
SCIENCE CHINA
Information Sciences

June 2021, Vol. 64 160401:1–160401:25

https://doi.org/10.1007/s11432-020-3219-6

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. REVIEW .
Special Focus on Near-memory and In-memory Computing

Graph processing and machine learning architectures
with emerging memory technologies: a survey

Xuehai QIAN

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles 90089, USA

Received 31 December 2020/Revised 15 March 2021/Accepted 17 March 2021/Published online 10 May 2021

Abstract This paper surveys domain-specific architectures (DSAs) built from two emerging memory tech-

nologies. Hybrid memory cube (HMC) and high bandwidth memory (HBM) can reduce data movement

between memory and computation by placing computing logic inside memory dies. On the other hand, the

emerging non-volatile memory, metal-oxide resistive random access memory (ReRAM) has been considered

as a promising candidate for future memory architecture due to its high density, fast read access and low

leakage power. The key feature is ReRAM’s capability to perform the inherently parallel in-situ matrix-

vector multiplication in the analog domain. We focus on the DSAs for two important applications—graph

processing and machine learning acceleration. Based on the understanding of the recent architectures and

our research experience, we also discuss several potential research directions.

Keywords graph processing, machine learning acceleration, ReRAM, HMC/HBM

Citation Qian X H. Graph processing and machine learning architectures with emerging memory technologies: a

survey. Sci China Inf Sci, 2021, 64(6): 160401, https://doi.org/10.1007/s11432-020-3219-6

1 Introduction

The improvement of complementary metal-oxide-semiconductor (CMOS) technology has been the driving
force that enabled architects to invent various aggressive techniques to achieving high performance. In
1965, Gordon Moore predicted that the transistor density would double yearly, and in 1975, revised to
a doubling every two years—eventually known as Moore’s law. Another famous prediction is “Dennard
scaling” made by Robert Dennard, stating that as transistor density increases, power consumption per
transistor would drop, making the power per mm2 of silicon nearly constant. Since the compute capability
of a mm2 of silicon increases with each technology generation, Dennard scaling implies that computers
would become more energy efficient. Moore’s law began to slow around 2000 and by 2018 showed a
roughly 15-fold gap between the prediction and current capacity [1]. Similarly, Dennard scaling began to
slow significantly in 2007 and completely faded by 2012 [1]. Before mid-2000s, the interaction between
software and hardware was non-essential: the unmodified software can expect to run faster in a year or
two by simply using newly announced microprocessors.

The end of Moore’s law and Dennard scaling triggered major changes in the landscape of industry,
entering the era of “dark silicon”. The sharp increase in power densities prevents all the transistors from
being powered simultaneously at the nominal voltage. This triggers the proliferation of domain-specific
architectures (DSA) and domain-specific languages (DSL). Tailored for specific problem domains, the
DSAs can potentially offer significant performance and power efficiency gains. The DSLs enable the
expression of domain-specific structures, e.g., vector, sparse matrix, and graph operations, so that the
problems can be efficiently mapped to DSAs. The emerging applications supported by DSAs and DSLs
offer breathtaking opportunities. As the 2018 Turing Award winners John Hennessy and David Patterson
pointed out in the Turing lecture [1], we have entered the “the new golden age for computer architecture”,
where achieving significant gains through DSA and DSL will require vertical integration that understands

Email: xuehai.qian@usc.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-3219-6&domain=pdf&date_stamp=2021-5-10
https://doi.org/10.1007/s11432-020-3219-6
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-3219-6
https://doi.org/10.1007/s11432-020-3219-6

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:2

and connects applications, DSL and frameworks, computer architecture, and the underlying and emerg-
ing technology. Improving the software/hardware (SW/HW) interfaces and making design decisions
across layers of abstractions are crucial to understanding complex trade-offs and achieving performance
improvements.

The domain-specific architecture faces the important challenge of high cost of data movement. As
the heart of deep learning applications, convolutional neural networks (CNNs) are not only compute
intensive but also memory intensive. For example, to process just one image data, AlexNet [2] performs
109 operations. Since the conventional von Neumann architecture separates the computation and data
storage, a large amount of data movements are incurred to process deep networks with large number of
layers and millions of weights. Such data movements not only lead to a critical performance bottleneck
due to the limited memory bandwidth, but also, and more importantly, an energy bottleneck. A recent
study [3] showed data movements become the dominant source of energy consumption compared to
computation operations—the data movements between CPUs and off-chip memory consumes two orders
of magnitude more energy than floating point operations. Based on the application demands and high
cost, it is crucial to reduce data movement and computing cost. In this study, we survey the recent DSA
built from two emerging memory technologies.

