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Abstract In traditional von Neumann computing architectures, the essential transfer of data between the

processor and memory hierarchies limits the computational efficiency of next-generation system-on-a-chip.

The emerging in-memory computing (IMC) approach addresses this issue and facilitates the movement of

significant data and rapid computations. Among the different memory types, intrinsic energy efficiency is

demonstrated by in-magnetic random access memory (MRAM) computing with a low-power spintronic mag-

netic tunnel junction device and hybrid integration at an advanced complementary metal-oxide semiconductor

node. This study reviews state-of-the-art techniques for managing IMC with an emphasis on spin-transfer

torque-MRAM computing via design schemes at the bit-cell, circuit, and system levels. In addition, this

study presents effective design techniques and potential challenges and demonstrates the existing limitations

of in-MRAM computing and potential methods for overcoming these issues. This study also considers the

design technology co-optimization from the IMC perspective.

Keywords spin-transfer torque-magnetoresistive random access memory, in-memory computing, magnetic

tunnel junction, analog computing, nonvolatile memory, Boolean logic, neural network

Citation Cai H, Liu B, Chen J T, et al. A survey of in-spin transfer torque MRAM computing. Sci China Inf

Sci, 2021, 64(6): 160402, https://doi.org/10.1007/s11432-021-3220-0

1 Introduction

The von Neumann computing architecture requires data transfer between processors and memory hier-
archies, which limits the computational efficiency of next-generation data-centric system-on-a-chip (SoC)
devices. The unique potential for emerging nonvolatile memories (NVMs) is to bring high-density memory
arrays closer to processing elements (PEs) and creates high throughputs with low-latency access [1–3].

The in-memory computing (IMC) approach physically integrates processor-related computation and
storage in a single chip [1–3]. The application of this approach can break through the memory/power wall,
accelerate significant data transfer between PEs and memory subsystems, and produce highly efficient
computations. Typically, this approach facilitates vector-matrix multiplication and executes it in parallel
using analog computations, in which the input vectors can be activated with multiple rows. The dot
product is obtained as the multiplication result of the input voltage and cell conductance, and the partial
sum is calculated by the current column. Generally, an analog-to-digital converter (ADC) located at the
edge of the memory array converts the partial sum to binary bits for post-processing purposes.

Extensive research has been conducted on realizing IMC with mature memories. Computing within
static random access memory (SRAM) (possibly with modified bit-cells) was realized using a unitary main-
stream complementary metal-oxide semiconductor (CMOS) process, e.g., with 28-nm sandwich-RAM [4]
and 65-nm and 130-nm CMOS [2,5]. However, SRAM displays low density and is inherently volatile with
significant standby leakage power consumption. Besides, both dynamic random access memory (DRAM)
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Table 1 Summary of main acronyms

Acronym Definition Acronym Definition

STT Spin transfer torque NVM Non-volatile memories

MRAM Magnetoresistive random access memory RRAM Resistive random access memory

IMC In-memory computing PCM Phase change memory

NMC Near-memory computing LIM Logic-in-memory

MTJ Magnetic tunnel junction SRAM/DRAM Static/dynamic random access memory

SOT Spin orbit torque MAC Multiply-and-accumulate

VCMA Voltage controlled magnetic anisotropy CD Critical dimension

VG-SHE Voltage-gated spin hall effect ECC Error correction coding

TST Toggle spin torques PPA Power-performance-area

TMR Tunnel magnetoresistance ratio SA Sense amplifier

PMA Perpendicular magnetic anisotropy VSA/CSA Voltage-type/current-type SA

PEs Processing elements ADC Analog-to-digital converter

PTL Pass-transistor-logic FA Full adder

WL/BL/SL Word-line/bit-line/source-line FDSOI Fully depleted silicon-on-insulator

FinFET Fin field-effect transistor PUF Physical unclonable function

PVT Process-voltage-temperature TRNG True random number generator

FeFET Ferroelectric field effect transistors DNN/CNN/BNN Deep/convolutional/binary neural network

SoC System-on-chip MeRAM Magnetoelectric random access memory

and NOR-flash are characterized by properties of high density and low cost. Favorable performance was
demonstrated by in-DRAM computing, e.g., Eyeriss [6] and in-NOR-flash neuromorphic computing [7].
However, the main disadvantages of these approaches include finite retention (IMC with DRAM) and
low endurance (IMC with Flash). Accordingly, emerging NVMs with different information/bit physical
storage mechanisms are better suited for power-performance-area constrained IMC platforms. Represen-
tative NVMs include resistive random access memory (RRAM), phase change memory (PCM), magnetic
random access memory (MRAM), and ferroelectric field-effect transistor (FeFET)-based RAM. The non-
volatility of these memories permits instant on/off switching and prevents the loss of stored data. Among
the NVMs, MRAM is the only one expected to possess unlimited endurance; however, atomic motion in
the storage material constrains the retention of both RRAM and PCM [8].

