
SCIENCE CHINA
Information Sciences

June 2021, Vol. 64 160409:1–160409:14

https://doi.org/10.1007/s11432-020-3248-y

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. RESEARCH PAPER .
Special Focus on Near-memory and In-memory Computing

Towards efficient allocation of graph convolutional
networks on hybrid computation-in-memory

architecture

Jiaxian CHEN, Guanquan LIN, Jiexin CHEN & Yi WANG*

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China

Received 31 December 2020/Revised 10 March 2021/Accepted 15 April 2021/Published online 10 May 2021

Abstract Graph convolutional networks (GCNs) have been applied successfully in social networks and

recommendation systems to analyze graph data. Unlike conventional neural networks, GCNs introduce an

aggregation phase, which is both computation- and memory-intensive. This phase aggregates features from

the neighboring vertices in the graph, which incurs significant amounts of irregular data and memory access.

The emerging computation-in-memory (CIM) architecture presents a promising solution to alleviate the

problem of irregular accesses and provide fast near-data processing for GCN applications by integrating both

three-dimensional stacked CIM and general-purpose processing units in the system. This paper presents

Graph-CIM, which exploits the hybrid CIM architecture to determine the allocation of GCN applications.

Graph-CIM models the GCN application process as a directed acyclic graph (DAG) and allocates tasks on the

hybrid CIM architecture. It achieves fine-grained graph partitioning to capture the irregular characteristics of

the aggregation phase of GCN applications. We use a set of representative GCN models and standard graph

datasets to evaluate the effectiveness of Graph-CIM. The experimental results show that Graph-CIM can

significantly reduce the processing latency and data-movement overhead compared with the representative

schemes.

Keywords computation-in-memory, graph convolutional networks, hybrid architecture, scheduling, infer-

ence, accelerator

Citation Chen J X, Lin G Q, Chen J X, et al. Towards efficient allocation of graph convolutional networks

on hybrid computation-in-memory architecture. Sci China Inf Sci, 2021, 64(6): 160409, https://doi.org/10.1007/

s11432-020-3248-y

1 Introduction

Graph neural networks (GNNs) are specifically designed for large-scale graph processing and are widely
used in social networks and recommendation systems. Among the various types of GNNs, the graph
convolutional network (GCN) is the most commonly used and mainly consists of two types of operations:
aggregation and combination. These operations dominate the processing latency of a GCN. The aggre-
gation operation is similar to graph processing, where each vertex must be processed to aggregate the
features of all its neighboring vertices. The combination operation typically uses a multilayer perceptron
(MLP), which is similar to a conventional neural network.

To efficiently accelerate the GCN processing, the system architecture should exploit both the irregular
pattern in the aggregation operation and the regular pattern in the combination operation. Owing to
different characteristics in data access and memory access, the aggregation and combination operations
impose different requirements on the system architecture. It is difficult to find a specific accelerator that
can fit both operations.

One promising solution to this problem is to adopt a hybrid architecture that integrates two differ-
ent kinds of hardware architectures to handle these two operations. The three-dimensional (3D)-stacked
computation-in-memory (CIM) architecture provides a viable solution to reduce the data-movement over-
head. In this architecture, the computation resources are placed near or inside the memory resources to

*Corresponding author (email: yiwang@szu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-3248-y&domain=pdf&date_stamp=2021-5-10
https://doi.org/10.1007/s11432-020-3248-y
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-3248-y
https://doi.org/10.1007/s11432-020-3248-y
https://doi.org/10.1007/s11432-020-3248-y


Chen J X, et al. Sci China Inf Sci June 2021 Vol. 64 160409:2

effectively handle the irregular memory access in the aggregation operation. Thus, we argue that the CIM
architecture can partially solve the problem. The regular memory access in the combination operation
cannot be handled effectively by the CIM architecture. Therefore, we adopt both the CIM architecture
and general-purpose processing units, such as a central processing unit (CPU) or graphics processing unit
(GPU), in the design.

This paper presents Graph-CIM, an efficient task-allocation strategy to speed up the inference of graph
convolutional networks on hybrid computation-in-memory architectures. Graph-CIM captures the data-
and memory-access requirements during GCN processing, and utilizes the properties of both the general-
purpose processing units and 3D-stacked CIM architecture in order to reduce the processing latency of
GCNs and reduce the migration overhead. Graph-CIM adopts a two-phase framework to determine the
allocation of tasks on its hybrid architecture. In the first phase, Graph-CIM models the process of a
GCN application as a directed acyclic graph (DAG) and further partitions the DAG into a fine-grained
DAG to improve the utilization of the hybrid architecture. For the aggregation operation, Graph-CIM
abstracts the hierarchical community structure in the input graph, and partitions the graph. In the
second phase, Graph-CIM allocates tasks to the DAG. The task allocation is jointly determined by both
the actual utilization status of the processing units and the properties of the aggregation and combination
operations. Graph-CIM aims to achieve load balancing across different processing units and reduce the
processing latency of the GCN application.

We evaluate the proposed technique with a set of representative GCN models and standard graph
datasets. The abstractions of GCN models are obtained from the deep learning framework PyTorch. We
compare Graph-CIM with representative schemes in terms of processing latency and computing resource
utilization. Experimental results show that Graph-CIM can achieve a significant reduction in execution
time and effectively utilize the hybrid CIM architecture.

The main contributions of this paper are as follows.

• The proposed scheme takes advantage of the hybrid CIM architecture to capture the irregular char-
acteristics of different GCN applications.

• The proposed scheme models the processing of a GCN application as a DAG and efficiently allocates
the workloads on the hybrid CIM architecture.

• As a proof of concept, we compare the proposed scheme with representative schemes using a set of
real GCN workloads and standard graph datasets.

The rest of this paper is organized as follows. Section 2 provides an overview of the background and
discusses the motivations of this paper. Section 3 presents our proposed scheme, Graph-CIM, in detail.
Section 4 presents our experimental results. Section 5 discusses the related work, and Section 6 concludes
this paper and discusses future work.

2 Background and motivation

2.1 Graph convolutional networks

GNNs are advanced machine learning techniques to learn the representations of graph properties from
non-Euclidean input graph structures [1]. Among the various kinds of GNNs, GCNs are among the
most popular. GCNs exploit hierarchical patterns in a graph via shared weights and the multilayer
structure. GCNs mainly iterate via convolutional layers, which dominate the computation time, and can
be categorized as aggregation phase and combination phase.

Figure 1 illustrates the typical processing procedure for GCNs. The process starts with the input
graph, which consists of the graph structure, vertex features, and other graph properties. The input
graph G(V,E) can be defined by a set of vertices V = {V1, V2, . . . , Vn} and a set of edges E ⊆ V × V .
The features of a vertex v ∈ V can be represented by a feature vector h0

v. Each vertex v ∈ V has a
neighborhood set N(v) determined by the vertices connecting to it. In this example, the input graph has
7 vertices, each of which has a 4-dimensional feature vector.