The first technology we consider is hybrid memory cube (HMC) [4] and high bandwidth memory
(HBM) [5]. This type of memory can reduce data movement between memory and computation by
placing computing logic inside memory dies. The same idea has been proposed and investigated decades
ago, but gradually fade out because it is not technically practical. Recently, thanks to the emerging
3D stacked memory technology, researchers intensively investigated the potential of the technology on
various applications that did not exist before. In an abstract view, the architecture contains multiple
memory cubes, and they are connected by external SerDes links with 120 GB/s per link. Within each
cube, multiple DRAM dies are stacked through silicon via (TSV), providing higher internal memory
bandwidth up to 320 GB/s. At the bottom of the dies, computation logic such as simple in-order cores
can be embedded. Performing computation at in-memory compute logic can clearly reduce data move-
ments in memory hierarchy. More importantly, HMC and HBM provide “memory-capacity-proportional”
bandwidth and scalability. We consider the architectures developed based on HMC/HBM as near data
processing (NDP) architectures because the computation units are moved closer to memory.

The second technology we consider is the emerging non-volatile memory, metal-oxide resistive random
access memory (ReRAM) [6–9]. It is considered as one of the promising candidates for future memory
architecture due to its high density, fast read access and low leakage power. Besides the advantage of
being used as a type of non-volatile memory, ReRAM also enjoys the unique key feature of being able
to perform the inherently parallel in-situ matrix-vector multiplication in the analog domain. For many
important applications such as machine learning and graph processing, the key computation kernels all
can be essentially expressed as matrix-vector multiplication, and thus ReRAM crossbars can naturally
accelerate them with much less data movement and low-cost computation. We consider the architectures
developed based on ReRAM as processing-in-memory (PIM) architectures because the computations are
directly performed by ReRAM crossbars.

In this study, we focus on the domain-specific NDP or PIM architectures for two important applications
—graph processing and machine learning acceleration. Graphs are natural data representation to cap-
ture the relationships between data items, such as interactions or dependencies. Graph analytics is an
important way to understand the relationships between heterogeneous types of data. In various im-
portant applications, such as machine learning tasks [10], natural language processing [11–13], anomaly
detection [14–16], clustering [17, 18], recommendation [19–22], social influence analysis [23–25], bioinfor-
matics [26–28], the valuable insights from patterns in the graph data can be obtained. At the same
time, the execution of the graph algorithms on conventional architecture also poses two key challenges.
First, they have poor locality because of the random accesses in traversing the neighborhood vertices.
Second, they demand high memory bandwidth requirement because the computations on data accesses
from memory are typically simple. In another word, the time spent on computation after fetching a piece
of data from memory hierarchy is short, making it hard to hide the latency. Moreover, a side effect of the
poor locality is the memory bandwidth waste. When a cache line is fetched, only a small portion of it is
used in the computation. As a result, graph processing incurs a significant amount of data movements
and energy consumption.

The second application we consider is the acceleration of deep neural networks (DNNs), which have
become the fundamental element and core enabler of the ubiquitous artificial intelligence [29]. As we

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:3

showed earlier, the execution of DNNs leads to substantial data movements and computation operations.
To achieve high accuracy, the model size is also growing rapidly, exaggerating the bottlenecks. To reduce
data movement, two techniques are intensively studied. First, the model compression techniques [30–33]
reduces model sizes and thus eliminates many dynamic random-access memory (DRAM) accesses. The
challenge is to still achieve the high accuracy with the smaller model sizes. The second trend is the design
of hardware accelerators [34–42]1). While perhaps having quite different architectures, they all share
the benefit of performing computations efficiently in manners that matches the structure of the DNNs.
The computation cost can be reduced by lowering the precision of floating point operations, or avoiding
redundant computation (e.g., multiplication with zeros) at an element or even bit level. Most of these ideas
have been investigated using CMOS technology, but with the end of Moore’s law [43], the potential of the
acceleration architecture based on conventional technology might be limited. We believe that the drastic
improvements can be likely achieved by (1) the next-generation emerging device/circuit technology beyond
CMOS; and (2) the vertical integration [1] and optimization of algorithm, architecture and technology
innovations to deliver better overall performance and energy efficiency for various applications.

The paper is organized as follows. Section 2 provides the background of different emerging memory
technologies. Section 3 discusses the key problems and challenges of graph processing and machine
learning acceleration. Section 4 surveys the recent PIM and NDP architectures for graph processing.
Section 5 surveys the recent PIM and NDP architectures for machine learning acceleration. Section 6
discusses several potential future research directions. Section 7 concludes the paper.

2 Emerging memory technologies

This section provides the background on HMC/HBM and ReRAM memory technology. They are the
essential building blocks for various architectures we survey in this paper.

2.1 Hybrid memory cube

Thanks to the technology advance, the 3D integration technology [44] enables the integration of computing
logic with memory dies. In this paper, we mainly discuss on HMC [45], but the insights and principles can
be also applied to other alternatives such as HBM [46]. Both of them can be abstractly considered as a
number of computing nodes with local memory: the computation is performed by the logic die under the
multiple levels of memory dies. The property is that accessing data in the local memory dies is shorter
than accessing the remote dies. An HMC device, also called a cube, is a single chip stack that consists
of several memory dies/layers and a single logic die/layer. Based on this structure, we should consider
two kinds of bandwidth. The internal bandwidth determines the maximum data transfer speed between
memory dies and the logic dies of a same cube. The external bandwidth determines the data transfer
capability from the cube to the external devices such as other cubes and the host processor.

