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Abstract Memristor based computing-in-memory chips have shown the potentials to accelerate deep neural

networks with high energy efficiency. Due to the inherent filament-based conductive mechanism of the

memristor, the reading and writing noises are hard to eliminate. Besides, the precision of the large-scale

memristor array is still limited. However, when the noise of the memristor is large, the existing training

methods to reduce the accuracy loss of memristor based computing-in-memory chips will face challenges.

Hence, we proposed the array-level boosting method with spatial extended allocation to reduce the accuracy

loss induced by the limited precision and large noises. To optimize the spatial allocation number of each

layer in the neural network, the greedy spatial extended allocation algorithm is also proposed. The image

processing and classification tasks are demonstrated based on fabricated 32×128 memristor arrays to valid the

performance of the proposed method. The chip-in-loop results show that the recovered accuracy of ResNet-

34 on CIFAR-10 with array-level boosting method is 92.3%, which is closed to software-based accuracy of

93.2%.
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1 Introduction

Over the past several years, deep neural networks (DNNs) based artificial intelligence (AI) has extensive
promising transformative applications that exceeded human-level capabilities in many areas, such as
image detection and recognition [1, 2], and machine translation [3]. Substantial complementary metal-
oxide-semiconductor transistor (CMOS) based edge DNN accelerators [4] have emerged to promote these
applications to the power-hungry internet-of-things hardware. These chips are flexible that can support
versatile neural network models. Whereas, when improving the energy efficiency of these chips, challenges
come out that the scaling down of device technology is gradually slow [5] and the massive data need to
be exchanged between computing and memory units [6].

To deal with these fundamental limitations of existing DNN accelerators, the emerged memory-based
computing-in-memory chip for DNNs has been investigated as a promising candidate [7]. Computing-in-
memory chips improve the energy efficiency by executing computing operations locally within memory
units based on the physical laws and reducing data transmission to a minimum between computing and
memory units [8]. Both charge-based memory such as static random-access memory (SRAM) [9, 10]
and floating gate field effect transistor (FGFET) [11], and two/three terminal resistance-based memory
such as resistive random-access memory (RRAM) [12, 13], phase-change memory (PCM) [14, 15] and
ferroelectric field effect transistor (FeFET) [16] have been introduced into computing-in-memory chips as
basic computing units. For the resistance-based memory in the computing-in-memory application, the
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devices are arranged as crossbar arrays. When the conductance matrix is mapped to the array and the
voltage vector is parallelly applied to the row terminals, the accumulated output current vector can be
generated based on the Ohm’s Law and Kirchhoff’s Law, which is the computing result of vector-matrix
multiplication [8]. Array-level and macro-level analog RRAM (also called memristor) based chips have
demonstrated many applications such as letter/image classification [17,18], face recognition [19] and time
series prediction [20], which have shown the potentials in large-scale integration and practical deployment.

However, due to the nonidealities of memristor devices, especially reading and writing noises, the
system accuracy of large-scale memristor based computing-in-memory chips will drop. Many systematic
methods have been proposed to reduce the effects of noises based on simulations and experiments. There
are mainly three types of methods to achieve the noise-tolerate neural network: off-chip noise aware
training, on-chip training, and local multiple-device representation. The noise aware training leverages
the noise injection to weights in the forward phase and uses a straight-through estimation method to
calculate the residual and gradient of weights in the backward phase [21, 22]. Whereas, the constraint
of this method is that the on-chip accuracy will drop a lot when the variation of memristor devices
is high. The on-chip training utilizes the delicately designed backpropagation circuits to perform the
on-chip calculation of gradient and local update of the memristor array [23, 24]. This method requires
extra backpropagation circuits, resulting in the heavy overhead of area and energy. Besides, the nonideal
fluctuations of memristor devices in programming operations will make the updated gradients deviate
from the proper values. The neural network with multiple memristor devices as one weight [25] can reduce
the variance of weights by compensating intra-device noise, and the committee machine with multiple
neural networks employed ensemble averaging to improve the accuracy [26]. However, the accuracy drop
effects of different layers in the neural network by nonidealities are varied, and the universal common
multiple and averaging method from pre-layers to post-layers results in the overhead of memristor usage.
Besides, the local integration of multiple memristor devices as one weight within the same array lacks
flexibility to utilize the various accuracy importance of different layers.