This study presents an overview of IMC, particularly in terms of foundry-available spin-transfer torque
(STT)-MRAM. Table 1 lists the acronyms used in this paper, and the remaining manuscript is organized
as follows: Section 2 introduces the novel paradigms besides memory storage, Section 3 reviews the state-
of-the-art and design challenges of in-MRAM computing, Section 4 presents an in-MRAM computing
perspective, and Section 5 concludes the paper.

2 Review of novel paradigms besides memory storage

As SoC technology becomes more data centric, energy dissipation and data throughput are improved by
the use of novel memory approaches, including multistorage modes and IMC/near-memory computing
(NMC) schemes. This paper hierarchically explores recent developments in this area from a bottom-
up perspective from the bit-cell level to the circuit, architecture, and arithmetic levels (see Figure 1).
Additionally, the study considers traditional (SRAM, DRAM, and Flash) and emerging NVMs (RRAM,
PCM, and MRAM).

2.1 Bit-cell level attempt

As two of the most direct and effective approaches, multi-mode and IMC schemes can be realized by mod-
ification at the bit-cell level. Different bit-cell types and structures can be utilized to achieve the desired
performance in specific scenarios based on memory device characteristics (see Figure 1(a)). Any opti-
mization of bit-cell characteristics can significantly affect the performance of high-level memory circuits
and subsystems.

Early approaches did not include a computational mode. A dual-mode NAND-flash that switches
between multi-level program cell (MLC) and single level program cell (SLC) was proposed and evaluated
in [9]. In comparison with the SLC mode, MLCs reduce the overhead bit-cell layout and enhance the
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Figure 1 (Color online) (a) According to the device characteristics, different bit-cell types and structures can be implemented for

desired performance in specific scenarios. (b) Commonly, circuit-level reconfiguration is realized using carefully designed peripheral

circuits, including reading/writing drivers, sense amplifiers, and controllers. Basic functions are targeted, including storage and the

computing unit. (c) Architecture-level reconfiguration is mainly focused on application (X or Y ) and follows instructions from the

core processing unit to execute assigned tasks.

density of NAND-flash. Notably, the programming performance can be reduced by the requirement for
tight threshold voltage (Vth) control. Conversely, the SLC mode is less sensitive to Vth. This makes the
MLC mode more suitable for scenarios of low program throughput, while the SLC mode is better suited
for high-performance applications. An adjustable incremental step pulse and a self-boosting scheme were
implemented in NAND-flash [9]; they exert tight control over the Vth of the cell and enable the memory to
function with the high-density MLC and high-performance SLC modes. This design concept was further
applied to RRAM [10,11] and PCM [12] based on redesigned writing and peripheral circuit blocks.

Significant potential for using the IMC approach for emerging device-based NVMs was demonstrated by
processing the in-FeFET cells with an intrinsic compact area and distinguishable multiple states [13,14].
As a demonstration of PCM, dual-mode double-density PCM based on a novel stressing-mode storage
scheme was studied in [15]. The threshold for RESET switching can be shifted by stressing a current
on the memory cell, and the R-I curve can be used to store logic states. The independence of the two
modes prevents interference between them and enables a double storage density. Additionally, PCM is
applicable to IMC via physics crystallization or modified peripheral circuits [16, 17].

Notably, modifications of memory bit-cell and device parameters require fabrication support from foun-
dries. Typically, customized bit-cells are expensive and require long periods of development/validation.
Consequently, the optimal schemes for energy-efficient or high-performance memory subsystems utilize
the standard features of the device and bit-cell and implement peripheral circuits.

2.2 Circuit-level implementation

With respect to the circuit-level implementation of storage blocks, memory subsystems can perform
the storage function as well as the associated arithmetic and computing units. IMC and NMC were
investigated, and the majority of them underwent silicon verification in SRAM [4, 18–22] and several
NVMs, including RRAM [23–25], STT-MRAM [26–31], spin-orbit torque (SOT), and MRAM [32–34].

In addition to the modification of bit-cells for IMC, the peripheral circuit design method offers an effec-
tive approach for realizing novel IMC and NMC approaches. As shown in Figure 1(b), the reconfiguration
or allocation of the reference generator, modified sense amplifier (SA), and specific driver/controller cir-
cuits can be reconfigured or allocated to realize basic Boolean logic and convolutional operations. Modified
SA circuits can efficiently compute bitwise logic operations with data prestored in the memory. During
analog signal processing, the complex reference structure shrinks the memory-sensing margin among
different logic operations. As a solution, Ref. [18] proposed a common-mode insensitive small-offset
voltage-type SA (VSA) in SRAM to enhance the yield of the computational output.