In the aggregation phase, each vertex v ∈ V gathers its neighboring vertices’ feature vectors and
generates an aggregated feature vector. The aggregated feature vector of v can be expressed as akv,
where k denotes the number of GCN iterations. The aggregation phase is dominated by aggregators (or
aggregation functions). Different GCNs have different aggregators. For example, for each v ∈ V , the
mean aggregator in Figure 1 takes the elementwise mean of the feature vectors N(v), and generates a



Chen J X, et al. Sci China Inf Sci June 2021 Vol. 64 160409:3

Input

feature vector

Aggregated

feature vector

Transformed

feature vector

V
5

V
5

V
4

V
4

V
4

V
7

V
7

V
6 V

1

V
1

V
2

V
2

V
3

V
3

Input graph

Aggregation Combination

Iterative

a
5

a
1

k

k

h
5

h
1

k

k

Figure 1 (Color online) The typical processing procedure for GCNs.

4-dimensional aggregated feature vector.
The combination phase transforms the aggregated feature vector of vertex v ∈ V to a transformed

feature vector based on its present state via combine functions. Similarly, during the k-th iteration, the
transformed feature vector of v can be expressed as hk

v . Most of the time, a multilayer perception model
is used as the combine function, which can be treated as a special kind of matrix multiplication. In
Figure 1, the outputs of the aggregation phase can be flattened and concatenated to produce a matrix of
size 7×4. This matrix is further multiplied with several weight matrices to generate an output matrix of
size 7×3. The output matrix represents 7 transformed feature vectors with a length of 3.

Aggregation alternates with combination for multiple iterations to generate the final output feature
vectors. After k iterations of the graph convolutional layer, the output feature vectors extract the
structural information within their k-hop neighboring vertices.

2.2 Heterogeneous CIM architecture

The CIM architecture is a promising solution to reduce the memory bandwidth and minimize the data
transfer overhead between processing units and off-chip dynamic random access memory (DRAM). We
adopt a hybrid CIM system to address the imbalance computation requirement of GCNs. Figure 2
illustrates a typical heterogeneous CIM architecture, where a 3D-stacked memory chip is placed adjacent
to a general-purpose CPU chip. Both chips are linked via a memory link on a silicon interposer. The
emerging CIM architecture integrates multiple embedded DRAM (eDRAM) dies and one logic die in a
3D-IC architecture. Each DRAM die is partitioned into 16 sub-dies. The sub-dies in the vertical direction
form a vault, and each vault is individually controlled by a vault controller in the logic die. The logic die
integrates vault controller (VC), programmable neurosequence generator (PNG), router, and processing
engine (PE). Multiple routers are interconnected through a two-dimensional mesh or a fully connected
network-on-chip (NoC). The data is further transmitted to PEs through the NoC network. Data could
be stored either in each PE’s cache or in the vault (i.e., DRAM). The PNG determines this selection and
stores the data in the cache for the corresponding PE.

2.3 System model

Based on the processing dataflow, a GCN application can be modeled as a DAG D(T,R), where T =
{T1, T2, . . . , Tm} denotes a set of m tasks. Each task Ti represents a specific operation, such as the
aggregation or combination phase, and is associated with three properties (opi, si, pi), where opi represents
the operation type (e.g., aggregation, combination), si represents the scale of the input/output data, and
pi represents the predefined parameters or data (e.g., the topology of the input graph for the aggregation
phase). R ∈ T × T is the edge set of D, which denotes the data dependence between different tasks.

In this paper, the worst-case execution time of each operation is estimated based on the requirements of
the computing resources and DRAM access [2]. The estimated execution time of each task Ti is bounded



Chen J X, et al. Sci China Inf Sci June 2021 Vol. 64 160409:4

Vault

Silicon interposer

Memory controller

Core Core Core Core

CoreCoreCoreCore

Last level cache

Memory link

CPU CIM

NoC VC PNG

PEPEPEPE

DRAM

dies 2D fully

connected

NoC

R

TSV Router

Cache

MAC

BufferW Cnt

M M M M

Figure 2 (Color online) The system architecture of Graph-CIM, which consists of both general-purpose CPU and CIM architec-

ture.

Dummy vertex

Aggregation phase

Combination phase

T
0

T
0T

2

T
2

T
3

T
6

T
1

T
4 T

4
T

5

Figure 3 (Color online) A typical graph convolutional network DAGNN is modeled as a DAG D.

by ti = tmem(opi, si, pi, d, e) + tcomp(opi, si, pi, d, e), where tmem and tcomp denote the parameters used
to predict the memory-access and processing latencies, respectively. d denotes the parameters of the
computing resources, such as the number of cores in the general-purpose CPU, the number of PEs in the
CIM, and cache capacity. e denotes the execution pattern, such as using vertex-centric, edge-centric [3],
or other types of execution [4] in the aggregation phase. Figure 3 illustrates the model of a typical GCN,
called a deep adaptive graph neural network (DAGNN) [5]. We use a dummy vertex (T0 in Figure 3) to
denote the inputs of the GCN. Similarly, the outputs of the GCN can also be represented as a dummy
vertex (T6) in the graph. As a result, the DAGNN can be modeled as a DAG with 7 vertices and
9 edges. Note that the vertex in the DAG could be further partitioned into several vertices to exploit the
fine-grained allocation of the hybrid architecture.

2.4 Motivation

For GCN applications, the memory-access pattern of the aggregation phase is irregular. In the aggregation
phase, each vertex must be processed by aggregating features from all its neighboring vertices in the
graph [1,5–7]. Different vertices in a GCN application’s input graph have different numbers of neighboring
vertices and different topology relations. The memory-access pattern for the processing of one vertex is
significantly different from that of another vertex.

In order to exploit the locality in memory accesses and speed up aggregation-phase processing, it
is necessary to find the vertices that share similar topology relations. Therefore, Graph-CIM presents
a graph-partitioning algorithm that adopts community detection to find vertices with similar topology
relations and allocate them to the cache in the hybrid architecture. This can exploit the locality of the
input graph and increase the processing speed of the aggregation phase.

The combination phase is normally implemented by a variation of the conventional MLP, which can
be integrated as regular matrix multiplication operations [1, 5–7]. Unlike the conventional MLP, such as
the fully-connected layer in a CNN, the weight matrix in the combination phase can be reused by the
feature vectors of each vertex in the input graph. Owing to this reusability, the combination phase is
bounded by computation instead of memory, and data movement is no longer the major bottleneck.