In this work, we proposed an array-level boosting method by integrating the spatial extended allo-
cation for memristor based computing-in-memory chip to compensate quantized and intrinsic noises of
memristors. The array-level boosting method leverage the flexible combination of multiple arrays to deal
with different accuracy importance of different layers. Here, we firstly present the fabricated 32×128
memristor array and show the measured multi-level characteristics. Then, we show the boosting results
of the image processing application. Further, we show the performance of the array-level boosting method
on ResNet-34 with CIFAR-10 dataset and discuss the results.

2 Method

The DNN basically consists of convolutional layers, fully-connected layers, pooling layers and batch
normalization layers. The ResNet family has shown excellent performance on many computing vision
tasks [2], which is a widely used neural network architecture. Thus, we employed a middle-size neural
network in ResNet family — ResNet-34 as the example in this work. ResNet-34 is a cascade of a sin-
gle convolutional layer, three residual blocks, a global average pooling layer and a fully-connected layer
(Figure 1(a)). Three residual blocks have ten, twelve and ten convolutional layers, respectively. The out-
put of each two layers in residual blocks is connected with the input with an element-wise add operation.
The most computing-intensive layers of DNNs are convolutional layers and fully-connected layers, which
are suitable for memristor based computing. The pooling layer can be calculated with digital computing
units, while the batch normalization layer can be fused into the convolutional layer by transforming the
weights of the convolutional layer. Then, we mainly consider the convolutional layer and fully-connected
layer. The convolutional layer can be formulated as

FMout(x, y, z) =

K−1
∑

i=0

K−1
∑

j=0

Cin−1
∑

k=0

FMin(x+ i, y + i, k)Kernalz(i, j, k), (1)

where i, j, and k are the spatial coordinate of the convolutional kernel, FMin (Cin, Hin,Win) and FMout

(Cout, Hout,Wout) are input and output feature maps, respectively. Cin, Cout, and K are input channel,
output channel, and kernel size, respectively. To use the memristor array to perform the calculation of
convolutional layer, the four-dimension convolutional kernel (Cout, Cin,K,K) is unrolled to two-dimension



Zhang W Q, et al. Sci China Inf Sci June 2021 Vol. 64 160406:3

Residual block 0
10 convolutional layers

FC layer

‘dog’
‘horse’

(a)

(b)

32×32×3
CIFAR-10

Global
average 
pooling

K × K
Cin

Cout

3 × 3

3
16

Residual block 1
12 convolutional layers

Residual block 2
10 convolutional layers

3 × 3

16
16

3 × 3

16
16

3 × 3

16
32

3 × 3

32
32

1 × 1

16
32

1 × 1

32
64

3 × 3

32
64

3 × 3

64
64

(c)
Cout × Cin × K  × K Cout

C
in

 ×
 K

  
×

 K

V1+

V1-

VM-

G+

G-

Joint and average

Spatial extended allocation: N
s

V1+

V1-

VM-

Array-level
replication

Figure 1 (Color online) Array-level boosting method. (a) The architecture of ResNet-34. (b) The principles of convolutional

operation with the memristor array. The convolutional kernel is flattened from (Cout, Cin,K,K) to (Cout, Cin × K × K) and

mapped to the memristor array with differential rows. (c) The schematic of the array-level boosting method with spatial extended

allocation.