Pinatubo [35] and NV-logic-in-memory (LIM) [26] structures were demonstrated as the universal ap-
proaches for several Boolean logic (OR, AND, XOR, and INV operations) in-memory realizations, and
these structures were applicable to NVM. As an effective processing-in-memory (PIM) scheme, a Pinatubo
architecture enables the bulk bitwise efficient operations of two or more memory rows in resistive-cell-
featured NVMs and supports one-step multirow operations with insignificant area overheads. Demon-
strated with MRAM design environment, the NV-LIM scheme applied pass-transistor logic (PTL) for
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Table 2 Survey of recent emerging memory based MAC operation

CMOS Memory Bit-cell Array Tape-out MAC Speed-up Energy Application

DAC’16 [49] N/A RRAM 1T1R 512×512 No DA-AD 1000× N/A Inference

ISCA’16 [50] 32-nm RRAM 1T1R 128×128 No DA-AD 14.8× 380 GOPS/W Inference

Nature’18 [51] 90-nm PCM 3T1C 512×512 No DA-AD N/A 119.7 TOPS/W Inference+training

Nat.Elec.’18 [52] N/A RRAM 1T1R 128×64 Yes DA-AD N/A 17× Inference

ISSCC’18 [53] 55-nm RRAM 1T1R 512×256 Yes AD 2× N/A Inference

ISSCC’19 [54] 55-nm RRAM 1T1R 256×512 Yes AD 1.3× 53.17 TOPS/W Inference

VLSI’18 [55] 180/40-nm RRAM 1T1R 2 Mb/4 Mb Yes AD N/A 66.5 TOPS/W Inference

NIPS’18 [56] 22-nm STT-MRAM 1T1M 40 Mb Yes SRAM N/A 9.9 TOPS/W Inference

IEDM’18 [57] 130-nm RRAM 2T2R N/A Yes SA+logic N/A 25 nJ/img/Minst Inference

DAC’18 [58] 45-nm SOT-MRAM 2T1M N/A No IMC 4.3× 0.74 µJ/img/Minst Inference

TVLSI’19 [59] 28-nm SOT-MRAM 2T1M 128×256 No IMC 12.3× 96.6 image/s/W Inference

ISCAS’19 [60] 22-nm STT-MRAM 1T1M 64×576 No AD 70× 4.5× Inference

ISSCC’20 [61] 130-nm RRAM 1T1R 158.8 Kbit Yes DA-AD N/A 78.4 TOPS/W Inference

an 8-bit nonvolatile full adder (FA), NV-logic, NV-flip-flops, and approximate FA [26, 36]. Because of
ultrafast PTL behavior and limited modification of peripheral circuits, this scheme achieves hardware-
accelerated large-scale integration. However, the NV-LIM scheme is ineffective with large-scale NVM
arrays owing to additional layout cost between SAs and bit-cells. We notice that further development of
the Pinatubo and NV-LIM schemes is limited by their ability to perform only low-complexity Boolean
logic operations.

2.3 Architecture-level exploration

The research in the fields of deep learning and neural-network-related applications has attracted consid-
erable attention over the past decade. In terms of multisubsystem application scenarios, hybrid memory
systems involving the collaboration of different memories have been proposed; these systems combine the
benefits of different memory types, e.g., high-performance SRAMs and energy-efficient NVMs.

The capability of multimode reconfiguration memories in different applications has been reported in the
literature [37–39]. Technologies including multilevel bit-cells, IMC/NMC, and approximate/stochastic
computing have been investigated. A feasible approach for achieving an energy-efficient design is the
scaling down of supply voltage (Vdd), although memories are impacted by bit-cell access failures when
biasing with low Vdd.

To solve this problem, Ref. [40] proposed a hybrid 8T&6T-SRAM block and exploited the finite ro-
bustness of neural networks. Traditional 6T-SRAM can store the least significant bit with limited neural
network impacts, whereas 8T-SRAM stores the most significant bit to guarantee the rightness of the
bit-cell. Thus, the downscaling of Vdd can be achieved with a negligible loss in network performance.
Furthermore, Ref. [41] studied an ultralow-power ECG monitor by separating the functions into trans-
mission and record; this approach exploits the advantages of a free standby power NVM for information
storage and recruits a high-performance volatile memory for the transmission task. A hybrid precision
PCM system that benefits from both the accuracy of digital computing and energy layout area efficiency
of the IMC mode was studied in [42]. The proliferation of big data requires both real-time processing
and rapid transformation. Data security based on the stochastic behavior of MRAM is also important,
such as the physical unclonable function and true random number generator [43–45]. Additionally, studies
have been conducted on bioinspired computing for achieving low-energy, intelligent, and highly adaptable
computing systems based on a device’s stochastic behavior [46–48].

