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Abstract An artificial intelligence (AI) processor is a promising solution for energy-efficient data process-

ing, including health monitoring and image/voice recognition. However, data movements between compute

part and memory induce memory wall and power wall challenges to the conventional computing architecture.

Recently, the memory-centric architecture has been revised to solve the data movement issue, where the

memory is equipped with the compute-capable memory technique, namely, computing-in-memory (CIM). In

this paper, we analyze the requirement of AI algorithms on the data movement and low power requirement

of AI processors. In addition, we introduce the story of CIM and implementation methodologies of CIM

architecture. Furthermore, we present several novel solutions beyond traditional analog-digital mixed static

random-access memory (SRAM)-based CIM architecture. Finally, recent CIM tape-out studies are listed and

discussed.

Keywords energy efficiency, computing-in-memory, non-volatile memory, test demonstrators, AI processor

Citation Chang L, Li C L, Zhang Z M, et al. Energy-efficient computing-in-memory architecture for AI pro-

cessor: device, circuit, architecture perspective. Sci China Inf Sci, 2021, 64(6): 160403, https://doi.org/10.1007/

s11432-021-3234-0

1 Introduction

Deep neural networks (DNNs) have become leading machine learning methods thanks to their state-
of-the-art performance on various tasks, such as health monitoring and image/voice recognition [1–3].
With the development of applications on DNNs, several proposals for DNN accelerators attract attention
from both academy and industry. The DianNao family provided acceleration based on the customized
inner-product units with specialized instruction set architecture (ISA) [4,5]. NetFlow, Eyeriss, and TPU
developed a 2D systolic array for convolutional neural networks (CNNs) considering the dataflow on
the energy efficiency [6–8]. The row-stationary heuristic was analyzed to improve the performance of
the accelerator by reducing data movements. These accelerators promote a novel research area on the
artificial intelligent processor, namely artificial intelligence (AI) processor, which is used to accelerate the
AI algorithm including but not limited to DNNs, artificial NNs (ANNs), spike NNs (SNNs).

Generally, high performance and energy-efficiency are evaluation metrics of AI processors, promoting
many optimization techniques. In CNNs, there are seven-level loop nests in convolution. The process
engines (PEs) of AI processors are designed to compute each loop, and transform activations to buffers
and continue other loops, as shown in Figure 1. The loop computation can be reordered to improve
data reuse and energy-efficiency. Consequently, the most efficient part of the CNNs algorithm can be
accelerated with more PEs and fine-grained control flow. In addition, the memory buffer and dataflow
choices are customized to significantly improve the energy efficiency or processing speed. However, large
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Algorithm of CONV layer

for b = 0, to B do 

{  for k = 0, to K do

    {for c = 0, to C do 

 {for y = 0, to Y do

   {for x = 0, to X do, 

      {for  f(y) = 0, to FY do

   {for f(x) = 0, to FX do

     {O[b][k][x][y] += I[b][c][x+f(x)][y+f(y)]

         * W[k][c][f(x)][f(y)]

}}}}}}}
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Figure 1 (Color online) The computation for the convolution layer of CNNs. (a) Simple seven nested loops of convolution layer;

(b) traditional AI accelerator architecture with buffers and PE array.

data movements are required between computing logic and memory of AI processors, inducing “memory
wall” and “power wall”, which obstacle the development of advanced AI processors.

Recently, more and more work is focused on bridging the gap between computing logic and memory
from both hardware and application sides. An effective solution is moving the computing-centric architec-
ture to memory-centric architecture, which contains two directions. The one direction is the memory-rich
computing architecture, which is equipped with high performance computing resource and large-capacity
memory inside the same die. The most of execution is performed inside the chip reducing data move-
ments as a non-Von Neumann architecture [9]. Another direction is the computing-in-memory (CIM)
architecture, where the memory resource is capable of computation. The CIM computing scheme ben-
efits its large bandwidth and decreases data movements overhead between computing logic and off-chip
memory [10]. Based on our investigation of AI processors, accessing data takes two orders of magnitude
energy than that of computation by PEs, leading to the memory access bottleneck and energy issue [11].

To investigate more solutions and summarize the state-of-the-art literature, this paper presents both
memory-rich computing architecture and CIM architecture regarding traditional static random-access
memory (SRAM), and emerging non-volatile memory (NVM). In those solutions, a large range of AI
applications are employed to accelerate the computation, including artificial NNs (ANNs) and Spike
NNs (SNNs). In each solution, we study characteristics of recent developments on the requirement of
energy-efficiency and large data movements. We discuss the trend in the development of AI algorithms
and accelerating techniques. In addition, both application-driven and technology-driven computer ar-
chitecture are summarized to indicate affect factors of AI processors. Furthermore, we provide recent
tape-out studies and demonstrators on SRAMs, emerging NVMs including resistive random-access mem-
ory (RRAM), magnetoresistance RAM (MRAM), and phase-change memory (PCM). The SRAM solution
begins to mature and can become a product in near future, while NVM solutions may take longer to
maturely using in AI processors. Through our investigation in this paper, we hope to provide a detailed
history and recent developments of memory-centric computing architecture, but many solutions are still
at the beginning. For instance, the MRAM and RRAM solutions are struggling in their manufacturing
techniques.