matrix (Cout, Cin × K × K) (Figure 1(b)). After the input feature map is sequentially transformed to
voltage vector and applied to the input memristor array, the output feature map can be generated by
reconstruction from the output current vector. Here, we use a pair of two 1-transistor-1-memristor
(1T1R) cells (g+, g−) within the conductance window (gmin, gmax) to represent one synaptic weight (w).
The synaptic weight is linearly mapped to the differential memristors (w → g = g+ − g−) where

g+ =







w

wmax
× (gmax − gmin) + gmin, w > 0,

gmin, w 6 0,
(2)

g− =







gmin, w > 0,

−w

wmax
× (gmax − gmin) + gmin, w < 0,

(3)

and wmax is the maximum of the weights in this convolutional layer. The fully-connected layer is similar
to convolutional layer except that the weight does not need to be unrolled and can be directly mapped
to the memristor array.

As shown in Figure 1(c), the array-level boosting method introduces the spatial extended allocation of
arrays to improve the precision of memristor based computing-in-memory chips. When considering the
quantization error, reading and writing noises of multi-level memristor, the output current of memristor
array can be expressed as

Iout = (G+ qg + nrw)Vin, (4)

where qg is the quantization error of memristor array, nrw is the reading and writing noise of memristor
array. When the memristor is programmed to a specify conductance level g, this conductance level
can be represented as Gaussian distribution with conductance-related standard deviation, which can be
formulated as σ(g) = f(g), where f usually is a polynomial function [21]. The standard deviation of

output noise due to the write and read noise of memristor is σw
out =

√

ΣN−1
0 f2(gi). Thus, to reduce the

standard deviation of output noise, the memristor array can be replicated by Ns times and calculated the
average of the output. The standard deviation of replication and average output is σw

out/
√
Ns. Besides,

when the conductance window of the memristor is (gmin,gmax) and the memristor is Ng bits, the qg can
be represented with a uniform distribution as U(− gmax−gmin

2Ng−1
, gmax−gmin

2Ng−1)
) and the standard deviation of

quantization error of a computing cell is σq = ( gmax−gmin

2Ng+log2 Ns−1
)2/12 with add operation. Unlike that the



Zhang W Q, et al. Sci China Inf Sci June 2021 Vol. 64 160406:4

existing bit splicing method will amplify the noise of most significant bits (MSBs), the array-level spatial
extended allocation method can reduce the effects of noise with add and average. Then, with the spatial
extended allocation that the memristor array can be replicated by Ns times, both of the quantization
error and write noise can be reduced.

To determine the Ns of each layer (N l
s) in the neural network, we need to solve the problem:

argmaxN l
s,l∈(1,L) |Accb − Acc|. Besides, the extended allocation of arrays should as small as possible.

However, the search space of Ns is ΠL
l=1N

l
s, which is too large to get the optimized results by linearly

searching when the neural network is deep. Thus, we proposed the greedy spatial extended allocation
(GSEA) algorithm to find the appropriate Ns of each layer, as shown in Algorithm 1. In GSEA, we first
heuristically select the accuracy threshold Ath and the maximum spatial extended allocation Nm

s . Ath is
used to determinate the convergence of the GSEA algorithm. Nm

s is the maximum of array-level spatial
extended allocation to limit the overhead of GSEA algorithm. The ideal accuracy (Acc) is calculated and
the N l

s of each layer is initialized to zero. Then, GSEA algorithm will optimize the N l
s from the first layer

to the last layer. For each layer, the accuracy difference |Accb −Acc| is calculated to compare with Ath.
When the accuracy difference is larger than Ath, the N l

s will be updated. Note that when optimizing the
Ns of the lth layer, the Ns of other layers are set to one.

Algorithm 1 Greedy spatial extended allocation method

Require: Neural network, dataset, accuracy threshold Ath, maximum spatial extended allocation Nm
s .

Ensure: Spatial extended allocation of each layer: N l
s.

