. There are many particles in
PSO, where the location of each particle represents a solution of P2 (i.e., an improved random action in
DDPG) and the velocity of each particle represents the change of the solution. During iteration z, each
particle z, whose velocity and location are ιzz and xzz, searches its current private optimal solution gz.
Then it shares its optimal solution to others so that every particle can acquire the global optimal solution
G. Based on the private optimal solution and the global optimal solution, each particle can update its
velocity ιz+1

z and location xz+1
z following the two rules:

ιz+1
z = ̟zιzz + c1κ1(gz − x

z

z) + c2κ2(G− x
z

z), (35)

xz+1
z = xzz + ιz+1

z . (36)

In the former, c1 and c2 are learning factors, κ1 and κ2 are random numbers within (0, 1), and ̟z is
the inertia factor satisfying ̟z > 0. Commonly, a larger (smaller) ̟z can make the PSO algorithm
have a stronger (weaker) ability to search the global optimal solution, but a weaker (stronger) ability to
search the locally optimal solution. In this paper, the value of ̟z is determined by leveraging the linearly
decreasing weight (LDW) policy [26], i.e.,

̟z = (̟in −̟out)(ð− z)/ð+̟out, (37)

where ̟in is the initial inertia factor and ̟out is the terminal inertia factor when PSO algorithm achieves
the maximum number of iteration ð. Since the velocity and location of particles are bounded, we need
to redefine the update rules of velocity and location by considering their bounds, i.e.,

ιz+1 =











ιmin, if the value in (35) is smaller than ιmin,

ιmax, if the value in (35) is larger than ιmax,

̟zιzz + c1κ1(gz − xzz) + c2κ2(G− xzz), otherwise,

(38)

xz+1 =











xmin, if the value in (36) is smaller than xmin,

xmax, if the value in (36) is larger than xmax,

xzz + ιz+1
z , otherwise.

(39)

where ιmin, ιmax, xmin and xmax are the lower and upper bounds of the velocity and the location of
particles, respectively. Until the end of the iteration, an improved random action (i.e., an improved
computing power allocation solution) can be generated and input into the critic net in DDPG to estimate
the state-action value. It is worth noticing that the generated action of actor net is required to be input
into PSO algorithm to initialize the location of one particle to guarantee the obtained action in PSO is
better than the generated action in DDPG. The improved action can be stored in the experience replay
buffer for future training to accelerate the convergence of DDPG. The details of the proposed DRPO
algorithm can be seen in Algorithm 1, and the key idea is that if the critic net cannot evaluate an action
well, i.e., the loss of the critic net is larger than a threshold, we leverage DDPG to generate actions to
expand the number of training samples. Otherwise, PSO algorithm is leveraged to obtain an improved
action so that DDPG can converge to a better solution.

4 Performance evaluation

Similar to [27, 28], we leverage simulations and conduct a large number of experiments to demonstrate
the effectiveness of our algorithm in this section, since it is impractical to establish a large-scale mobile
blockchain framework in the laboratory environment by considering the limits of the number of mobile
devices and the computing capacity of desktops.
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Algorithm 1 The pseudo-code of DRPO algorithm

Input: {Tn}, {Fm,Bm};
Output: BN,M ,FN,M ;

1: Initialize the parameters in DDPG:

2: Parameters of actor online net and critic online net, i.e., θµ and θQ;

3: Parameters of actor target net and critic target net, i.e., θµ
′

← θµ, θQ
′

← θQ;

4: Experience replay buffer L with size l;

5: Number indicator ℘ of samples in L;
6: Decision epoch k and constant parameter ζ;

7: Initialize the parameters in PSO:

8: Maximum number of iteration ð;

9: Number of particles Z;

10: while the maximum number of repetitions is not reached do

11: PSOflag ← False;

12: for k = 1; k 6 K; k + + do

13: Solve P1 to obtain the optimal bandwidth allocation strategy {bn,m(k)} at decision epoch k;

14: Dedicated controller inputs system state Sk to the actor net of DDPG to obtain action Ak;

15: Adding noise to action Ak, i.e., Ak ← Ak + n0;

16: if PSOflag = True then

17: Replace Ak with an improved action by leveraging the PSO algorithm, i.e., Ak ← PSO(Ak);

18: end if

19: Execute action Ak (i.e., {fn,m(k)}) and get reward Rk as well as the next state Sk+1;

20: Store transition quadruple (Sk, Ak, Rk, Sk+1) in experience replay buffer L;

21: ℘← ℘+ 1;

22: if ℘ > l then

23: Select W mini-batch samples from L and update the parameters of critic online net as well as actor online net, i.e.,

θQ and θµ based on (26) and (30);

24: if the loss of critic net is lower than ζ then

25: PSOflag ← True;

26: else

27: PSOflag ← False;

28: end if

29: end if

30: Regularly update the parameters of actor target net and critic target net according to rule (31);

31: end for

32: end while

33: return BN,M ,FN,M .