The rest of this paper is organized as follows. Section 2 presents the study of CIM history, background
of modern CIM technologies, and the AI-driven memory-centric computing architecture. In Section 3, the
advanced memory-centric architectures are introduced, including near memory processing architecture,
SRAM-based mixed signal CIM architecture, and innovations beyond mixed solution. In Section 4, we
investigate the state-of-the-art literature on tape-out work of SRAM-based and NVM-based CIMs, and
discuss the development of CIM architecture. We conclude this paper in Section 5.

2 Preliminary of computing-in-memory and application-driven memory-
centric computing

In this section, we introduce the history of the traditional CIM technologies and architecture. Previously,
the CIM was proposed to breakthrough the memory limitation by combining memory and computing
logic onto the same die, as shown in Figure 2(a). This solution was failed due to the limitation of
CMOS technology and application. Recently, the CIM theory is revived thanks to big data and machine
learning. This section discusses energy efficiency requirements demanded by the current machine learning,
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Figure 2 The CIM architecture in the 1990s and current. (a) The CIM idea of the 1990s, with compute unit nearby the memory;

(b) the recent CIM architecture by integrating computing and memory.

particularly for the edge computing architecture.

2.1 History of CIMs and unsuccess of traditional CIMs

As early as in the 1990s, the idea of CIM architecture was very popular abstracting many attentions from
predecessors, such as Teras, IRAM, DIVA, Active Page, FlexRAM [12–16]. In 1995, Gokhale et al. [12]
proposed a Terasys system equipped with a designed and fabricated processor-in-memory processor chip.
The chip is a standard 4-bit memory augmented with a single-bit arithmetic logical unit (ALU) controlling
each column of memory, which can perform a local operation and optionally read/write OR operation.
In 1997, Patterson et al. [17] proposed IRAM to solve the gap between processor and DRAM speed
development. The IRAM merged processing and memory into a single chip to decrease the access latency
of memory, increasing memory bandwidth, and improved the energy efficiency. In 1998, Oskin et al. [15]
proposed active pages to implement the computation model into the SimpleScalar simulator by performing
computation on reconfigurable DRAM. The evaluation results demonstrated 1000× speedups on several
applications. In 1999, Hall et al. [14] proposed DIVA with computable memories connecting to one or more
external host processors, performing selected computation in memory, and providing communication for
moving both data and communication throughout memory. The DIVA bypassed the processor-memory
bus supporting both sparse-matrix and pointer-based computations. Kang et al. [16] proposed FlexRAM
to place processing-in-memory chips in the memory system to support general-purpose workstations and
servers. Simulation-based evaluation illustrated 4 FlexRAM chips allow a workstation to run 25–40 times
faster.

Unfortunately, the efforts of the 1990s on CIM architecture are failed to change the pattern of computer
architecture for several practical concerns and limitations. First, it is difficult to integrate complex logics
with DRAM technologies. Typically, there are 3 or 4 metal layers for memory, but the computing logic
requires more than 10 layers in manufacturing [18]. Secondly, the optimization direction of memory prefers
high density, low cost, and low leakage transistors, while optimized logic prefers high-speed transistors.
Specifically, even containing simple adders in DRAM process technologies induces considerable overhead
and decreases the performance of memory [19]. Third, data movement amounts are not a critical issue at
that time and Moore’s law still follows the rule. Also, the software and algorithm are developed slowly
and the dominant application can find a suitable hardware accelerator. Moreover, technology-driven
computer architecture promoted the performance of processors doubling in that years. In summary, CIM
integrated with main memory is optimized for memory density and low power consumption. To merge
the logic die and memory die can achieve the goal to reduce data movement between the processor and
off-chip memory, but the area overhead of memory causes server concern.

Recently, with the development of complementary metal-oxide-semiconductor transistor (CMOS) and
memory technologies, the previous approach on main memory has been revisited, such as buffered com-
parator, DRISA, and SCOPE [20–22]. Several novel implementations on the CIM architecture have
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Figure 3 (Color online) An example of AI-driven architecture with PE array, scratchpad memory for both AI training and

inference [29].

been developed. The dominant workloads, including machine learning algorithms, big data processing,
cloud computing, and internet-of-thing, are emerging to drive the hardware architecture and circuit to
search on revolutionary solutions [23–27]. In addition, the time comes to the post-Moore era, and the
technology-driven benefit of computer architecture is decline. Novel non-von Neumann architecture is
anticipated to solve the data-movement problem and a tremendous improvement on the performance of
AI processor is desired. Therefore, we review various recent technologies to design the CIM architecture
regarding SRAM and emerging NVMs. We analyze the advantages and disadvantages of each technology
to find the possible direction of post-Moore computing architecture. Based on aforementioned concerns
and limitations, we discuss various memory technologies to demonstrate possibilities of memory-centric
computing architecture.