1: Calculate the accuracy of neural work without noise: Acc;

2: Initialize N l
s, l ∈ (1, L);

3: for l = 1 to L do

4: while |Accb − Acc| > Ath do

5: N l
s = N l

s + 1;

6: if N l
s > Nm

s then

7: N l
s = Nm

s ;

8: end if

9: Calculate the accuracy with Ns: Accb;

10: end while

11: end for

12: return N l
s, l ∈ (1, L).

3 Results and discussion

3.1 Device and array characteristics

In order to validate the performance of array-level boosting with GSEA algorithm, we develop an exper-
imental verification system with fabricated memristor arrays (Figure 2(a)). The array has 4096 1T1R
cells which are arranged as 32×128. To utilize the parallelism of the array, the 32 source lines (SLs) is
perpendicular to the 128 bit lines (BLs) and parallel to 32 word lines (WLs), which is suitable for the
neural network application that the dimension of input is usually larger than that of output. To measure
the 32×128 memristor array, we develop a customized test system that can apply the voltages and sense
the currents to the arbitrary terminals parallelly. In Figure 2(a), the 1T1R array employed backend of
line (BEOL) fabrication technology that the memristor is fabricated after the transistor is fabricated from
the foundry. To improve the multi-level characteristics of memristor, we adopted a thermal enhanced
layer (TEL) in the TiN/TEL/HfOx/TiN material stack [27].

The conductance window of the memristor is linearly divided into eight level range from 2 to 20 µS. In
Figure 2(b), the memristor device in 32×128 memristor array is programmed with the close-loop mapping
strategy to eight levels, and we sweep the read voltage from 0 to 0.2 V with 5 V as the gate access voltage.
As shown in Figure 2(b), the measured current of the memristor is approximately in direct proportion
to the read voltage, thus, the input data in the following neural network application is encoded with the
varied amplitude of voltage from 0 to 0.2 V. In the following measurements of device characteristics, the
read voltage is set to 0.2 V. Due to the inherent filament based conductive mechanism of memristor, the
measured conductance at each level will have noise and fluctuation (Figure 2(c)). For the write noise, 512
memristors in the first 16 columns of 32×128 memristor array are sequentially programmed into eight
levels with 0.37 µA as the relative programming error boundary. The cumulative current distribution of
each level is presented in the upside inset of Figure 2(d). To quantify programming error of each level,
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Figure 2 (Color online) Experimental characteristics of fabricated memristor array. (a) Structure of device and 32×128 array;

(b) and (c) current voltage relation and read noise of conductance when the device is programmed to eight different conductance

levels; (d) the cumulative distribution and corresponding standard deviation of eight different conductance levels.
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Figure 3 (Color online) Array-level boosting of data representation. (a) The standard deviation of eight conductance levels under

the different Ns; (b) the distribution of programmed images with different Ns.

the standard deviation of each level is calculated (bottom inset of Figure 2(d)), which can be fitted with a
quadratic function. The average standard deviation is about 8% of the current window. In the following
part, the array-level boosting method will be deployed to the image processing and classification tasks
and performance of it will be evaluated.

3.2 Array-level boosting for image processing

In an image processing application, the transformation matrix is stored in the memristor array and
the performance of image processing is sensitive to the variation. Thus, we use the image processing
application to show that the array-level boosting method can decrease the variation of programmed
multi-level data. We first present the transition of different level distributions from low conductance to
high conductance. The 32×128 memristor array is logically divided into eight subarrays and each subarray
has 16 columns as well as 512 memristor devices. Then each subarray is temporally programmed to eight
different levels and calculates the standard deviation of each subarray and each level. As shown in Fig-
ure 3(a), when the Ns is changed from 1 to 8, the largest standard deviation among eight levels decreases
from about 0.3 µA to about 0.1 µA. Besides, the trend of standard deviation declining in the transition
of Ns from 1 to 4 is faster than that in transition of Ns from 4 to 8 (0.2 µA vs. 0.05 µA), which is not
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efficient to replicate the array with too many times. A similar but more visualized example has been
presented in Figure 3(b). When the word image is programmed into the array, the near white part of the
gray image is filled with visible noise. In Figure 3(b), as the Ns is changed from 1 to 7, the near white
noise is reduced.