4.1 Simulation setup

We make the simulations in a 64 bit Window 10 operating system computer, which has 8 G RAM, an
Intel(R) Core(TM) i7-3520M CPU with 2.90 GHz frequency, and an NVIDIA NVS 5400 M GPU. We
consider a scenario that there are some SBSs in the area, and the communication radius of each SBS
is 500 m (i.e., ω = 500). In addition, there are 10 mobile devices requesting services from each SBS
(without loss of generality, the number of mobile devices can be arbitrary), which are distributed within
the overlay area of each SBS randomly (i.e., dn ∈ (0, 500)). Without loss of generality, the average
mining time for a block is 5 min (i.e., t0 = 300), and in blockchain, each device can begin mining anytime
(i.e., tspann,m ∈ [0, 300)). The transmit power of each device is 0.5 W (i.e., En = 0.5) [20]. The available
bandwidth of each device is 0.5 MHz (i.e., bn = 0.5), and that of each SBS is 20 MHz (i.e., Bm = 20) [29].
The total computing power of each SBS is 1012 CPU cycles (i.e., Fm = 1012). The mobile devices move
toward a direction with speed [0, 1] m/s (i.e., vn ∈ [0, 1]), and the corresponding angle with the SBS is
between 0◦ and 180◦ (i.e., ρn,m ∈ [0, 180]).

In order to successfully mine a block, the devices need to offload their mining tasks to the corresponding
SBSs. For the mining tasks, their data size is [5, 10] kB (i.e., Dn ∈ [5× 10−3, 10−2]) [30]. The computing
intense of each mining task is proportional to its data size, and the scale coefficient is 5 × 1010 (i.e.,
Yn = 5 × 1010 × Dn). The data size of the mining result is 1 kB (i.e., In = 10−3). We find the task
uploading cost is tiny compared with the hiring cost of MEC servers and consider the data size of mining
tasks Dn obeys a normal distribution [22], the mining budget of devices can be determined as [30, 50]
tokens (i.e., Gn ∈ [30, 50]) by estimating the upper bound of the mining cost of majority miners based on
statistical analysis. We set the fixed reward for successfully mining a block as 100 tokens (i.e., R = 100),
and the coefficient of the variable reward as 105.5 (i.e., η = 105.5). Each joule costs 10−4 tokens (i.e.,
ǫ = 10−4) [20], the constant parameter τ equals to 10−7, the number of price level ε is 10, and the
broadcast factor is 0.5 (i.e., φ = 0.5) [23]. The average data size of each transaction is 0.2 byte (i.e.,
ℓ = 2 × 10−7), and the lower bound of blockchain throughput is 100 (i.e., Ω = 100). The minimum and
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(a) (b)

Figure 2 (Color online) The convergence performance of different methods: (a) the loss of actor net, and (b) the loss of critic

net.

maximum values of the allocated bandwidth and computing power are 0.02, 2, 1
3 × 106 and 2

3 × 1012 (i.e.,
bmin = 0.02, bmax = 2, fmin = 1

3 × 106, fmax = 2
3 × 1012), respectively.

The parameters in DRPO are designed as follows. There is one hidden layer in the actor net, and
the number of the neurons of the hidden layer is related to the number of mobile devices as well as the
dimension of the input data (e.g., if the number of devices is 10, the number of neurons of the hidden
layer is 260). The activation function of the hidden layer is error linear unit (ELU), and that of the
output layer is the sigmoid function. The learning rate of the actor net is 0.001, and that of the critic net
is 0.002. The constant in ‘soft’ target update is 0.01 (i.e., ς = 0.01). The size of the experience replay
buffer is 1000 (i.e., l = 1000), and the batch size in training is 32 (i.e., W = 32). The constant in reward
function is 200 (i.e., λ = 200).