We conduct a deep analysis of the GCN workload and explore its design on the hybrid architecture. We
test the processing latency of a typical benchmark (i.e., Citeseer) with four GCN networks on both CPU-
based and 3D-stacked CIM architectures. Four GCN models, GCN [1], graph wavelet neural network
(GWNN) [6], DAGNN [5], and simplifying graph convolutional network (SGC) [7], are used in the exper-
iments. The standard dataset Citeseer is adopted as the inference test case. The detailed experimental



Chen J X, et al. Sci China Inf Sci June 2021 Vol. 64 160409:5

Table 1 The processing latency of the aggregation phase with four GCN networks on both CPU and 3D-stacked CIM architecture

Dataset CPU CIM Speed increase (CIM vs. CPU)

DAGNN 1.0 0.05 20.35×

GCN 1.0 0.11 8.93×

GWNN 1.0 0.06 17.42×

SGC 1.0 0.09 11.10×

Average – – 14.45×

Table 2 The processing latency of the combination phase with four GCN networks on both CPU and 3D-stacked CIM architecture

Dataset CPU CIM Speed increase (CPU vs. CIM)

DAGNN 1.0 2.55 2.55×

GCN 1.0 2.45 2.45×

GWNN 1.0 2.52 2.52×

SGC 1.0 2.60 2.60×

Average – – 2.53×

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

N
o
rm

al
iz

ed
 p

ro
ce

ss
in

g
 l

at
en

cy

DAGNN GCN GWNN SGC

CPU CIM CPU+CIM

Figure 4 (Color online) A motivational example for running dataset Citeseer on CPU, 3D-stacked CIM, and the hybrid architec-

ture.

setup is presented in Section 4.
The experimental results are illustrated in Tables 1 and 2. We measure the processing latency of the

aggregation phase and the combination phase and normalize it to the results of running the Citeseer
dataset on a CPU. As shown in Table 1, the 3D-stacked CIM architecture can significantly accelerate
the aggregation phase and achieve an average 14.45× speed increase compared to that on the CPU. Due
to the irregular topology of the input graph, the aggregation phase may incur frequent cache misses in
the CPU, which leads to additional processing latency. The 3D-stacked CIM architecture exploits the
near-data processing architecture and can achieve low data latency by reducing data-movement overhead.
As shown in Table 2, the general-purpose CPU is more suitable for combination-phase processing and
can achieve an average speed increase of 2.53× compared to that on the 3D-stacked CIM architecture.
Modern general-purpose processing units, such as CPUs and GPUs, utilize multilevel caches and single-
instruction-multiple-data (SIMD) technique to optimize the matrix multiplication process. In contrast
to general-purpose processing units, the 3D-stacked CIM architecture has a limited cache space and
limited number of processing units owing to the limitations of 3D-stacked technology [8]. Because the
combination phase is bounded by computation, the 3D-stacked CIM architecture may not handle the
combination phase efficiently.

We further conducted a set of experiments to demonstrate the necessity of the hybrid architecture.
Figure 4 presents the results for running dataset Citeseer on a CPU, 3D-stacked CIM, and hybrid ar-
chitecture of both. The results are also normalized by the results of the Citeseer dataset on CIM. From
the results, the processing latency of some GCN models (i.e., DAGNN, GCN, and GWNN) on a general-
purpose CPU is less than that on the 3D-stacked CIM architecture. Other GCN models (i.e., SGC) show
a different trend, where the 3D-stacked CIM architecture outperforms the general-purpose CPU. We also
observe that the hybrid architecture with both a general-purpose CPU and 3D-stacked CIM architecture
can achieve the lowest processing latency among the three architectures. The processing latency of the
hybrid architecture is less than half of that for both the general-purpose CPU and 3D-stacked CIM.

Based on our preliminary results, we argue that it is necessary to (1) allocate the aggregation phase
on the 3D-stacked CIM architecture to handle the irregular data and memory accesses, (2) allocate the



Chen J X, et al. Sci China Inf Sci June 2021 Vol. 64 160409:6

V
5

V
4

V
3

V
7

V
6

V
5

V
4

V
4

V
3

V
7

V
6V

1

V
2

V
1

V
1

V
1

V
3

V
3 V

7

V
4

V
5

V
5

V
5V

6

V
2

V
2

(a) (b) (c)

Figure 5 (Color online) Community detection for the input graph to abstract the hierarchical community structures. (a) and (b)

The procedure of modularity-based community detection; (c) the hierarchical community structures.

combination phase on the general-purpose processing units to capture the regular processing pattern,
and (3) perform extra data migration to fully utilize the computing resources of both the general-purpose
processing units and the 3D-stacked CIM architecture, because of the mismatched resource consumer (i.e.,
GCN applications) and resource provider (i.e., the hybrid architecture). A task allocation or scheduling
scheme should be proposed to allocate the processes of GCNs based on the process type and to balance
the workloads across the two different computing resources. These observations motivate the proposition
of an efficient task-allocation strategy to speed up the inference of GCNs on the hybrid CIM architecture.

3 Graph-CIM: a task allocation strategy for GCNs on hybrid architecture

3.1 Overview

Graph-CIM aims to optimize the inference of GCNs on the hybrid CIM architecture. Graph-CIM presents
a task-allocation strategy that consists of two major steps. In the first step, Graph-CIM divides the
aggregation task into a set of subtasks based on the topological properties of the input graph. To speed
up processing during the aggregation phase, Graph-CIM analyzes the requirements for the computing
and memory resources and performs graph partitioning of the input graph. This can exploit parallelism
and alleviate the irregular memory accesses in the aggregation phase. In the second step, Graph-CIM
conducts task scheduling on the hybrid architecture to take full advantage of both the general-purpose
CPU and 3D-stacked CIM architecture. Graph-CIM adaptively adjusts the scheduling based on the
utilization status of the hybrid processing units and migrates heavy workloads to reduce the processing
latency. This section first presents the proposed graph-partitioning strategy in Subsection 3.2. Then, we
present the proposed fine-grained scheduling algorithm on the hybrid architecture in Subsection 3.3.

3.2 Graph partitioning

To exploit the parallelism of the multiprocessor device in the hybrid architecture, Graph-CIM performs
graph partitioning. The objective is to achieve fine-grained task scheduling and guide the task mapping
to match the workload with the hybrid architecture. The input graph of a GCN application is normally
a power-law graph, and its vertices do not have the same number of edges. This property affects the
effectiveness of graph partitioning by destroying the potential data locality of the input graph. Therefore,
Graph-CIM adopts community detection to guide the graph-partitioning process.

Graph-CIM performs community detection, which preprocesses an input graph and divides it into
multiple vertex sets, to abstract the hierarchical community structure, where a community denotes a
vertex set. The vertices within a set have strong connections, whereas those among different sets have
weak connections. We adopt modularity-based algorithms [9], which use modularity as the metric to
detect vertices with strong connections [9], to perform community detection. For the first step, each
vertex of the input graph is initialized as the root vertex of its own independent community. Second,
a community ci selects a neighboring community that has the maximum gain of modularity, and this
community ci is connected to this neighboring community. The root vertex of this neighboring community
becomes the new root vertex of community ci. This step is repeated multiple times to abstract the
hierarchical community structure within an input graph.

Figure 5 illustrates an example. In Figure 5(a), vertices V1 and V2 can create a vertex set based on
their similarity. In the same manner, vertices V4 and V7, and vertices V5 and V6, create two separate
vertex sets. In Figure 5(b), vertex V3 is further merged into the set with vertices V1 and V2. Two vertex



Chen J X, et al. Sci China Inf Sci June 2021 Vol. 64 160409:7

sets {V4, V7} and {V5, V6} create a new vertex set. The input graph can form a hierarchical community
structure, as shown in Figure 5(c).

Due to the mismatch between the scale of the vertex sets and the cache capacity, the vertex sets must
be further transformed into subtasks in order to fully utilize the valuable cache space. This requires large
vertex sets that cannot be entirely loaded into the cache to be partitioned and several small vertex sets
to be merged to fill the spare cache space.