In terms of data-intensive workloads, the development of SoC to further improve energy efficiency is a
growing research focus. Data flow is often optimized to increase on-chip data reuse, and the preferred ap-
proach is the in-memory-array digital multiply-and-accumulate (MAC) operation. However, the majority
of the inputs/outputs are moved across MAC arrays and from global buffers. Table 2 [49–61] reviews
parts of recently emerged embedded NVM-based MAC operations. Most of the publications were applied
to inference applications and depend on ADC-DAC blocks for signal conversion. Owing to reliability and
variability challenges, the silicon-verified results (tape-out work) were obtained using a mature CMOS
processor. Finally, Ref. [56] achieved STT-MRAM codesigned with a PIM convolutional neural network
(CNN) accelerator, which has been commercialized previously.
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Figure 2 (Color online) Modified von-Neumann structure with in-memory computing. (a) PEs with memory hierarchies; (b) PEs

with 3D stacked DRAM; (c) in-memory analog computing with SRAM and NVM; (d) three IMC modes.

2.4 Typical IMC modes

Recent demonstrations of all-digital deep neural network processors and accelerators with von Neumann
architectures (Figure 2(a)) have shown that energy consumption and delays are dominated by the frequent
movement of input data, weights, and intermediate data between the processor and memory. This
has motivated the development of IMC in which in-place analog computing (see Figure 2(c)) exhibits
substantial potential for addressing the energy requirements of computing and data movement. The
above studies demonstrated that memory data movements and computations could be accelerated by
both the multimode and IMC paradigms. Figure 2(d) presents the typical IMC modes, each of which
exploits the advantages of the current storage state (Zi) during computation. The modes can be simply
classified as three different types:

• Mode 1, in which the computational result (output) is related to both input and storage states, and
the output is generated directly.

• Mode 2 is similar to Mode 1, in which the computational result is stored in the storage unit.
• Mode 3, in which the computational result is related to the input and storage states. In this mode,

simultaneous updates of the result outputs and the storage state occur.
As Mode 3 has similarities to the synaptic unit found in biological neural networks, it is more aligned

with the development of artificial intelligence algorithms. Current applications based on Mode 3 are
subject to significant constraints owing to the hardware resource limitation.

3 In-MRAM computing

MRAM has significant potential for use in next-generation low-power memory sub-systems because of
its properties of high endurance (1015), high density (6F 2), and efficient switching energy (0.1 pJ/bit
writing) [8]. Several foundries have reported the data-access performance of MRAM macros to be stable
and nonvolatile, which suggests good potential for in-MRAM computing. This section analyzes the
electrical properties and bit-cells related to MTJ, and investigates the state-of-the-art computing schemes,
challenges, and applications.

3.1 Implementation of MRAM hierarchy: an STT-MRAM example

Figure 3(a) demonstrates a typical single-access transistor MTJ (1T-1M)-MRAM bit-cell using a perpen-
dicular MTJ device. Its characteristic is mainly determined by two ferromagnetic layers (CoFeB) and
an oxide barrier (MgO). The magnetization direction of the reference layer is fixed, although it can be
changed by the application of a sufficient current in the free layer. A lower resistance is achieved when
the directions of the two ferromagnetic layers are parallel (RP ) rather than anti-parallel (RAP). The
difference in resistance is represented as the tunnel magnetoresistance ratio (TMR) [62–64]:

TMR =
RAP −RP

RP

. (1)

When the bidirectional current is higher than the threshold current, the MTJ switches between the
P and AP states (Ic0) [65]. Ic0 is determined using (2) and (3). According to the STT mechanism, a
bidirectional current I can change the MTJ between states when it is higher than the critical current Ic0:

Ic0 = α
γe

µBg
(µ0Ms)HKV = 2α

γe

µBg
E, (2)
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E =
µ0Ms ×Hk × V

2
, (3)

where E is the energy barrier, α is the magnetic damping constant, γ is the gyromagnetic ratio, e
is the elementary charge, µB is the Bohr magneton, µ0 is the permeability of free space, Ms is the
saturation magnetization, HK is the effective anisotropy field, V is the volume of the free layer, and
g =

√

TMR(TMR+ 2)/2(TMR+ 1) is the spin polarization efficiency factor.
Generally, the read operation differentiates the MTJ resistances by converting the resistance states

into voltage differences using voltage sensing schemes [66, 67]. As presented in Figure 3(b), the bit-cell
is read by enabling the word line (WL) and setting the source line (SL) to ground and bit line (BL)
to VREAD. A small current (Icell) is injected via the corresponding BL, and VBL is determined by the
effective resistance of the MTJ. Finally, the VBL is compared with an intermediate reference voltage by
an SA to detect the bit-cell data and ensure the availability of DOUT at the output of the SA.

Figure 3(c) depicts an overview of MRAM macro, which mainly comprises peripheral control circuits,
sensing amplifiers, and MTJ-based core array circuits. The core array comprises bit-cells as M×N , where
M is the maximum bit number in a row, and N is the number of rows. The control units generate signals
that inform other peripheral circuits to prepare for the incoming data access. A row decoder linked to
a WL driver decodes the row address bits and selects a WL. Column multiplexers addressed by vertical
BL and SL allow the write driver or SA to share a series of bits among multiple columns.