For the parameters of PSO in DRPO, the number of particles is 10 (i.e., Z = 10), the initial inertia
factor is 0.9 and the terminal inertia factor is 0.4 (i.e., ̟in = 0.9, ̟out = 0.4). We set the lower and
upper bounds of the velocity and location to −3 × 1010, 3 × 1010, 13 × 106 and 2

3 × 1012 (i.e., ιmin =
−3 × 1010, ιmax = 3 × 1010, xmin = 1

3 × 106, xmax = 2
3 × 1012), respectively. The number of particles in

the benchmark method PSO is 200, and the maximum number of iterations is 500.

4.2 Simulation design

Since the objective of this paper is to maximize the total utility of all mobile devices in long-term, the
evaluation metric of our simulation is the average total utility of all devices in each decision epoch, i.e.,
1
K

∑K
k=1

∑M
m=1

∑Nm

n=1 Un,m(k). In the simulation, K is set to 5 by considering the fact that a large value
of K leads to a long training time in the DDPG-based algorithm.

Three representative baseline algorithms are leveraged to compare with our DRPO algorithm.
• PSO algorithm. It is a heuristic algorithm, which is commonly used to search solutions with high

quality for the problems with large search space.
• DDPG. It is the state-of-art DRL scheme to search for the optimal solution for the problem with

continuous action space [25].
• DRGO. It is an improved DDPG algorithm, which integrates DDPG with an adaptive genetic algo-

rithm to speed up the convergence of DDPG caused by the high-dimension action space [20].

4.3 Performance analysis

In this paper, for each group of the experiment, we repeat it 20 times and take the average value of all
results as the final experiment result.

4.3.1 Convergence performance

We first evaluate the convergence property of different algorithms since it is one of the most significant
factors for the effectiveness of DRL. Under the scenario that the parameters are set as described in
Subsection 4.1 and the number of mobile devices is 10, the losses of actor net and critic net at each training
episode for various methods are illustrated in Figures 2(a) and (b), respectively. From Figure 2(a), it is
obvious that the loss of actor net in DRPO is lower than that of DRGO and DDPG, and the required
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(a)

(c)

(b)

Figure 3 (Color online) Experiment results for different: (a) bandwidths, (b) computing powers, and (c) numbers of devices.

number of training episodes for convergence in DRPO, DRGO and DDPG is 5500, 7000 and 8000,
respectively. It demonstrates that DRPO can generate a better action than DRGO and DDPG, and
converge to the optimal action faster. In Figure 2(b), we can find that the loss fluctuation of critic net
in DRPO is smaller than that of DRGO and DDPG, and the critic net of DRPO can reach convergence
faster than DRGO and DDPG, which illustrates that DRPO can evaluate actions better (i.e., more stable)
and converge to the maximal reward faster than DRGO and DDPG.

4.3.2 Performance under different bandwidths

When the number of devices is 10 and the total bandwidth of each SBS ranges from 8 to 20, the total
utility under different bandwidths is illustrated in Figure 3(a). It is obvious that the total utility of all
mobile devices increases with the increase of bandwidth, since more bandwidth can be allocated to each
mobile device, which leads to lower task uploading time and less task uploading cost. The performance
of the DRL-based algorithm is better than that of PSO, since PSO is a heuristic algorithm and easy
to converge to a locally optimal solution. However, the growth extent of total utility is small, because
bandwidth allocation has little influence on our optimization objective as explained in Section 3. It also
demonstrates the effectiveness of our problem decomposition. For DRPO, it can generate higher utility
than DDPG, and the reason is that, when the actor net can evaluate actions well, DRPO can improve the
generated solutions of DDPG by leveraging PSO algorithm. The performance of DRPO is better than
that of DRGO. This is because PSO can effectively search for a better solution faster in the continuous
action space compared with the adaptive genetic algorithm, by memorizing and sharing the historical
optimal solutions among all particles to search an optimal action in each iteration, other than the blind
search (e.g., the crossover and mutation in the genetic algorithm) in the whole solution space.