For the k-th aggregation operation, a vertex with feature vector requires fk memory space. Let Cp

denote the cache capacity. Then the cache can maintain up to mvk = ⌊
Cp

fk
⌋ vertices. For the hybrid

architecture that contains Np processing units, the k-th aggregation operation is partitioned into ntk
subtasks according to

ntk = max

(⌈

n · fk
Cp

⌉

, Np

)

. (1)

Algorithm 1 presents the procedure to generate a set of aggregation subtasks, which consists of two
parts: graph partitioning and merging of small vertex sets. Algorithm 1 first initializes ntk empty subtasks
to store multiple vertices (line 1). There are two types of vertex sets, Cbig and Csmall, which are defined
as follows.

Algorithm 1 Generate aggregation subtasks (C, ntk,mvk)

Require: A list of vertex sets after community detection C, the number of subtasks ntk, and the maximum number of vertices

that the cache can maintain mvk.

Ensure: A set of aggregation subtasks St.

1: Initialize St with ntk empty subtasks;

2: Cbig ← {u|u ∈ C and u.size > mvk};
3: Csmall ← {u|u ∈ C and u.size 6 mvk};

4: while Cbig 6= ∅ do

5: u← DEQUEUE(Cbig);

6: v ← DEQUEUE(u.children);

7: u.size← u.size− v.size;

8: Ctmp = {u, v};

9: for w ∈ Ctmp do

10: if w.size 6 mvk then

11: ENQUEUE(Csmall, w);

12: else

13: ENQUEUE(Cbig, w);

14: end if

15: end for

16: end while

17: Sort Csmall by the size of a vertex set;

18: for u ∈ Csmall do

19: subtask← the subtask in St with the minimum number of vertices;

20: ENQUEUE(subtsk, u);

21: end for

22: return St.

Definition 1. Cbig is a type of vertex sets. The number of vertices in each vertex set in Cbig is greater
than mvk.

Definition 2. Csmall is a type of vertex sets. The number of vertices in each vertex set in Csmall is less
than or equal to mvk.

Graph partitioning is intended to divide vertex sets in Cbig into several vertex sets. The partitioned
vertex sets then become Csmall and can fit the cache capacity (lines 4–16). The merging of small vertex
sets is intended to form a set of subtasks, each of which fills the cache capacity (lines 17–21). Different
vertex sets (i.e., all sets of Csmall) are sorted in descending order according to their sizes (line 17). Then,
the vertex sets are assigned successively to the subtask with the minimum number of vertices (lines 18–21).

A GCN application consists of multiple aggregation operations. Algorithm 1 presents the partitioning
process for one aggregation operation. To reduce the number of transfers from Cbig to Csmall, different
aggregation operations are sorted in ascending order according to the dimension of the feature vector.
The aggregation operation with a lower-dimension feature vector is selected to conduct partitioning in
Algorithm 1. The partitioning is based on the results of previous partitions.

Each set in Cbig is partitioned into two sets, which takes O(1) time. Cbig consists of at most n sets.
Therefore, graph partitioning takes O(n) time (lines 4–16). The merging process first sorts the vertex



Chen J X, et al. Sci China Inf Sci June 2021 Vol. 64 160409:8

size in descending order, which takes O(n) time (line 17). Then, merging the small vertex sets takes
O(n · log(n)) time (lines 18–21). Therefore, the time complexity of Algorithm 1 is O(n · log(n)).

3.3 Task scheduling on the hybrid architecture

Graph-CIM performs task scheduling to take full advantage of the hybrid architecture. Algorithm 2
presents the detailed steps to generate a feasible task schedule. This algorithm divides the tasks into
several groups. Data dependence exists among the different groups, whereas tasks within a group do
not have data dependence. For each group of tasks, Graph-CIM performs task mapping and migration.
By scheduling tasks within each group, these independent tasks can be allocated to processing units
concurrently, which can reduce processing latency. In Algorithm 2, breadth first search (BFS) is adopted
to divide the task set into several groups (line 1).

ESTi = max(FTl), Tl ∈ pred(Ti). (2)

Algorithm 2 Schedule (T, usage[])

Require: A set of tasks T = {T1, T2, . . . , Tm}, the using status of Cores and PEs usage[].

Ensure: A task schedule on the hybrid architecture.

1: Get groups GP by performing BFS with task T ;

2: for group gp ∈ GP do

3: Initialize Arraycpu, Arraycim;

4: for task Ti ∈ gp do

5: if opi is COMBINATION then

6: Add Ti to Arraycpu;

7: else

8: Add Ti to Arraycim;

9: end if

10: end for

11: Obtain ESTi from (2) for each Ti ∈ gp.

12: Sort tasks in Arraycpu and Arraycim respectively in ascending order of EST;

13: Allocate tasks in Arraycpu successively to the idlest CPU core;

14: Allocate tasks in Arraycim successively to the idlest CIM PE;

15: end move← False;

16: Update Abusy and Aidle;

17: while end move is False do

18: Obtain the busiest core Pbusy in Abusy;

19: Obtain the idlest core Pidle in Aidle;

20: Obtain the final task Ttail of core Pbusy;

21: Obtain the execution time ttail of task Ttail in Aidle;

22: if usage[Pidle] + ttail < usage[Pbusy] then

23: Migrate Ttail from core Pbusy to Pidle;

24: else

25: end move← True;

26: end if

27: end while

28: end for

The tasks are allocated based on their preference for different architectures (lines 3–14). Arraycpu and
Arraycim are employed to classify tasks with a preference for CPU and CIM architecture, respectively
(lines 3–10). An aggregation task is preferentially allocated to the CIM architecture, whereas a combi-
nation task is allocated to the general-purpose CPU. Graph-CIM further maps tasks to processing units
according to the earliest start time (EST) (lines 11–14). Eq. (2) is used to calculate EST of Ti (line 11),
where ESTi denotes the EST of task Ti. Ti has several predecessor tasks, and FTl denotes the finishing
time of task Tl. Then ESTi is equal to the maximum of FTl, l ∈ pred(Ti). The tasks in both Arraycpu
and Arraycim are sorted in ascending order of EST (line 12), and then the tasks in Arraycpu and Arraycim
are mapped successively to the idlest processing unit of the CPU and CIM, respectively (lines 13 and
14). This ensures that the task with the EST can be processed first.