Then, we show that the array-level boosting method can reduce the variation of output in discrete
cosine transformation (DCT). The DCT calculation can be expressed as

F = AfAT, (5)

where A is discrete cosine transformation matrix which can be calculated by c(i) cos( (2j+1)π
2N i). The c(i)

is
√

1/i when i = 0 and
√

2/i when i 6= 0. f and F are the input image and the frequency spectrum,
respectively. Here, to fit the A with the size of the fabricated memristor array, the dimension of A is set
to 32 (Figure 4(a)). Similar to the differential representation of weight for neural networks as elaborated
in Section 2, each element in DCT matrix is mapped into two memristor devices in adjacent rows (Fig-
ure 4(b)). In the physical implementation, the voltage inputs are parallelly applied to the row terminals
of the crossbar and the output results are generated by accumulating the current of each row. Compared
to the origin A with the reconstructed matrix from programmed currents on the memristor array, the
programming error can be generated in Figure 4(c). As shown in Figures 4(d) and (e), when the Ns is
linearly increased, the average programming error of each cell and the root-mean-square error (RMSE)
of DCT output will decrease super-linearly. In the ideal situation, the output RMSE should decrease
by 1/

√
Ns when the Ns increased. For the trajectory of output RMSE, the decreasing trend fits well

with the ideal decreasing trend when Ns is less than 4. When Ns is larger than 4, the output RMSE is
saturated to a certain value. This can owe to the fact that the distribution of values in the input image
and differential programmed current matrix of A are not the ideal Gaussian distribution, and thus the
accumulation of programming and computing error cannot be counteracted. The origin input image and
the recovered image based on DCT and inverse DCT are shown in Figure 4(f). When the Ns is 1, the
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emulation.

recovered image is dark with visible noise. As the Ns is larger, the recovered image is more like the origin
one, and recovered images with Ns = 4 and Ns = 8 are almost the same, which is consent with the results
in Figure 4(e).

3.3 Array-level boosting for ResNet-34 with chip-in-loop emulation

In DNN based image classification application with memristor based computing-in-memory chips, with
the noise-aware training in software, the accuracy of a neural network can tolerate the weight noise
when the noise is small. However, when the reading and writing noise of the memristor device is large,
significant accuracy loss is still found. Here, we used ResNet-34 to validate the performance of the
proposed method. In the mapping process, the weight of each layer is unrolled to a two-dimension matrix
and is vertically and horizontally split into several small matrixes to satisfy the size of physical arrays.
Then, with the linearly differential mapping method as Section 2, the weight matrix is programmed to
the memristor array. As shown in Figure 5(a), when the standard deviation of reading and writing noise
is 8% (a comparable amplitude with the noise of fabricated array), the accuracy will drop about 6%.
Besides, when the weight precision is less than 5 bits, the accuracy loss is larger than 2%. Thus, it
required more techniques to reduce the accuracy loss induced by the noise and limited precision.

Before applying the array-level boosting method with GSEA algorithm to ResNet-34, we need to
determine the hyper parameters in the GSEA algorithm. As shown in Figures 5(c) and (d), we show
the accuracy loss and allocated arrays of neural network with the spatial extended allocation as the
accuracy threshold Accth is linearly changed from 0.1% to 1.2% and the standard deviation of noise of
the optimized layer is linearly changed from 12% to 40%. In the optimization process of Ns, the size of the
memristor array is set to 32×128 to fit the size of the fabricated array, and the maximum spatial extended
allocation Nm