2.2 AI-driven memory-centric computing

Recently, deep CNNs (DCNNs) have been used in many applications to provide high performance such
as accuracy, speed, energy-efficiency. However, DNNs are characterized by intensive computation and
dependence on cascade memory accesses. In DCNNs, the high computational complexity that comes
from simultaneously processing hundreds of filters and channels in the high-dimensional convolutions, is
an obstacle for the corresponding AI processor. In particular, to large NNs, filter weights and feature
maps are stored in main memory. In the computing process, the accelerator will read filter weights and
bias only once, but may read and write feature maps several times. Various techniques are employed to
optimize the DNNs regarding algorithm and hardware accelerators. Chen et al. [28] categorized the data
movements in a spatial architecture into several levels of hierarchy according to their energy cost, and then
analyzed each dataflow to assess the data movement at each level. They provided four levels of storage
hierarchy, including DRAM, global buffer, the memory array of inter-PE communication, and register
file. Eyeriss achieves high energy-efficiency and speed by the systolic array and memory development. As
shown in Figure 3 [29], although a highly parallel computing array can meet the need of the computation
requirement, the significant data movements induced energy consumption can be higher than that of
computation. For considering the layer-wise activation maps, the significant data movements in hardware
accelerators can operate on real-time streaming inputs. Based on the above analyses, Samal et al. [30]
explored an architecture-aware algorithmic approach to reduce data movement and the resulting latency
and power consumption. They presented attention-based feedback for controlling input data, referred
to as the activation pruning, that reduces activation maps in early layers of a DNN network which are
critical for reducing data movement in real-time AI processing. Experiments on sequences from the
KITTI dataset show the activation pruning maintains quality of motion planning while increasing the
sparsity of the activation maps.
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Figure 4 (Color online) The architecture of near memory computing based on 3D stacking technology.

For embedded computer vision in portable systems, real-time processing is required within a limited
power budget. The specialized memory-centric hardware architecture can be designed to meet the inten-
sive computation and memory access issues. Based on the memory-centric optimization, Yin et al. [31]
proposed an affine computation architecture, using specialized pipeline design, which greatly improves
computing efficiency. Consequently, the AI-driven memory-centric computing architecture can improve
the performance of AI processors. In this work, we summarize recent literature on memory-centric com-
puting architecture to provide more solutions for energy-efficient AI processors.

3 Advanced memory-centric architecture for intelligent computing

This section discusses advanced memory-centric architectures including both near memory processing
architecture and CIM architecture. We introduce the theory of several novel schemes for the recent CIM
architecture to indicate the possible design with mature technologies. In addition, we present the SRAM
mixed signal processing for the CIM, LUT-based CIM organization, and possible time-domain based
computing strategy.

3.1 Near memory processing architecture for the intelligent computing

Near memory processing (NMP) architecture can be realized by the 3D storage technique to provide high
bandwidth. There are two types of successful 3D stack memory. One is the high-bandwidth memory
(HBM) of JEDEC [32]. Another is the hybrid memory cube (HMC) from Micron [33]. Both HBM and
HMC contain a single chip stacked with multiple DRAM devices, as shown in Figure 4.

Typically, the memory hierarchy of computer architecture consists of cache, main memory, and disk.
The raw data should move from disk all the way to the cache, inducing a gap between computing unit
and memory. To solve the memory access issue, the NMC processes raw data near the data. For
example, the HMC contains one logic layer to process the data inside HMC without moving data outside
the HMC chip, which reduces latency and energy of datamovements. This principle can be applied to
novel computing architecture, such as on-board buffer processing, edge bound small processor chip with
DRAM chip [26]. Ahn et al. [23] developed an effective communication mechanism between different cube
cores based on message passing, namely TESSERACT. In TESSERACT, the long-time remote access
delay was hidden by using non-blocking message passing, and atomic memory can be updated without
software synchronization primitives, hence to fully use the memory bandwidth of a simple core. Koo et
al. [34] proposed SUMMARIZER, where the inherent ARM core was located inside an SSD combined as
a processor. The data intensive task offloads to the SSD-based processor to accelerate the processing.
Nair et al. [35] developed AMC upon the HMC, in which several processing elements are added onto
HMA working as lanes in the logic layer. The host processor and each AMC are interconnected over
a bidirectional link following a daisy-chain topology. This study provides an interconnection topology
for the NMC solution. Farmahini-Farahani et al. [36] proposed three different NMC architectures using
coarse-grained reconfigurable arrays on commodity DRAM modules. This proposal requires minimal
change to the DRAM architecture. However, a programmer should identify which code will run close to
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Figure 5 (Color online) The modified memory cell based SRAM CIM architecture [37].

memory, leading to more programmer efforts for compute intensive code executing on the 3D stack logic
layer, see Figure 5 [37].