4.3.3 Performance under different computing powers

For different computing powers of SBSs, the total utility of all devices is illustrated in Figure 3(b). It can
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(a) (b)

Figure 4 (Color online) Experiment results under: (a) different values of α, and (b) different values of ζ.

be seen that when the total computing power of SBSs ranges from 109 to 1013 cycles, the total utility
increases. The reason is that the increasing computing power of SBSs provides a strong computing
capacity for mobile devices, which can reduce the computing time and hiring cost enormously, although
the unit operating price of MEC servers may increase. Based on the obtained total utility, the performance
comparison result of the four algorithms is DRPO>DRGO>DDPG>PSO. The performance of DDPG is
better than PSO, since the DRL-based algorithm has a good exploration ability and can find a satisfied
optimal solution by training, but the performance of PSO relies on initial solutions, and it is easy to
converge to a locally optimal solution. DRGO obtains a higher total utility compared with DDPG, because
DRGO can improve the generated solutions of DDPG by leveraging the adaptive genetic algorithm. The
reason that the performance of DRPO is better than DRGO has been explained before.

4.3.4 Performance under different numbers of devices

For the different number of mobile devices, the total utility of all devices is illustrated in Figure 3(c),
from which we can see that the obtained utility of all mobile devices decreases as the increasing number of
mobile devices. This is because the increasing number of devices decreases the allocated bandwidth and
computing power of each mobile device, which can reduce the utility of each mobile device enormously,
even the number of devices increases. In addition, the obtained total utility of DRPO is larger than that
of the benchmark methods while the performance of PSO is worst when the number of devices ranges
from 10 to 50. The performance gaps among DRPO, DRGO and DDPG decrease as the increasing
number of mobile devices. The reason is that the increasing number of devices enlarges the dimensions
of state and action spaces in these three DRL-based methods, and increases the difficulty of solving the
formulated problem. Although the three schemes can find satisfied solutions, their obtained total utility
decreases sharply when the number of mobile devices increases.

4.3.5 Performance under different values of α

Parameter α is used to evaluate the significance degree of the allocated computing power of devices to the
probability of successfully solving a puzzle, and it also influences the total utility of all mobile devices.
Thus, we intend to select a satisfying value for α based on the obtained total utility. For different values
of α, the obtained total utility of the four methods is illustrated in Figure 4(a). From this figure, we
can observe that the performance of DRPO is always better than that of the benchmark methods, which
demonstrates its effectiveness. In addition, the performance of the four schemes increases as the increase
of α. In order to obtain a larger value for our optimization objective, we need to pay more attention to
the allocated computing power, which also demonstrates the effectiveness of our problem decomposition.
Thus, in the experiment, we set the value of α to 0.9.

4.3.6 Performance under different values of ζ

In DRPO, variable ζ has a direct relationship with the trade-off between the improved actions of PSO
and the generated actions of DDPG. From Figure 4(b), it is obvious that when the value of ζ is between
0 and 0.05, the performance of DRPO and DRGO increases with the increase of ζ, since DRPO and
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DRGO have a larger probability to improve actions by leveraging PSO and adaptive genetic algorithms,
respectively. When the value of ζ is a larger than 0.05, the total utility of all devices in DRPO decreases
as the increase of ζ. The reason is that a larger ζ can make DRPO algorithm have a higher probability
to improve actions by leveraging PSO algorithm, and vice versa. Since the performance of PSO relies
on the initialization of solutions, and the performance difference of the improved action each time may
be large, which can influence the learning effect, learning stability and convergence speed of DRPO, and
finally lead to a worse solution. The performance trend of DRGO is similar to DRPO. When ζ = 0, the
performance of DRPO and DRGO is the same with DDPG, because there is no improvement for actions
in DRPO and DRGO, and they are equivalent to DDPG algorithm. Since ζ has no influence on the
performance of DDPG and PSO, their obtained utility is a fixed value. Thus, in the experiment, we set
the value of ζ to 0.05.

5 Conclusion

In this paper, we design an MEC-based mobile blockchain framework to protect the privacy and data
security of mobile devices when they make transactions in the IIoT system. We formulate a joint band-
width and computing resource allocation problem to maximize the total utility of all mobile devices in
long-term, and consider the mobility of devices as well as the blockchain throughput. In order to solve
the formulated problem, we propose a DRPO algorithm that integrates DDPG and PSO algorithms.
In DRPO, we decompose the formulated problem into two subproblems to reduce the dimension of the
action space, and PSO scheme is integrated to avoid the unnecessary random search for actions in DDPG.
To illustrate the effectiveness of our algorithm, we conduct enormous experiments, and the corresponding
results show that DRPO can converge at a faster speed, obtain larger utility, and has stronger stability
compared with the state-of-art methods of PSO, DDGP and DRGO. In future work, we will consider
moving vehicles into our mobile blockchains, and solve the problems of SBS handover and task migration.
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