For task migration, Graph-CIM evaluates the utilization status of different architectures and their pro-
cessing units to reallocate tasks (lines 15–27). Graph-CIM sets one architecture as the busy architecture
Abusy and the other architecture as the idle architecture Aidle (lines 15 and 16). Then, Graph-CIM mi-
grates the tasks in the busiest processing unit in Abusy to the idlest processing unit in Aidle (lines 17–27).
If the utilization status is the same, the processing unit with the lowest logical unit number is assigned
as the busiest processing unit, and processing unit with the greatest logical unit number is assigned as



Chen J X, et al. Sci China Inf Sci June 2021 Vol. 64 160409:9

T
4

T
5

T
6

T
7

T
8

T
9

T
3

T
3

T
3

T
3

T
3

T
4

T
4

T
4

T
4

T
2

T
2

T
2

T
2

T
1

T
1 T

1

T
1

T
7

T
5

T
6

T
6

T
8

T
8

T
7 T

5
T

9
T

1

T
2

Combination phase Aggregation phase

Core
1

Core
2

PE
1

PE
2

Core
1

Core
2

PE
1

PE
2

Core
1

Core
2

PE
1

PE
2

Core
1

Core
2

PE
1

PE
2

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

(a)

(b) (c)

(d) (e)

Figure 6 (Color online) Task mapping and task migration of a GCN model. (a) The DAG used to represent a GCN; (b)–(e) the

procedures of task mapping and task migration.

the idlest processing unit. Graph-CIM balances the allocation of tasks within each group. As the tasks
within a group are independent, the load-balancing process exploits the search space of task scheduling
and effectively reduces the processing latency of the workload.

We use an example to illustrate the basic procedures of task mapping and task migration. As shown
in Figure 6, the task set is partitioned into four groups {T1}, {T2, T3, T4}, {T5, T6, T7, T8}, {T9}. For
the first group T1, its EST is equal to 0. As T1 is a combination operation, T1 is allocated to Core1 in
CPU. For the group {T2, T3, T4}, the EST of each task is equal to 1, and the tasks are allocated to the
CIM architecture based on their types. After these tasks are sorted, task T4 is allocated to the idlest
processing unit PE1. Then, tasks T3 and T2 are mapped to PE2 and PE1, respectively. Task migration
is triggered by the imbalanced allocation of tasks, and task T2 is migrated from PE1 to Core2. As T2 is
coarse-grained, the frequent memory access leads to longer execution time on the CPU.

The ESTs of the tasks in group {T5, T6, T7, T8} are 5, 5, 3, and 3, respectively. These tasks are
combination operations and mapped to the CPU. After sorting the ESTs, task T7 is first allocated to the
idlest core Core1. Tasks T8, T5, and T6 are further mapped to Core2, Core1, and Core1, respectively, and
tasks T8 and T6 are migrated to PE1 and PE2, respectively. The last task T9 is a combination task, and
is mapped to Core1 based on its data dependence and operation type. Figure 6(e) shows the final task
schedule for the GCN model.

4 Evaluation

To demonstrate the viability of the proposed scheme, we have conducted a set of experiments and com-
pared our scheme with two representative schemes. In this section, we first introduce the experimental
setup, and then present the experimental results with detailed analysis.

4.1 Experimental setup

The widely used open-source deep learning framework PyTorch [10] is used to train neural network models
and abstract execution model representations. DAGs are abstracted from the log files of PyTorch and
TensorBoardX to determine the functionality of the deep learning applications.

The hybrid CIM architecture consists of both CPU and 3D-stacked CIM architectures. The 3D-stacked
CIM is implemented based on the Neurocube model [8], which is an extension of Micron’s hybrid memory
cube (HMC) [11], to support neural computing. The 3D-stacked CIM is configured to contain sixteen
300-MHz PEs, each with 16 MACs. The 3D-stacked CIM integrates a cache with a capacity of 1 MB,
and DRAM with an 8 GB capacity and 160 GB/s bandwidth (HMC 2.0). The general-purpose CPU
integrates an 8-core 3.0 GHz Intel Xeon CPU. The capacities of the cache and DRAM are 12 MB and
8 GB, respectively. The DRAM bandwidth is 41.6 GB/s with a DDR4 interface.

We compared Graph-CIM with two baseline architectures and different scheduling algorithms on the
hybrid CIM architecture. A state-of-the-art framework, PyTorch Geometric (PyG) [12], is adopted as
the baseline scheme. We compared the proposed scheduling algorithm with a well-known heterogeneous
scheduling algorithm, HEFT [13], and a representative hybrid CIM scheduling algorithm, PEFT [14], on
top of the hybrid architecture.



Chen J X, et al. Sci China Inf Sci June 2021 Vol. 64 160409:10

Table 3 GCN models and standard graph datasets

Dataset Number of vertices Number of edges Number of features Number of classes

Blogcatalog 5196 171743 8189 7

Citeseer 3312 4715 3703 6

Coauthor 18333 81894 6805 15

DBLP 17716 52867 1639 4

Pubmed 19717 44324 500 3

To evaluate the effectiveness of the proposed Graph-CIM, we use a set of representative GCN models
and standard graph datasets, as shown in Table 3. A GCN [1], GWNN [6], DAGNN [5], and SGC [7] are
used in the experiments. These GCN applications are typical semi-supervised classification applications
and are adopted as GCN models in the experiments. The datasets listed in Table 3 are used as the inputs
of the GCN model. These datasets are obtained from citation networks and social networks1), and their
characteristics are described in Table 3. Particularly, the columns “Number of features” and “Number
of classes” represent the dimensions of the feature vector and the number of labeled classes, respectively.

4.2 Results and discussion

4.2.1 Processing latency

We first compare the processing latency of GCNs on four different types of architectures: (1) PyG on the
general-purpose CPU, (2) Graph-CIM on the general-purpose CPU, (3) Graph-CIM on the 3D-stacked
CIM, and (4) Graph-CIM on the hybrid architecture with both the general-purpose CPU and the 3D-
stacked CIM. Figure 7 presents the processing latency of GCNs on four different types of architectures.
From the experimental results, PyG on CPU (PyG-CPU) has the longest processing latency. In our
technique, we adopt the graph-partitioning strategy for the input graph based on the graph community
structure. This improves the irregular data access in the aggregation phase. We observe that the process-
ing latency of some GCN models for Graph-CIM on CPU is less than that for Graph-CIM on CIM. This
is because different GCN models have different ratios of the aggregation phase to the combination phase.
As the general-purpose CPU is more suitable for processing the combination phase and the 3D-stacked
CIM is more effective to reduce the latency of the aggregation phase, different combinations of these two
phases affect the processing latency.

We also observe that the proposed Graph-CIM can obtain the lowest processing latency. Graph-CIM
considers the properties of memory and data access and takes advantage of the hybrid architecture to
accelerate the irregular data access of the aggregation phase and exploit the parallelism of the combi-
nation phase. From the experimental results, Graph-CIM can reduce the processing latency by 82.38%,
42.38%, and 44.80% on average compared to PyG-CPU, Graph-CIM on CPU, and Graph-CIM on CIM,
respectively.

We further conduct a set of experiments to compare the processing latency of several GCN models
with different scheduling algorithms. We compare the proposed Graph-CIM with two representative
scheduling algorithms, HEFT [13] and PEFT [14], on the hybrid architecture. For all three scheduling
algorithms, the input DAG is abstracted from the log files of PyTorch and TensorboardX. Figure 8
illustrates the experimental results, from which it can be observed that Graph-CIM obtains the lowest
processing latency among the three scheduling algorithms. HEFT is an efficient heterogeneous scheduling
algorithm. However, its scheduling granularity is still coarse, which leads to inefficient utilization of the
hybrid architecture due to the data dependence of the GCN. PEFT is a scheduling algorithm intended
for the heterogeneous CIM architecture. Although it adopts the fine-grained scheduling to partition tasks
and exploits the ability to process tasks in parallel, it eliminates the data locality inside the aggregation
and combination phases. PEFT may introduce extra irregular memory accesses, thereby causing longer
processing latency. The proposed Graph-CIM jointly considers the characteristics of GCN applications
and the properties of the hybrid architecture and can adaptively adjust the allocation of workloads based
on the current status of the hybrid architecture. These optimization techniques effectively reduce the
processing latency of GCNs.