Recently, the NMC is also employed to accelerate graph processing, including GraphP, GraphH,
GraphQ [19, 38, 39]. GraphP uses PIM based graph processing system to greatly reduce energy con-
sumption by developing the hardware and software cooperative interface. GraphP provides a partition
technique to change the communication between cross cube, designs a programming model to maintain
the partition, and proposes a layer communication/overlapping strategy to further improve performance.
Compared to TESSERACT, GraphP provides on average 1.7× speedups and 89% energy saving [38].
GraphH integrates SRAM-based vertex buffer to eliminate local bandwidth degradation. Moreover,
GraphH introduces a reconfigurable dual grid connection to provide high global bandwidth, and provides
mapping and partition scheduling methods to achieve workload balance and conflict avoidance. Based
on the evaluation, GraphH achieves up to a 5.12× speedup compared with Tesseract [39]. GraphQ im-
plements batch and overlapping cube communication by reordering vertex processing. In addition, the
heterogeneous cores are used for different access types to simplify the communication between cubes.
Furthermore, a hybrid execution model is proposed to perform additional local computation. Based
on the simulation, GraphQ achieves on average 3.3× and maximum 13.9× speedup, 81% energy saving
compared to Tesseract.

3.2 SRAM-based analog-digital mixed CIM architecture

Recently, CIM design with SRAM is mature gradually thanks to the traditional SRAM technology. As
for the mixed signal processing in CIM architectures, two typical ways are commonly used to convert
multi-bit inputs into WL signals. One is the fully parallel input structure [40]. The parallel charging
and discharging operation of bit lines can be described in the following process. First, the bit line pair
(BL/BLB) is precharged. Then, the analog voltage representing the eigenvalue is used to drive the WLS
to generate the corresponding bit cell current. Each current applied to BL or BLB depends on the data
stored in the bit cell. Therefore, taking BL/BLB as the differential voltage signal, it can be considered
that the weight of the stored data multiplied by an eigenvalue is −1 or +1 respectively. Finally, the
current of all bit cells is added on BL/BLB, resulting in aggregation discharge, and the comparator
provides a symbol threshold. Another is the fully serial input structure [41]. In the architecture given
in this paper, if 8-bit ADC is used as a readout circuit to detect bit line current, it will cause large-area
power overhead [42]. Therefore, a 1-bit comparator is proposed to replace the ADC. In order to make
positive BL (PBL) and negative BL (NBL) have the same current, multi bits are input in order, and PBL
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and NBL are compared through bit serial by controlling CD signal, the number of R1 units is changed
in each step.

Kang et al. [43] presented an integrated circuit implementation of a random forest (RF) machine
learning classifier based on SRAM. To reduce the complexity of interconnection and avoid irregular
memory access, this work used deterministic subsampling and balanced decision tree. By providing
massively parallel processing, Kang et al. implemented low swing analog computing in memory embedded
in standard 6T SRAM. The prototype IC achieves a 3.1× energy savings and 2.2× speed-up at the same
time providing a 6.8× lower energy-delay product (EDP) at the same accuracy of larger than 93%
compared to conventional digital architecture. Valavi et al. [44] presented a method to minimize weight
movement and eliminate multiple output activations in NN accelerators. In 2018, Kang et al. developed
prototype adopting the deep memory architecture, namely DIMA. The DIMA embedded the low swing
analog processing of column in peripheral of multi-row for standard 6T bit-cell array at the same time
via each precharge operation. Compared to traditional digital architecture, the DIMA improved energy
efficiency and throughput [45]. In 2019, Valavi et al. proposed a 65 nm prototype designed with Mixed
signal CIM, which considered the data flow of machine learning algorithm and used charge domain
mixed signal operation to manage data movements. This design also achieves high energy efficiency and
throughput executing convolution layers. Then, to design a robust memory supporting vector machine
classifier, the on-chip training technique was used to decrease PVT influence [46]. In 2020, Si et al. [37]
developed a configurable twin-8T (T8T) SRAM-CIM unit-macro with 1–4-bit input precision, 1–5-bit
weight precision and up to 7-bit output precision for various multibit DCNN applications.

3.3 CIM architecture beyond mixed solution

In the analog-digital mixed CIM architecture, there are some concerns. First, the ADC is required to
perform the computation, which occupies a large area and is sensitive to process, voltage, temperature
conditions. In addition, the verification of large scale mixed signal-based SoC chips is difficult to im-
plement since the accuracy prototype model is difficult to develop. In this subsection, we discuss the
advanced CIM architecture beyond the mixed solution, including look-up table based CIM architecture
(see Figure 6 [47]) and time-domain based computing scheme.

The look-up table (LUT)-based CIM architecture is proposed to solve the issue of mixed-based CIM
solution [47]. In LUT-based CIM, two memory rows are designed for LUT, supporting two modes: stor-
age and computation modes. In the storage mode, the LUT array is separated from the memory array,
reducing additional power consumption. In the computation mode, LUT-based CIM provides three oper-
ations: multiplication, division, and activation by caching the key data inside LUT. In the multiplication
operation, the LUT-CIM converts the even number of computation into a shift operation, reducing the
required size of LUT from 225 to 49 bits. For matrix multiplication, the steps of multiplication, judgment
and accumulation are reorganized as multilevel pipelines to improve the parallelism of the architecture.
In dividing operation, the hard-to-calculate 1

dividend value is located into the LUT to save resources and
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energy consumption, avoiding designing complicated division hardware unit. For the activation function,
the piecewise linear approximation method is used to store the value of each iteration in the LUT, and
calculate the final value of functions including counting and accumulating the partial sum. Based on the
evaluation, the proposed LUT-based CIM architecture achieves 1.72× overall speedup and 3.14× energy
saving for the L3 cache compared to the neural cache [48].