Figure 4 presents the literature studies of silicon-verified MRAM. To achieve diversified density, ca-
pacity, access latency, and energy consumption, the bit-cell structure of MRAM can be configured with
1T-1M, duplex 2T-2M, 2T-1M, and 4T-2M. An MRAM macro design (hybrid CMOS-MTJ integrated
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Table 3 Survey of In-MRAM computing

CMOS Memory Bit-cell Operation IMC with SA type Energy efficiency Throughout

JSSC’15 [26] 90-nm STT 4T2M Read Pass-transistor CSA 48.3% improved 5×5 PE

TED’19 [68] 40-nm STT 1T1M Write Bit-cell CSA 237.3 fJ/bit N/A

MEJ’18 [69] 45-nm STT 1T1M Read Dual references CSA 10 fJ/bit-wise bit-wise

TVLSI’18 [70] N/A eNVM 1T1R Read References VSA 38% improved bit-wise

VLSI’18 [71] 45-nm STT 1T1M Read References CSA N/A bit-wise/DNN

DAC’18 [58] 45-nm SOT 2T1M Read References VSA 94 × N/A

Intermag’18 [72] 40-nm STT 1T2M Read MTJ+references CSA N/A N/A

TED’17 [73] N/A VCMA 1M Write+read MTJ Crossbar 12 fJ/bit N/A

DAC’19 [74] 45-nm SOT 2T1M Read References VSA N/A 412.28 K/W

TVLSI’19 [75] 28-nm STT 2T1M Write/read Threshold+references CSA 68.5% saving vs. FPGA 235.1 image/s

TVLSI’19 [59] 28-nm SOT 2T1M Write+read Bit-cell CSA 1.41 W (CIFAR-10) 96.6-image/s/W

Tnano’19 [76] 40-nm VG-SHE 1T1M Write Bit-cell Crossbar 63.8 fJ/bit/FA bit-wise

VLSI’20 [34] 22-nm SOT 2T1M Read Analog IMC N/A N/A N/A

ISSCC’20 [31] 22-nm STT 1T1M Read Near-memory CSA 0.23 pJ/bit read 42.67 GB/s read

circuit) that incorporated the electrical characteristics of an MTJ was constructed using a CMOS design
kit. The size of the access transistor controls the bit-cell size, as the MTJ is normally located in the top
metal layer. According to the literature study presented in Figure 4(b), the 2T-2M bit-cell was shown to
be a suitable choice for a low-capacity and high-performance scenario. The lower write energy consump-
tion and more compact structure of the 1T-1M counterpart make it more suitable for energy harvesting
and high-density scenarios.

3.2 The state-of-the-art of in-MRAM computing

Numerous in-MRAM computing schemes have been demonstrated using on-chip arrays to realize fun-
damental Boolean logic operations (i.e., AND, OR, XOR, and FA) and complex arithmetical functions
(i.e., neural networks). Table 3 [26, 31, 34, 58, 59, 68–76] shows the literature study on recent in-MRAM
computing. Main approaches are executed using bit-cell modification, reference adaptation, PTL-enabled
NMC, and in-memory analog computation schemes.

3.2.1 Sensing-based scheme

As listed in Table 3, a sensing-based IMC scheme was applied to STT, SOT, and voltage-controlled mag-
netic anisotropy (VCMA)-MTJ switching to realize bitwise operations based on the modified read/sense
circuit; multiple rows in an MRAM array can be activated simultaneously. Additionally, bitwise logic
operations can be performed by comparing the analog BL value (e.g., current or voltage amplitude) with
reference bit-cells. However, the drawback is that the complex peripheral circuits must be included for
bitwise operation, which increases both the energy consumption and the layout area. Additionally, the
performance is highly sensitive to the CMOS-MTJ device variations; e.g., the limited TMR of MTJ leads
to a small sensing margin and low VBL swing, which deteriorates the computational accuracy and limits
IMC stability. Recently, considerable research has been conducted on MRAM-sensing margin enhance-
ment techniques [66, 67, 77] to benefit the performance optimization of sensing-based schemes.

Ref. [31] proposed a near-memory scheme, in which the output latch was reused in the output buffer
and reconfigured as a D-flip-flop to realize shift and rotate operations. The sensing circuit was modified
to facilitate the adaptation of NMC (see Figure 5). Silicon-verified results validated that the NMC
scheme achieved a 33% reduction in logic area and 48.8% reduction in power consumption in a 22-nm
STT-MRAM processor [31].