1) Graph Data. https://github.com/EdisonLeeeee/GraphData. 2017.



Chen J X, et al. Sci China Inf Sci June 2021 Vol. 64 160409:11

160

140

120

100

80

60

40

20

0

P
ro

ce
ss

in
g
 l

at
en

cy
 (

m
s)

P
ro

ce
ss

in
g
 l

at
en

cy
 (

m
s)

160

140

120

100

80

60

40

20

0

P
ro

ce
ss

in
g
 l

at
en

cy
 (

m
s)

P
ro

ce
ss

in
g
 l

at
en

cy
 (

m
s)

Blogcatalog Citeseer Coauthor

Graph-CIM on PIM
Graph-CIM on CPU-CIM

DBLP Pubmed Blogcatalog Citeseer Coauthor DBLP Pubmed

Blogcatalog Citeseer Coauthor DBLP Pubmed Blogcatalog Citeseer Coauthor DBLP Pubmed

PYG on CPU
Graph-CIM on CPU

Graph-CIM on PIM
Graph-CIM on CPU-CIM

PYG on CPU
Graph-CIM on CPU

Graph-CIM on PIM
Graph-CIM on CPU-CIM

PYG on CPU
Graph-CIM on CPU

Graph-CIM on PIM
Graph-CIM on CPU-CIM

PYG on CPU
Graph-CIM on CPU

1400

1200

1000

800

600

400

200

0

1800

1500

1200

900

600

300

0

(a) (b)

(c) (d)

Figure 7 (Color online) The processing latency of GCNs on four different types of architectures. (a) GCN; (b) DAGNN;

(c) GWNN; (d) SGC.

Blogcatalog Citeseer Coauthor DBLP Pubmed Blogcatalog Citeseer Coauthor DBLP Pubmed

Blogcatalog Citeseer Coauthor DBLP Pubmed Blogcatalog Citeseer Coauthor DBLP Pubmed

P
ro

ce
ss

in
g
 l

at
en

cy
 (

m
s)

100

90

80

70

60

50

40

30

20

10

0

P
ro

ce
ss

in
g
 l

at
en

cy
 (

m
s)

P
ro

ce
ss

in
g
 l

at
en

cy
 (

m
s)

100

90

80

70

60

50

40

30

20

10

0

P
ro

ce
ss

in
g
 l

at
en

cy
 (

m
s)

100

90

80

70

60

50

40

30

20

10

0

240

200

160

120

80

40

0

HEFT
PEFT

Graph-CIM

HEFT
PEFT

Graph-CIM

HEFT
PEFT

Graph-CIM

HEFT
PEFT

Graph-CIM

(a) (b)

(c) (d)

Figure 8 (Color online) The processing latency of HEFT [13], PEFT [14], and Graph-CIM on the hybrid architecture. (a) GCN;

(b) DAGNN; (c) GWNN; (d) SGC.

4.2.2 Utilization ratio of processing units

This subsection presents the experimental results of the utilization ratio of the general-purpose CPU and
3D-stacked CIM within the hybrid architecture. Figure 9 illustrates the experimental results for three
scheduling algorithms, HEFT, PEFT, and Graph-CIM, with different GCN models. The input DAG in
the scheduling is also abstracted from the log files of PyTorch and TensorboardX.

As shown in Figure 9, PEFT achieves the highest utilization ratio by adopting fine-grained task par-
titioning. Although PEFT has a better utilization ratio than Graph-CIM, this comes at the cost of
eliminating data locality. Graph-CIM has a different design concept, where the utilization ratio is not



Chen J X, et al. Sci China Inf Sci June 2021 Vol. 64 160409:12

Blogcatalog Citeseer Coauthor DBLP Pubmed Blogcatalog Citeseer Coauthor DBLP Pubmed

Blogcatalog Citeseer Coauthor DBLP Pubmed Blogcatalog Citeseer Coauthor DBLP Pubmed

100

90

80

70

60

50

40

30

20

10

0

U
ti

li
za

ti
o
n
 r

at
io

 (
%

)

100

90

80

70

60

50

40

30

20

10

0

U
ti

li
za

ti
o
n
 r

at
io

 (
%

)

100

90

80

70

60

50

40

30

20

10

0

U
ti

li
za

ti
o
n
 r

at
io

 (
%

)

100

90

80

70

60

50

40

30

20

10

0

U
ti

li
za

ti
o
n
 r

at
io

 (
%

)

HEFT PEFT Graph-CIM HEFT PEFT Graph-CIM

HEFT PEFT Graph-CIMHEFT PEFT Graph-CIM

(a) (b)

(c) (d)

Figure 9 (Color online) The utilization ratios of HEFT [13], PEFT [14], and Graph-CIM on the hybrid architecture. (a) GCN;

(b) DAGNN; (c) GWNN; (d) SGC.

the primary design objective. Instead, Graph-CIM aims to reduce the processing latency by jointly
considering the utilization of processing units in the hybrid architecture and the properties of the GCN
workloads. The task-allocation process migrates the workloads to idle processing units to balance GCN
processing across different types of processing units. Therefore, Graph-CIM may experience a slight
degradation in terms of its utilization ratio.

5 Related work

Accelerators for GCN. Several hardware accelerators adopt GPU [15] or field-programmable gate
array (FPGA) [16–18] to cater to the specific characteristics of GCN applications. Different GCN ap-
plications can be optimized using flexible general-purpose processing units or application-specific ac-
celerators. In contrast, the proposed Graph-CIM adopts both general-purpose processing units and
the memory-efficient CIM architecture in its design. This hybrid architecture can handle the unique
properties of GCNs, especially the different computation requirements of the aggregation and combina-
tion phases. Therefore, Graph-CIM can still achieve the accuracy and computational efficiency of both
general-purpose processing units and the CIM architecture.

CIM architecture. CIM or processing-in-memory (PIM) architectures can place computational re-
sources inside or near the memory to speed up application processing. The resurgence of CIM is motivated
by several new technologies, such as 3D-stacked memory, application-specific hardware accelerators, and
data-intensive workloads [19–21]. CIM architecture can be implemented in emerging memory technolo-
gies. Among them, ReRAM-based solutions enable processing within the memory device [22–28]. Some
studies adopt crossbar [29] or spin-orbit torque magnetic random access memory-based (SOT-MRAM) [30]
CIM architecture to accelerate the workload processing. Other studies propose a novel CIM architecture
by modifying the conventional DRAM architecture [31]. These studies can provide efficient processing of
neural network applications.