Another alternative solution is time-domain computation with CIM architecture. In the traditional
digital domain of multiplication and addition, large energy consumption of switching capacitors is wasted.
Time-domain computing is a method to implement multiplication and addition using the width or delayed
superposition of pulses [49–52]. As shown in Figure 7, a common time-domain calculation consists of
two delay lines: reference line and delay line. The calculation can be implemented with a rising edge
delay, and different inputs and weights are delayed and advanced the rising edge in the delay line by the
corresponding time value. Then, the final results of multiplication and addition can be achieved by the
time interval between the rising edge of the delay line and the reference line. Although the time domain
is a part of the analog domain, its effective values are only 0 and 1, which can be calculated as a digital
domain in nature. Unlike voltage-domain calculations that require large analog-to-digital conversions, the
conversion from the time domain to the digital domain can be achieved simply by a counter or a reference
line delay detection [49–52]. The energy-efficient time-domain computing is suitable for low-power AI
processors. In 2018, Amravati et al. [53, 54] used time-domain computing in the field of reinforcement
learning and proposed an energy efficient framework for computing time-domain mixed signals. It is
compatible with multi-bit weighting operations and uses a numerical control oscillator to implement time-
domain multiplication and addition. In 2019, Sayal et al. [50] proposed a convolutional neural network
computational engine for all-digital time-domain computing. A novel bidirectional memory delay line
unit is adopted to perform signed accumulation of the input and weighted product, and the conversion
from the time domain to the digital domain is achieved using a simple counter. By adjusting the accuracy
of the digital to time conversion, the calculation engine also enables four modes of acceleration, which to
a certain extent alleviates the problem of slow computing caused by the cumulative nature of the time
domain delay. In the same year, Chen and Gu [55] designed a time-domain computational gas pedal for
the dynamic time-regularization algorithm, a classical algorithm for time series classification problems.
To implement the pipeline, they designed a special time domain flip-flop as the time domain memory.
The pipelined operation is then implemented by this time domain flip-flop circuit, which significantly
improves the performance and scalability of the operation. In 2020, Li et al. [9] further proposed an
innovative ReRAM-CIM accelerator by combining time-domain computing, non-volatile memory, and
CIM architecture. By using the time-domain interface and the used analog local buffer separately, the
energy of each digital time conversion and the total number of conversions are greatly reduced.

3.4 Emerging non-volatile memory solutions on CIM architecture

Another promising solution for the CIM architecture is using the emerging NVMs including RRAM,
phase-change random access memory (PCRAM), and MRAM [56–58], as shown in Figure 8 [59]. The
RRAM device is a metal-insulator-metal structure, where a metal-oxide layer is sandwiched between
metal electrodes as switching material. The high resistance state (HRS) and low resistance state (LRS)
can be switched when the amplitude of external voltage exceeds the threshold [56]. The resistance of
RRAM cell could vary from serval KΩ to tens of MΩ. PCRAM device exploits chalcogenide glass as
a switching element. Chalcogenide glass is a group of fragile glass switching between the amorphous
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Figure 9 (Color online) The CIM architecture with NVM device. (a) Transpose memory array; (b) CIM architecture supports

bit-wise operations.

state and crystalline state by current controlled heating and cooling [57]. Amorphous state chalcogenide
glass can provide a resistance over 1 MΩ resulting in HRS of PCRAM cell while crystalline state glass
provides only up to 10 kΩ resistance pulling PCRAM cell into LRS. Magnetic tunnel junction (MTJ)
is the primary storage core of MRAM, which contains the free layer, oxide barrier, reference layer [58].
The magnetization orientation of free layer can be changed to parallel and anti-parallel states, which
represents low resistance and high resistance. For programing the MRAM, there are two mainly MTJ
structures including spin transfer torque MTJ as shown in Figure 8(c), and spin orbit torque MTJ as
shown in Figure 8(d). Compared to the traditional SRAM, NVMs have demonstrated low leakage power,
high density, more energy-efficiency advantages [60].

NVM-based CIM architecture is designed for several commonly used mathematical calculations, such as
MAC operation, matrix transposition, bit-wise logic operations. Conventional CIM macro only uses two
states: HRS and LRS [10]. For MAC operation implemented by NVM-based CIM, more than one memory
rows are activated and each memory cell would contribute a part of total bitline current, converting to
voltages compared to different reference cells. Then the sense amplifier can recognize the computation
result. In the NN acceleration, filter weights are stored in memory cells, and feature maps are converted
into SL voltage for each corresponding word line. The MAC results can be parallel computed to improve
the performance. In addition, the multi-states resistive cell can provide higher precision and density to
the CIM architecture [61]. For instance, the resistance of RRAM cell can be changed continuously from
KΩ to MΩ between HRS and LRS [62–64]. The RRAM-based CIM solution employs an analog-digital
converter to identify the different values, hence to implement high-precision MAC operation. The NVMs
can also be used to perform the transpose operation with additional wires and switches. Typically, the
memory array can be read and wrote row by row controlled by the decoder. With simple modification
on memory column and peripheral circuit, the memory array can support fast transpose operations used
in the NN architecture. A typical architecture of NVM based CIM PE for MAC and transposition
acceleration is displayed in Figure 9(a) [27, 65]. For bit-wise logic operations, both input features and
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Table 1 Summarization of modern CIM test demonstrations