3.2.2 Writing-based scheme

An alternative solution to sensing-based IMC utilizes a writing (MTJ switching) procedure to perform
simultaneous calculation and storage functions within the MRAM bit-cell [68, 76, 78, 79]. It can perform
a logic function based on a series of write cycles, thereby alleviating the effect of limited TMR and wide
distribution of cell resistance. However, high MTJ switching current and latency remain the limitations
of a writing-based scheme.
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Figure 5 (Color online) (a) A common structure of analog computation based IMC. WL driver, reference tree, and modified

sensing amplifier are included. (b) Writing-only IMC circuit, basic Boolean logic functions can be realized.

A write-operation-based IMC encodes the access transistor and MTJ control signals and then records
the result into bit-cells during a write operation process [59, 68, 75]; e.g., the logic function Bi+1 =
AC + ABi can be realized. Figure 5(b) presents the write-only IMC scheme. An enhanced self-write
termination circuit in MRAM is proposed for the realization of logic functions based on a configurable
write controller. Simulation results show a 59.07% energy reduction within a 20-ns write duration.

3.2.3 Implication logic-based scheme

Implication logic-based IMCs supply different voltage pulses to enable in-MRAM logic operations; the
interconnection of memory bit-cells facilitates multiple parallel operations within the memory array.
However, the main drawback with this scheme is that the realization of logic functions is at the expense of
iteration, which shows low efficiency. To reduce MRAM energy consumption, a nonvolatile approximate
FA was implemented [36]. In this design, input Ci can be eliminated in the SUM operation network
(dashed rectangle) with Sum = A ⊗ B, whereas the C0 function maintains its accurate computation.
According to the experimental results, this approximation originates from an insufficient MTJ write
operation in which the B input is a floating state that follows a probability distribution related to Vdd. A
79.7% reduction in dynamic power and an acceptable computational accuracy is offered by the scaled Vdd

(under 0.5 V). Simulation results were obtained using a 28-nm fully depleted silicon-on-insulator (FDSOI
process) and a 40-nm MTJ compact model.

3.3 Challenge of in-MRAM computing

3.3.1 Device-level stability and reliability

Bi-directional MTJ writing leads to unbalanced switching latency and energy consumption. This latency
can be calculated according to different regimes with Sun model (I > Ic0) and Neel-Brown model (I
< Ic0) [80–82].

τ = τ0 exp

(

E

kBT

(

1−
I

Ic0

))

(I > Ic0), (4)

1

τ
=

[

2

C + ln(π
2ξ

4 )

]

µBPref

emm(1 + PrefPfree)
(I < Ic0), (5)

where τ is the switching time, τ0 is the attempt period, kB is the Boltzmann constant, T is the tem-
perature, C ≈ 0.577 is the Euler’s constant, ξ = E

kBT
is the thermal stability factor, e is the elementary

charge, mm is the magnetization moment, and P is the tunneling spin polarizations. For the conven-
tional one-pulse writing, applying the writing pulse with the same duration to all the bit-cells, the writing
energy when switching MTJ from AP to P and P to AP can be calculated as

Energy(P ) = I(AP→P )τVdd + IPVdd(Tpulse − τ) (When writing ‘P ’),

Energy(AP) = I(P→AP)τVdd + IPVdd(Tpulse − τ) (When writing ‘AP’),
(6)
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Table 4 Writing/reading failure mechanisms and key causes

Affect Mechanisms Major factors

Read

Decision fault Process variations, limited TMR, low supply voltage

Read disturb Read and write share the same path, growing with technology scaling

Incorrect read fault Opposite temperature dependence resistance, parasitic effects, tiny SA sensing margin

Retention failures Intrinsic thermal instability, thermal noise

Write

Transition faults Stochastic nature of write operation, thermal fluctuations

Coupling faults Neighboring cells switching

Write polarization asymmetry Higher P -AP switching current, varied writing time

where Energy(P ) and Energy(AP) is the energy consumption during writing AP and P respectively,
I(AP→P ) and I(P→AP) are the current of writing AP and P , Vdd is the supply voltage and Tpulse is the
applied writing duration. Because of the redundant write time (Tpulse−τ), the extra energy consumption
is inevitable for reliable MTJ writing operation.

The main issues in perpendicular MTJ-based MRAM include low magnetoresistance and limited TMR.
The simultaneous activation of multiple rows by conventional sensing-based in-MRAM Boolean logic
operations relies on the analog signal on BL to perform computation. An adequate difference between
RP and RAP is required to achieve successful 1-bit in-MRAM Boolean logic operations. As the RP -
RAP difference is highly sensitive to process-voltage-temperature (PVT) variation, a low resistance could
result in a high column current density, causing a distinct IR-drop along the interconnecting wire and
deteriorating the MRAM-sensing margin.

RRAM is a suitable candidate among NVM devices for nonvolatile logic because its high R-ratio facil-
itates multibit storage and provides a wide sensing margin. TMRs of over 600% have been demonstrated
by in-plane anisotropy-based MRAM [83], whereas deficiencies in the reading/writing reliability have
been shown by in-plane anisotropy. According to silicon-verified perpendicular MTJ-based STT-MRAM,
the RAP is approximately 10 kΩ, while the normal TMR could be around 200%. A 249% TMR using
atom-thick W layers and double MgO/CoFeB interfaces was reported by [84], which could be beneficial
for future in-MRAM computing.