By effectively reducing of data movement across different memory components, the CIM architecture
provides a promising solution to improve the performance of different systems. Several CIM architectures
have been proposed to solve specific problems [32–37]. Other studies have explored the in- or near-storage
computing to improve the efficiency of nonvolatile memory and other storage systems [38,39]. These CIM
architectures and solutions can offer fast near-data processing to reduce data movement. In contrast,



Chen J X, et al. Sci China Inf Sci June 2021 Vol. 64 160409:13

Graph-CIM adopts a different CIM architecture that focuses on the 3D-stacked PIM architecture, like
HMC. Both the system abstractions of applications and memory-resources modeling in Graph-CIM can
be applied to other CIM architectures to further improve application efficiency.

Dai et al. [40] proposed a PIM architecture for large-scale graph processing. It adopts a 3D-stacked
PIM architecture with HMC. Other PIM architectures also adopt the HMC-based architecture to exploit
parallelism for neural network applications [41–43]. Several solutions provide power modeling and power
management for PIM architecture [44,45]. However, Graph-CIM is a task-scheduling algorithm to reduce
the processing latency that adopts not only the 3D-stacked PIM architecture, but also the general-purpose
processing units to form a hybrid architecture. Graph-CIM provides a viable solution for the inference of
GCNs and fully utilizes the hybrid architecture. Graph-CIM may solve other types of graph-processing
problems to further reduce processing latency.

GCNs scheduling and optimization. The hybrid computational pattern and enormous compu-
tation demand are key challenges for the processing of GCNs. Several techniques have been proposed
to accelerate the training or inference process of GCNs by using pipeline, vertex/node reordering, or
data reusing [46–48]. Several techniques such as collapsing weight matrices, removing nonlinearities, and
sampling are adopted to eliminate unnecessary data transfers [49].

Graph-CIM is different from the above techniques. Graph-CIM is a software-based scheduling frame-
work that can ease the burden of application-specific hardware design and efficiently minimize migration
overhead. Graph-CIM adopts the task-allocation strategy to speed up the inference of GCNs on two
different types of processing units. Therefore, Graph-CIM can be combined with the above techniques to
further improve the utilization of constrained memory resources and improve the scheduling efficiency of
various GCN applications.

6 Conclusion

In this paper, we proposed Graph-CIM, a novel data processing framework to optimize the task allocation
of GCNs on hybrid CIM architecture. Graph-CIM exploits fine-grained parallelism to fully utilize the
processing resources of both general purpose processing units and the 3D-stacked CIM architecture. The
allocation of the aggregation and combination phases is jointly determined by the utilization status and
properties of processing resources. We demonstrate the effectiveness of our approach by using a set of
standard GCN workloads. The experimental results show that the proposed approach can effectively
reduce the processing latency and fully utilize the processing units of the hybrid architecture.

In the future, we plan to investigate the simplified memory-access model of the CIM architecture, as it
can potentially eliminate redundant data accesses to further improve the performance of our approach.
We also plan to jointly study the effects of energy and processing latency. This can provide an integrated
solution to further boost the system performance of the hybrid CIM architecture.

Acknowledgements This work was supported in part by National Natural Science Foundation of China (Grant No. 61972259),

and Guangdong Basic and Applied Basic Research Foundation (Grant Nos. 2019B151502055, 2017B030314073, 2018B030325002).

References

1 Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th Interna-
tional Conference on Learning Representations (ICLR), 2017. 1–14

2 Xie P, Sun G, Wang F, et al. V-PIM: an analytical overhead model for processing-in-memory architectures. In: Proceedings
of IEEE 7th Non-Volatile Memory Systems and Applications Symposium (NVMSA), 2018. 107–108

3 Roy A, Mihailovic I, Zwaenepoel W. X-Stream: edge-centric graph processing using streaming partitions. In: Proceedings of
the 24th ACM Symposium on Operating Systems Principles (SOSP), 2013. 472–488

4 Yuan P, Zhang W, Xie C, et al. Fast iterative graph computation: a path centric approach. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2014. 401–412

5 Liu M, Gao H, Ji S. Towards deeper graph neural networks. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), 2020. 338–348

6 Xu B, Shen H, Cao Q, et al. Graph wavelet neural network. In: Proceedings of the 7th International Conference on Learning
Representations (ICLR), 2019. 1–13

7 Wu F, Zhang T Y, de Souza J A H, et al. Simplifying graph convolutional networks. In: Proceedings of the 36th International
Conference on Machine Learning (ICML), 2019. 6861–6871

8 Kim D, Kung J, Chai S, et al. Neurocube: a programmable digital neuromorphic architecture with high-density 3D memory.
In: Proceedings of ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), 2016. 380–392

9 Arai J, Shiokawa H, Yamamuro T, et al. Rabbit order: just-in-time parallel reordering for fast graph analysis. In: Proceedings
of IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2016. 22–31

10 Paszke A, Gross S, Massa F, et al. PyTorch: an imperative style, high-performance deep learning library. In: Proceedings of
Advances in Neural Information Processing Systems, 2019. 8026–8037

11 Pawlowski J T. Hybrid memory cube (HMC). In: Proceedings of IEEE Hot Chips 23 Symposium (HCS), 2011. 1–24



Chen J X, et al. Sci China Inf Sci June 2021 Vol. 64 160409:14

12 Fey M, Lenssen J E. Fast graph representation learning with PyTorch Geometric. In: Proceedings of ICLR Workshop on
Representation Learning on Graphs and Manifolds, 2019. 1–9

13 Topcuoglu H, Hariri S, Wu M-Y. Performance-effective and low-complexity task scheduling for heterogeneous computing.
IEEE Trans Parallel Distrib Syst, 2002, 13: 260–274

14 Xu D, Liao Y, Wang Y, et al. Selective off-loading to memory: task partitioning and mapping for PIM-enabled heterogeneous
systems. In: Proceedings of the Computing Frontiers Conference (CF), 2017. 255–258

15 Chang F, Dean J, Ghemawat S, et al. Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst,
2008, 26: 1–26

16 Zhang B, Zeng H, Prasanna V. Accelerating large scale GCN inference on FPGA. In: Proceedings of IEEE 28th Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2020. 241

17 Zhang B, Zeng H, Prasanna V. Hardware acceleration of large scale GCN inference. In: Proceedings of IEEE 31st International
Conference on Application-specific Systems, Architectures and Processors (ASAP), 2020. 61–68

18 Wang H, Wang K, Yang J, et al. GCN-RL circuit designer: transferable transistor sizing with graph neural networks and
reinforcement learning. In: Proceedings of the 57th ACM/IEEE Design Automation Conference (DAC), 2020. 1–6

19 Guo X X, Xiang S Y, Zhang Y H, et al. Enhanced memory capacity of a neuromorphic reservoir computing system based on
a VCSEL with double optical feedbacks. Sci China Inf Sci, 2020, 63: 160407

20 Cheng W, Cai R, Zeng L F, et al. IMCI: an efficient fingerprint retrieval approach based on 3D stacked memory. Sci China
Inf Sci, 2020, 63: 179101

21 Xi K, Bi J S, Majumdar S, et al. Total ionizing dose effects on graphene-based charge-trapping memory. Sci China Inf Sci,
2019, 62: 222401

22 Zha Y, Nowak E, Li J. Liquid silicon: a nonvolatile fully programmable processing-in-memory processor with monolithically
integrated ReRAM. IEEE J Solid-State Circ, 2020, 55: 908–919