Publication Technology (cell) Target (Operation) Capacity Method Precision Accuracy (%)

2017 [40] SRAM 130 nm (6T) SVM (-)a) 16 kb Mixed I(5b), W(1b), O(1b) MNIST: 90

2018 [42] SRAM 65 nm (10T) CNN (F) 4 kb Mixed I(7b), W(1b), O(4b) MNIST: 96

2018 [66] SRAM 65 nm (6T) DNN (F) 4 kb Mixed I(1b), W(1b), O(1b) MNIST: 97.5

2019 [37] SRAM 65 nm (T8T) CNN (F) 3.8 kb Mixed I(4b), W(5b), O(7b)b) MNIST: 99.52

2020 [67] SRAM 28 nm (6T) CNN (F/B) 64 kb Mixed I(8b), W(8b), O(20b)b) CIFAR: 91.94

2020 [68] SRAM 7 nm (8T) CNN (F) 4 kb Mixed I(4b), W(4b), O(4b) MNIST: 98.50

2020 [69] SRAM 28 nm (6T) CNN (F) 64 kb Mixed I(8b), W(8b), O(20b)b) CIFAR10: 92.02

2020 [70] SRAM 65 nm (8T) CNN (F) 4 kb Mixed I(4b), W(8b), O(20b)c) RsNet: 92.88

2019 [71] SRAM 28 nm (8T) DSP (-) 128 kb Mixed I(-), W(-), O(-) –

2018 [72] SRAM 65 nm (8T) SVM (F) 16 kb Mixed I(8b), W(8b), O(-)c) MIT-CBCL: 96

2020 [73] SRAM 55 nm (6T) CNN (F) 4 kb Mixed I(8b), W(8b), O(19b)b) CIFAR10: 91.93

2019 [74] SRAM 28 nm (8T) arithmetic (-) 16 kb Mixed I(-), W(-), O(-)b) –

2020 [75] SRAM 65 nm (8T) CNN (F) 72 kb Mixed I(8b), W(4b), O(-) MNIST: 92.40

2020 [76] SRAM 65 nm (8T1C) CNN (F) 72 kb Mixed I(1b), W(1b), O(5b) MNIST: 98.30

2020 [77] SRAM 65 nm (12T) DNN (F) 16 kb Mixed I(1b), W(3b), O(-) MNIST: 98.84

2019 [78] SRAM 65 nm (10T) CNN (F) 16 kb Mixed I(6b), W(1b), O(6b) MNIST: 98.30

2019 [45] SRAM 65 nm (6T) SVM (-)a) 16 kb Mixed I(8b), W(8b), O(-) MIT: 95

2019 [79] SRAM 28 nm (8T) CNN (F) 2 kb Time domain I(8b), W(1b), O(8b) –

2021 [80] SRAM 28 nm (10T) MAC (F) 2.6 Mb All digital I(4 or 8b), W(4–16b), O(all) –

2018 [81] RRAM 65 nm (1T1R) CNN/FCN (F)d) 1 Mb NVM I(1b), W(3b), O(3b) MNIST: 98

2019 [82] RRAM 55 nm (1T1R) CNN (F) 1 Mb NVM I(2b), W(3b), O(3b) MNIST: 98.80

2020 [83] RRAM 150 nm (1T1R) CNN (F) 64 kb NVM I(8b), W(3b), O(-) CIFAR10:98.90

2020 [84] RRAM 150 nm (1T1R) CNN (F) – NVM I(-), W(-), O(-) –

2020 [85] RRAM 130 nm (2T2R) MAC (F) 158.8 kb NVM I(1b), W(3b), O(8b) MNIST: 94.40

2020 [56] RRAM 130 nm (1T1R) RNN/CNN/MLP (F)c) 500 kb NVM I(1b),W(-),O(1b) MNIST: 97.55

2020 [86] RRAM 55 nm( 1T1R) CNN (F) 1 Mb NVM I(2b), W(3b), O(4b) CIFAR10: 88.52

2020 [87] RRAM 130 nm (1T1R) CNN/BNN (F) 16 kb NVM I(-), W(-), O(-) –

2020 [88] RRAM 130 nm (1T1R) MVM (F) 64 kb NVM I(2b), W(3b), O(-) MINIST: 91.38

2017 [89] PCRAM-(1T1R) Stat.(-) 3 Mb NVM – Statistic: 93

2020 [90] PCRAM-(1T1R) DNN (F) 256 kb NVM I(8b), W(8b), O(8b) CIFAR10: 93.7

2020 [60] STT-MRAM (1T1R) SHA (-) 1 Mb NVM – –

2020 [91] STT-MRAM (1T1R) CNN (F) 8 Mb NVM I(8b), W(8b), O(8b) MIT-BIH: 85.1

a) They supported k-NN/SVM/MF/TM algorithm and executed MIT CBCL, GUN shot sound, MNIST dataset.

b) They supported 3 precision types, and we state the maximum precision and accuracy.

c) They supported 3 operations including forward, reverse, recurrent.

d) They supported 3 precision types, and it is a system and computes layer by layer.

weights are located inside the memory array, as demonstrated in Figure 9(b). For the computation stage,
two or more memory rows are activated to read-out the results [18,25]. The write-based computation also
can be supported by the NVM-based solution by activating both one memory row or multi-rows [10,59].