Another important issue is that the design of hybrid CMOSmagnetic circuits requires joint optimization
to protect against PVT variations. Differences occur in the physical parameters of MTJs (from bit-cell
to bit-cell) in terms of the resistance caused by process variations. Additionally, the RP and RAP have
opposite temperature dependences. At high temperatures, there is a decrease in high resistance and
a slight increase in a low resistance, which results in a higher TMR at high temperatures than at low
temperatures. Consequently, the sensing margin between adjacent computing states is affected, and the
number of operations is limited.

The downscaling of an MTJ device at a critical dimension (CD) of 40 nm produced considerable
reductions in average switching time and critical switching current. An MTJ with a sub-40-nm CD
enables faster switching and consumes less switching energy [85–87]. Therefore, writing-based in-MRAM
computing has attracted considerable attention due to its low costs in terms of iterative write energy and
latency.

3.3.2 Reliability and variability at circuit and system levels

Performance degradation occurs as a result of unreliable bit-cells a transistor reliability issues [88, 89].
Table 4 lists the writing/reading failure mechanisms and their key causes. An MRAM array may be
affected by reading disturbance, which is the corruption of data under the effects of a significant read
current across MTJ. However, due to the continuously diminishing MTJ switching current, the difference
between the write and read currents is reduced. Therefore, a clamp transistor with BL is required to
prevent read disturbance, although the sensing margin is deteriorated further by this setup.

Although the sensing margin can be optimized, several limitations of IMC must be addressed. In
particular, a large number of activated WLs generate high currents along the BL (IBL), which produces
an inaccurate BL-clamping voltage. A high IBL requires a large array area due to the wide metal lines
required to support a high current density. To solve this, Ref. [31] implemented a BL-in/out multibit
computing scheme using a single WL-on and input-aware multibit BL clamping.

The use of modified/customized sensing and peripheral circuits unavoidably impacts the layout area.
Although computation efficiency is improved, analyses usually ignore the energy consumption of addi-
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4 CIM macros. Each CIM macro contains an MRAM array. A row-wise digital-time-converter is used to convert an activation into

a time pulse signal. Both ADC and DAC are implemented at each column to provide MAC read-out and analog write-in. Similar

to prior schemes, global SRAMs are used to store weight and input/output activation data before being fetched into CIM macro.

A date manager is used to manage data sequencing and pre-/post-processing.

Table 5 Survey of MRAM based neural network

CMOS Tape-out Memory Capacity CIM Speed up Energy saving Area Application

NIPS’18 [56] 22-nm X STT 40 Mb X N/A 9.9 TOPS/W N/A NLP

IEDM’18 [90] 45/28-nm X STT 32 Kb X N/A 82% N/A Computer vision

DAC’18 [58] 45-nm × SOT N/A × 4.3× 67% N/A Computer vision

TVLSI’19 [59] 28-nm × SOT 2048×256 X 12.3× 60.8% N/A Computer vision

TVLSI’19 [75] 28-nm × SOT N/A X 4.7× 29% N/A Computer vision

JETCAS’19 [29] 22-nm × STT 8 Mb × 4.85× 83.5% N/A Computer vision

DAC’19 [91] N/A × STT N/A × N/A 79.4% 57% Computer vision

DATE’19 [92] 28-nm × SOT 1024×512 X 2.12× 14% N/A Computer vision

ASP-DAC’20 [93] 45-nm × SOT 256×512 X N/A 63% 7.9% Computer vision

VLSI’20 [34] 22-nm X SOT × X N/A N/A N/A DNN

tional control units. To reduce the significant losses in area and energy, a multibit SA was proposed
by [31].

3.3.3 Energy efficiency challenge

Analog computations based on Kirchhoff’s current law could realize Boolean logic operation and memory
access [58, 69–72,74]. Typical analog signals include voltage amplitude, current density, and pulse dura-
tion, which are also used for memory access control. Figure 5 illustrates a typical in-MRAM computing
scheme, including specified WL/column drivers, a modified SA, a reference tree, and a controller. During
the calculation, multiple WLs are activated, and the accumulation results are obtained using the cross-
coupled sensing circuit. Increased energy efficiency can be achieved through in-MRAM computation by
utilizing the enormous mini-/sub-array bandwidth along with high computational throughputs.