23 Li Z, Yan B, Li H. ReSiPE: ReRAM-based single-spiking processing-in-memory engine. In: Proceedings of the 57th ACM/IEEE
Design Automation Conference (DAC), 2020. 1–6

24 Zheng Q, Wang Z, Feng Z, et al. Lattice: an ADC/DAC-less ReRAM-based processing-in-memory architecture for accelerating
deep convolution neural networks. In: Proceedings of the 57th ACM/IEEE Design Automation Conference (DAC), 2020. 1–6

25 Gupta S, Imani M, Sim J, et al. SCRIMP: a general stochastic computing architecture using ReRAM in-memory processing.
In: Proceedings of Design, Automation Test in Europe Conference Exhibition (DATE), 2020. 1598–1601

26 Yang X, Yan B, Li H, et al. ReTransformer: ReRAM-based processing-in-memory architecture for transformer acceleration.
In: Proceedings of IEEE/ACM International Conference On Computer Aided Design (ICCAD), 2020. 1–9

27 Wang F, Shen Z, Han L, et al. ReRAM-based processing-in-memory architecture for blockchain platforms. In: Proceedings
of the 24th Asia and South Pacific Design Automation Conference (ASPDAC), 2019. 615–620

28 Han L, Shen Z, Liu D, et al. A novel ReRAM-based processing-in-memory architecture for graph traversal. ACM Trans
Storage, 2018, 14: 1–26

29 Chu C, Wang Y, Zhao Y, et al. PIM-Prune: fine-grain DCNN pruning for crossbar-based process-in-memory architecture.
In: Proceedings of the 57th ACM/IEEE Design Automation Conference (DAC), 2020. 1–6

30 Angizi S, He Z, Rakin A S, et al. CMP-PIM: an energy-efficient comparator-based processing-in-memory neural network
accelerator. In: Proceedings of the 55th ACM/ESDA/IEEE Design Automation Conference (DAC), 2018. 1–6

31 Yang Y, Chen X, Han Y. Dadu-CD: fast and efficient processing-in-memory accelerator for collision detection. In: Proceedings
of the 57th ACM/IEEE Design Automation Conference (DAC), 2020. 1–6

32 Liu Z, Ren E, Qiao F, et al. NS-CIM: a current-mode computation-in-memory architecture enabling near-sensor processing
for intelligent IoT vision nodes. IEEE Trans Circuits Syst I, 2020, 67: 2909–2922

33 Imani M, Pampana S, Gupta S, et al. DUAL: acceleration of clustering algorithms using digital-based processing in-memory.
In: Proceedings of the 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020. 356–371

34 Wan Z, Dai G, Soh Y J, et al. An order sampling processing-in-memory architecture for approximate graph pattern mining.
In: Proceedings of the 2020 on Great Lakes Symposium on VLSI (GLSVLSI), 2020. 357–362

35 Xu S, Chen X, Qian X, et al. TUPIM: a transparent and universal processing-in-memory architecture for unmodified binaries.
In: Proceedings of the 2020 on Great Lakes Symposium on VLSI (GLSVLSI), 2020. 199–204

36 Kwon Y, Lee Y, Rhu M. TensorDIMM: a practical near-memory processing architecture for embeddings and tensor operations
in deep learning. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
2019. 740–753

37 Gupta S, Imani M, Kaur H, et al. NNPIM: a processing in-memory architecture for neural network acceleration. IEEE Trans
Comput, 2019, 68: 1325–1337

38 Imani M, Gupta S, Sharma S, et al. NVQuery: efficient query processing in nonvolatile memory. IEEE Trans Comput-Aided
Des Integr Circ Syst, 2019, 38: 628–639

39 Chen C H, Hsia T Y, Huang Y, et al. Data prefetching and eviction mechanisms of in-memory storage systems based on
scheduling for big data processing. IEEE Trans Parallel Distrib Syst, 2019, 30: 1738–1752

40 Dai G, Huang T, Chi Y, et al. GraphH: a processing-in-memory architecture for large-scale graph processing. IEEE Trans
Comput-Aided Des Integr Circ Syst, 2019, 38: 640–653

41 Wang Y, Zhang M, Yang J. Exploiting parallelism for convolutional connections in processing-in-memory architecture.
In: Proceedings of the 54th ACM/EDAC/IEEE Design Automation Conference (DAC), 2017. 1–6

42 Wang Y, Chen W, Yang J, et al. Towards memory-efficient allocation of CNNs on processing-in-memory architecture. IEEE
Trans Parallel Distrib Syst, 2018, 29: 1428–1441

43 Wang Y, Chen W, Yang J, et al. Exploiting parallelism for CNN applications on 3D stacked processing-in-memory architecture.
IEEE Trans Parallel Distrib Syst, 2019, 30: 589–600

44 Sun H, Zhu Z, Cai Y, et al. An energy-efficient quantized and regularized training framework for processing-in-memory
accelerators. In: Proceedings of the 25th Asia and South Pacific Design Automation Conference (ASP-DAC), 2020. 325–330

45 Zhang C, Meng T, Sun G. PM3: power modeling and power management for processing-in-memory. In: Proceedings of IEEE
International Symposium on High Performance Computer Architecture (HPCA), 2018. 558–570

46 Geng T, Li A, Shi R, et al. AWB-GCN: a graph convolutional network accelerator with runtime workload rebalancing.
In: Proceedings of the 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020. 922–936

47 Yan M, Deng L, Hu X, et al. HyGCN: a GCN accelerator with hybrid architecture. In: Proceedings of IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2020. 15–29

48 Liang S, Wang Y, Liu C, et al. EnGN: a high-throughput and energy-efficient accelerator for large graph neural networks.
IEEE Trans Comput, 2021. doi: 10.1109/TC.2020.3014632

49 Hamilton W L, Ying R, Leskovec J. Inductive representation learning on large graphs. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS), 2017. 1025–1035

https://doi.org/10.1109/71.993206
https://doi.org/10.1145/1365815.1365816
https://doi.org/10.1007/s11432-020-2862-7
https://doi.org/10.1007/s11432-019-2672-5
https://doi.org/10.1007/s11432-018-9799-1
https://doi.org/10.1109/JSSC.2019.2963005
https://doi.org/10.1145/3177916
https://doi.org/10.1109/TCSI.2020.2984161
https://doi.org/10.1109/TC.2019.2903055
https://doi.org/10.1109/TCAD.2018.2819080
https://doi.org/10.1109/TPDS.2019.2892957
https://doi.org/10.1109/TCAD.2018.2821565
https://doi.org/10.1109/TPDS.2018.2791440
https://doi.org/10.1109/TPDS.2018.2868062
https://doi.org/10.1109/TC.2020.3014632

	Introduction
	Background and motivation
	Graph convolutional networks
	Heterogeneous CIM architecture
	System model
	Motivation

	Graph-CIM: a task allocation strategy for GCNs on hybrid architecture
	Overview
	Graph partitioning
	Task scheduling on the hybrid architecture

	Evaluation
	Experimental setup
	Results and discussion
	Processing latency
	Utilization ratio of processing units


	Related work
	Conclusion