s is set to 32 to avoid explosive allocation of memristor array. In Figures 5(c) and (d), when
the standard deviation of noise is fixed at about 30% and the accuracy threshold increases alone, the
accuracy loss and the number of allocated arrays will slightly increase and rapidly decrease, respectively.
It can be explained that a large number of arrays will be allocation to satisfy the requirement of accuracy
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threshold when the standard deviation of noise is too large and accuracy threshold is small, whereas the
benefit of accuracy recovery is limited, which is illustrated in Figure 4(e). When the accuracy threshold
is fixed at 0.6% and the standard deviation of noise increases alone, the accuracy loss rapidly decreases
while the number of allocated arrays slightly increases. The reason behind this is similar to the above.
To achieve a balance between the accuracy loss and the number of allocated arrays, we choose 0.2% as
the accuracy threshold and 28% as the standard deviation of noise. In this condition, the accuracy loss
of simulation is 0.06% and the number of allocated arrays is 1289 (about 5 M memristor devices).

To valid the results of the simulation and silicon-based experiment, we developed a framework with
a chip-in-loop emulator of memristor based computing-in-memory system (Figure 5(e)). Within the
framework, the neural network is first trained with the customized PyTorch based noise-aware training
framework to tolerate a certain degree of weight noise. Then, based on the preset accuracy threshold
and standard deviation of noise, the GSEA algorithm starts to optimized the Ns of each layer, Next, the
weights of the neural network are sliced to satisfy the size of the fabricated array, and these sliced weights
and input are scheduled into a chip-in-loop emulator. In the chip-in-loop emulator, sliced weights are
programmed sequentially to the 32×128 memristor array and the inference calculation is performed layer
by layer. After the programming and computing operations of all layers are finished, the output results
will be compared with the labels to generate the chip-in-loop accuracy. The software-based classification
accuracy of ResNet-34 on CIFAR-10 dataset is 93.2%. As shown in Figure 5(f), the simulated and chip-
in-loop results show that the array-level boosting method can recover the accuracy from 86.1% and 85.6%
to 92.6% and 92.3%, respectively, which are closed to the software-based classification accuracy.

In the memristor-based computing-in-memory chips, most of the overhead is induced by the peripheral
circuits, such as the driver circuits and analog-to-digital circuits (ADCs). Here, we used an 8-bit ADC
implementation [28]. In the breakdown of area usage (Figure 6(a)), the BL driver contributes the largest
area due to that the digital-to-analog function is integrated into BL drivers and BLs are four times more
than SLs. In the breakdown of power (Figure 6(b)), the ADC dominates the whole power consumption.
Hence, to reduce the area and power overhead of the array-level boosting method, the peripheral circuits
are shared among multiple arrays, which is similar to the previous work [29]. Here, we adopt XPEsim [30]
to estimate the area and power of memristor based computing-in-memory macro. In the simulation, the
share number is set to four. The overhead of total area and power with array-level boosting method is
56% and 36% (Figure 6).

4 Conclusion

In summary, the array-level boosting method with spatial extended allocation has been proposed to
reduce the accuracy loss of memristor based computing-in-memory chip induced by the reading and
writing noise and limited precision. The proposed method can reduce the effects of noise and improve
the precision by jointing and averaging the outputs of extended mapped arrays. The performance of
array-level boosting method is validated with a fabricated 32×128 memristor array in terms of the image
processing and neural network tasks. For the image processing task, a 32×32 DCT on a gray image is
demonstrated with the fabricated array where the output error will saturate when the spatial allocation
number Ns is larger than four. For image classification tasks with a neural network, the greedy spatial
extended allocation algorithm is proposed to optimize the Ns of each layer in a neural network, and
ResNet-34 on CIFAR-10 dataset is demonstrated with a chip-in-loop emulator. The results show that
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the chip-in-loop accuracy with array-level boosting method is the closed to software-based accuracy with
about 56% overhead of area usage and 36% of power consumption. Further, the hyper parameters,
accuracy threshold and standard deviation of noise, in greedy spatial extended allocation algorithm are
heuristically optimized, thus, a delicate criterion can be explored in future studies to optimize the hyper
parameters automatically.
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