Figure 6 presents an example of a time-domain in-MRAM computing macro. Previous IMC techniques
had high quantization errors because ADC block was unable to track bit-cell PVT variations in MRAM
arrays. CNN operations using 3 × 3 kernels, 2b-inputs, and 3b-weights utilize the MNIST handwritten
digit recognition dataset with the LeNet-5 CNN. A total of 200 test images can be run through the two
convolutional and three fully-connected layers. Our work achieves a classification error rate of 1% after
the first two convolutional layers and 4% after all the five layers, which demonstrates the ability of the
time-domain IMC architecture to compute convolutions. Furthermore, an energy efficiency improvement
of 40%–70% was achieved via its parallel in-memory delay computations.
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4 In-MRAM computing perspective

Table 5 [29, 34, 56, 58, 59, 75, 90–93] lists the recent neural network implementations. Several in-MRAM
computing studies were implemented and verified using a 2x nm CMOS process. Currently, several
foundries can customize, design, and fabricate STT-MRAMs at an advanced 2x nm CMOS node. The
practical application of MRAMs in IoT scenarios requires fast read speeds and low power consumption [94]
(of approximately 1 µA/MHz/b). Embedded STT-MRAMs with a capacity of up to 1 Gb were fabricated
for industrial MCU/IoT applications based on a 28-nm FDSOI process, and endurance of 1010 was re-
ported [95–97]. The planer FDSOI CMOS process provides tunable energy efficiency, e.g., forward/reverse
body biasing, thereby alleviating the previous in-MRAM computational limitations. Conversely, the fin
field-effect transistor (FinFET) guides MRAM into a 1x nm node [98–100]. The design space of MRAM
arrays and peripheral circuits can be further extended using FDSOI and FinFET; therefore, there is sig-
nificant potential for foundry-verified in-MRAM computing circuits and systems. The intrinsic stochastic
behavior of in-MRAM neuromorphic computing could be an interesting research topic.

A physical mechanism was used to validate the novel efficient switching behavior of MTJ. For example,
the performance of writing-based in-MRAM computing could be enhanced by emerging magnetoelectric
RAM (MeRAM) with 5-fJ writing energy and 2-Gb/cm2 bit density [101–103]. A SOT-MRAM with
an accessing operational speed of approximately 100 MHz was fabricated in [104], which supports the
prospect of a high-speed computing paradigm. Ref. [105] proposed a combination of SOT and VCMA
switching with exchange bias; this ultralow power-switching method required a gate voltage of only 0.6 V.
Based on these energy-efficient MTJ switching mechanisms, the design space of high-level in-MRAM
computing can be explored using the SPICE behavioral model. Another potential solution for high-
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performance IMC is offered by the joint effect of STT- and SOT-induced switching, which provides
high energy efficiency and speed [106, 107]. In [108], efficient in-memory approximate computing for
image processing applications was realized using joint magnetization switching mechanisms, including
precessional VCMA, STT-assisted precessional VCMA, and SOT-erasing STT programming.

The realizations of IMC at high levels show considerable potential. An 8-bit-string NAND-like spintron-
ics memory structure was proposed that achieved 5× write energy reduction compared with STT-MRAM
and a 25% reduction in density compared with SOT-MRAM [109]. Additionally, the co-optimization of
design technology is important. Previously, row-wise memory access was achieved, although the proposed
design obtains a binary neural network result over many bits, thereby amortizing the accessing cost. Fig-
ure 7 [110] illustrates our recent MRAM realization with array sparsity. The simulation results using
representative dataset CIFAR-10 confirm that MRAM-sensing operation can be speedup to 6.4× with
84.46% sparsity. With a suitable sparsity selection, unreliable sensing issues can be solved by the pro-
posed training and retraining phases. The MTJ-CMOS process and the co-optimization of memory/IMC
circuits and systems are of considerable importance.

5 Conclusion

This paper presented an analysis of state-of-the-art in-MRAM computing with an emphasis on IMC
approaches and their implementation with STT-MRAM. It identified the realization of energy-efficient
memory access and the provision of efficient computational performance as key considerations. Potential
circuit design schemes were reviewed by allocating STT-MRAM into bottom-up hierarchies, and energy
efficiency was improved via multimode memory reconfiguration. SPICE-compatible simulations were used
to implement and analyze several designs at the device, circuit, and system levels.

Besides the intrinsic energy efficiency obtained from spintronic devices, the key advantage of multimode
MRAM reconfiguration is the ability of hierarchical design-space exploration, and the macro adaptation
to various energy-constraint scenarios. Designer preference should influence the selection of multimode
reconfiguration in MRAM and design strategies. However, to achieve high efficiency, customized MRAM
design techniques require the following three improvements. First, the dimensions of the MTJ device (CD)
must scale beyond 40 nm. This applies not only to STT but also to other advanced spintronic switching
mechanisms, e.g., SOT, VCMA, and several interplay MTJ switching methods. Second, the development
of MRAM/in-MRAM computing compatible with front- and back-end design tools remains at an early
stage. Finally, in-MRAM computing with dimensional scaling is recommended for co-optimization with
MTJ/CMOS processes and new computing architectures.
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