4 Test demonstrators and discussion

This section provides a summarization of the recent tape-out work on CIM architecture, such as SRAM-,
RRAM-, MRAM- and PCRAM-based CIM architectures. Based on our investigation, we found that
the most of studies are on SRAM and RRAM-based CIM test chips. Only a few tape-out studies are on
MRAM and PCRAM-based chips. The detailed information is listed in Table 1 [37,40,42,45,56,60,66–91],
including technology, implementation method, targe application, capacity, precision and accuracy.

4.1 Test prototypes and demonstrators

In the beginning, processors with CIM architecture can only handle some simple logical operations. In
2016, Jeloka et al. [92] designed a CIM macro based on 6T SRAM that can perform bit-wise AND and
OR operations with 1b precision. In 2017, Dong et al. [68] proposed a CIM macro with Boolean logic
functions (AND, OR, XOR) between the two activated inputs. One step closer, the CIM processors
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of traditional algorithm base on vector product operation were proposed one after another. In 2017,
Zhang et al. [40] provided a VCM processor with 1b precision, achieving more than 90% accuracy on the
MNIST data set. In 2018, Gonugondla et al. [72] designed a low energy consumption VCM processor
edge processing system, which reached 8b precision and 96% accuracy on the MIT-CBCL data set.
The same year, Kang et al. [45] designed a multi-functional CIM inference processor with 8b precision,
which supports four algorithms, and all of them have an accuracy of over 92%. In 2019, Wang et
al. [74] proposed a general-purpose hybrid in and near-memory with unlimited precision input, which
can perform Boolean, Integer arithmetic, float arithmetic. In addition, the excellent energy-saving and
acceleration performance is provided by CIM architecture, promoting AI processors towards the DCNN
algorithm. In 2017, Ando et al. [93] designed a binary/ternary deep neural networks reconfigurable
accelerator based on CIM architecture, which achieving energy efficiency that 102–104 times better than
a CPU/GPU/FPGA. In 2017, Su et al. [84] proposed an RRAM-Based FCNN energy-saving processor,
which achieves 462 GOPs/J energy efficiency. Chen et al. [81] proposed an RRAM-Based macro of binary
CNN, which achieves a 98% MNIST recognition rate. Zhang et al. [40] proposed an SRAM-Based macro
of binary/ternary DNN, which achieves a 98.3% MNIST recognition rate.

Most of the early work on CIM can only handle low precision networks. Lately, CIM AI edge chips
have implemented multi-bit precision for input, weight, and output data, which is sufficient for practical
applications. In 2019, Biswas et al. [78] presented an energy-efficient SRAM with 6-bit inputs/outputs,
which achieves 40.3 TOPS/W energy efficiency and a 98.3% MNIST recognition rate. In 2020, Si et
al. [37] developed a T8T SRAM-CIM macro with 1–4-bit inputs, 1–5-bit weights, and 7-bit outputs for
multi-bit CNN, which achieves the highest 99.02% TOPS/W energy efficiency and a 90.4% CIFAR10
recognition rate. Xue et al. [86] designed a 2 Mb ReRAM-CIM macro and improved the input precision
to 4 bit. Further, achieve a 9.8–18.3 ns latency and an energy efficiency up to 121.3 TOPS/W. In Table 1,
the most common CIM memory array is SRAM and RRAM. In 2016, Kang et al. [45] used a standard
6T SRAM cell to implement a 4 kb CIM macro with 1-bit logic operations. In 2018, Yin et al. [77]
designed a CIM macro based on 12T SRAM that can perform XNOR operations for binary networks.
In 2020, Si et al. [37] designed a Twin-8T SRAM bit cell, which completed 2-bit weighted multiplication
and port isolation with 1.58× area cost (compare with 6T SRAM). Wang et al. [71] designed an 8T
SRAM cell, which transposes the bit data to read to achieve the purpose of maintaining compatibility
with the mainstream CPU/GPU architecture. Jiang et al. [76] designed an 8T1C SRAM cell to perform
capacitive-coupling, which isolates the influence of calculation on bit cell. In 2019, Yang et al. [79]
designed a memory computing chip based on 8T SRAM. In this design, the pulse width modulation unit
is used to realize MAC operation in the time domain. A single-bit weighted neural network accelerator
with 8b input, 1b weight, and 8b output accuracy is realized, and the energy efficiency ratio of 46.6
TOPS/W is achieved. Recently, Chih et al. [80] proposed a 10T SRAM-based all-digital CIM macro for
multiply-accumulate (MAC) operations. It can support 1–8-bit input activations, 4–16-bit weights for full
precision calculation with the configurable signed. And the energy efficiency ratio reached 89 TOPS/W.

In the RRAM-based CIM macro design, 1T1R is the most common structure. In the past few years,
researchers have implemented a variety of CIM chips with different bit precision and application scenarios
based on 1T1R [56,81–84,86–88]. In 2020, Liu et al. [85] proposed a sign-weighted 2T2R bit cell, which
can output the positive and negative weight on the same column and eventually boost the computing
parallelism. Besides, some potential CIM cells are being studied, Slesazeck et al. [94] used the 2TnC
FeRAM to achieve specific Logic budgets with 1b&2b input. Yu et al. [95] designed a 4T2C eDRAM,
which can store a ternary state using four transistors only. For the NVM technology beyond RRAM,
PCRAM and MRAM were used to design CIM architecture. In 2017, Sebastian et al. [89] of the IBM
Research Center successfully ran unsupervised machine learning algorithms on one million PCM devices,
which is expected to increase speed and energy efficiency by 200 times. In 2020, IBM proposed a training
method of ResNet convolutional neural network based on PCRAM CIM structure, which significantly
improved the accuracy of weight transfer. To solve the error problem of resistive memory, a compensation
technique is proposed to obtain the highest accuracy based on PCRAM memory on CIFAR-10 (93.7%)
and ImageNet (71.6%) data sets. In 2020, Chang et al. [60] designed a 1 Mb STT-MRAM Macro in 22 nm
technology, which reduced 3 times power consumption compared with a similar design, and achieved the
readout bandwidth of 42.67 Gb/s. In the same year, Lee et al. [91] proposed an STT-MRAM-based ECG
arrhythmia monitoring system. Combined with the characteristics of non-volatile memory and time-
domain computing, the ultra-low total power consumption of 1.02 µW was achieved in near memory
architecture.
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4.2 Discussion on the development of CIM

Potentially, the CIM is becoming more and more complex with supporting various calculations and
operations. The optimization direction for modern CIM architecture is developed to high precision, high
throughput, and high energy efficiency. The implemented methods are varied from analog-digital mixed
signal processing, all-digital, time-domain, and NVMs, respectively. For the mixed-based solution, ADCs
are employed to read the final results with the analog computing method, which is sensitive to technology
process, voltage, and temperature. In addition, the area-efficiency is limited by the high precision ADC
since the area of current ADCs is large. Furthermore, the accurate validation and prototype verification
are difficult with mixed-based CIM macro in a large scale SoC chip. The all digital SRAM-based CIM
architectures provide a compromise solution to develop high precision, and stable CIM architecture for
AI processors. Also, the time-domain based solution is another alternative to avoid process-voltage-
temperature (PVT) issues and suitable to energy-efficient AI processors. However, the natural problem
of SRAM, including low density, high leakage power consumption, low extensibility, is the obstacle to
large-scale use of SRAM into AI processor. As the CMOS technology scaling down, the issue is still
existent and difficult to solve from circuit and architecture levels.

NVM-based solutions become optimistic choices. Among those emerging NVM-based CIM architecture,
RRAM is most used to design the CIM test chip thanks to the high resistance and low cost. The multi-
level RRAM device, as memristor, is a promising characteristic for high precision CIM architecture,
which can achieve high density, high parallelism, and high energy efficiency. Another memristor choice is
PCRAM, supported by several research groups. MRAM has the best performance regarding latency and
access energy, but the resistance and TMR value limit the usage on CIM architecture. Also, emerging
NVMs are still in their infant stages with technologies, stability, scalability challenges. There is still much
work to be done, such as device technology, circuit and architecture innovations. More prototypes should
be tested to validate the possibility of NVM technologies, including memory array, memory structure
with a controller, NVM-based CIM chips and processors.

Based on our investigation, we understand the development of the state-of-the-art solution for modern
CIM in terms of device, circuit and architecture. In future work, several fronts are worth researching.
First, the stability of analog-digital mixed CIM solution can be improved by fine-grained design from stand
cell, compiler, and layout modifications. Second, all-digital SRAM CIM macro is designed to perform
MAC operation. To employ the macro into large-scale chips should be studied both from academy and
industry to check the feasibility and potentiality. Third, novel physical theories and phenomena of NVM
devices can be found with involving more excellent researchers and international foundries. Innovations
on the computing strategy can be developed with current NVM devices, such as LUT and the time
domain. Finally, another mixed solution is the SRAM mixed with NVMs, which is a possible solution to
solve both precision and stability problems. Overall, CIM, as a memory-centric computing architecture,
is on the way to realization. To investigate more solutions and detailed CIM models is our future work,
which beyond the scope of this article.

5 Conclusion

Both technology and application drive the development of CIM architecture, which can be deployed
into CPU and AI processor. Various AI applications required large dataset and input data for the
computation, which induces pressure for the interface between the computing unit and memory. In this
paper, we analyzed the history of CIM architecture and presented the recent developments of modern CIM
architectures. We listed the recent tape-out work on CIM chips to show the state-of-the-art literature
of the SRAM-based and NVM-based CIMs. In the post-Moore age, the SRAM-based CIM solution can
be a potential choice for AI processors. In the future, the NVMs may become promising alternatives as
CIM-based AI processors.
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