Figure 1 shows the organization of one HMC based on the specification 2.1 [45]. We see that each cube
is divided into 32 vertical slices (also known as vaults), and has at most 4 multiple serial links serving
as the interface for off-chip communication, and a crossbar network that connects the slices. Each vault
has a logic layer and several memory layers, which provides up to 256 MB of memory space (8 GB space
per cube). These layers are connected through low-power TSV. Each TSV can provide up to 10 GB/s of
bandwidth, and thus the maximum internal bandwidth of a cube is 32× 10 = 320 GB/s. Based on the
default configuration, the each off-chip links contain 16 input lanes and 16 output lanes for full duplex
operation. This leads to at most 480 GB/s external bandwidth (i.e., 120 GB/s per link).

Besides the capability of providing high density and bandwidth, HMC also makes it possible to integrate
computation logics into its logical die/layer. For example, in Tesseract [47], a single-issue, in-order core
and a prefetcher are placed in the logic die of each vault (i.e., 32 cores per cube). It is feasible, because the
area of 32 ARM Cortex-A5 processors including an FPU (0.68 mm2 for each core2)) corresponds to only
9.6% of the area of an 8 GB DRAM die area (e.g., 226 mm2 [48]). The key benefit that HMC can provide
is memory-capacity-proportional bandwidth. Thus, the benefits of multiple HMCs are always preserved.
Typically, a system that contains N HMCs can provide N × 8 GB memory space and N × 320 GB/s

1) Google supercharges machine learning tasks with TPU custom chip. https://cloudplatform.googleblog.com/2016/05/Google-

supercharges-machine-l earning-tasks-with-custom-chip.html.

2) ARM. ARM Cortex-A5 Processor. http://www.arm.com/products/processors/cortex-a/cortex-a5.php.

http://www.arm.com/products/processors/cortex-a/cortex-a5.php

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:4

Vault
00 logic

Link 0

Vault
01 logic

Vault
31 logic

Logic die

BIST

Reference
clock

Internal switch

Serialized packet requests and responses

Link 3

P00B

P00A

P01B

P01A

P31B

P31A

P00H P31H

Memory die B

Memory die ...

Memory die A

Memory die H

Memory partitions (vaults)

P01H

Link 2Link 1

Figure 1 An implementation of HMC.

CPUCPU

Group

CPUCPU

CPU

CPU

CPU

CPU

CPU CPU

CPUCPU C12 C13 C14 C15

C08 C09 C10 C11

C04 C05 C06 C07

C00 C01 C02 C03

C12 C13 C14 C15

C08 C09 C10 C11

C04 C05 C06 C07

C00 C01 C02 C03

(a) (c)(b)

Figure 2 (Color online) Examples of HMCs’ interconnections. (a) Processor-centric network; (b) memory-centric network: mesh;

(c) memory-centric network: dragonfly

aggregation internal bandwidth. The actual aggregated bandwidth is determined by the interconnection
network that connects the HMCs and host processors.

A straightforward interconnect design is the “processor-centric network”, which simply reuses the
current non-uniform memory access (NUMA) architecture and replaces traditional dual in-line memory
modules (DIMMs) with HMCs. Figure 2(a) presents a typical system that contains four processor sockets.
In this case, a fully-connected interconnection network among the processors is built based using Intel
QuickPath Interconnect (QPI) technology. A processor is connected to a set of HMCs, while each
HMC can be only exclusively connected to a particular processor. This also means that there is not
a direct connection between HMCs. This network organization is simple and compatible with the current
architecture. Unfortunately, Kim et al. [49] concluded that this processor-centric organization does not
fully utilize the additional opportunities offered by multiple HMCs. Since the routing/switching capacity
can be supported by HMC’s logic die, it is possible to use more sophisticated topology and connection that
were infeasible with traditional DIMM-based DRAM modules. To take this opportunity, Kim et al. [49]
proposed the “memory-centric network”, which allows HMCs to be directly connected to each other
without providing direct connections among processors. This means that all processor communications
need to go through HMCs indirectly. The evaluation results show that the throughput of a memory-
centric network can exceed the throughput of a processor-centric network.

Kim et al. [49] also evaluated various types of topology to interconnect HMCs. Figures 2(b) and (c)
show two commonly used examples. Dragonfly [50] is shown to be advantageous for three reasons. First,
it has higher connectivity and shorter diameter than a simple topology like mesh. Second, it can achieve
a similar performance as the best interconnection topology, named flattened butterfly [51], according to
the evaluation of 16 HMCs. Third, it does not face the same scalability problem as a flattened butterfly.

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:5

B
it

li
n
e

Wordline

a1

a2

a3

b1 b2 3b

w 1,1

w2,1

w3,1

w1,2

w2,2

w3,2

w1,3

w2,3

w3,3

b
j
= f (a

i
iw

ij
i

)

Top electrode

Metal oxide

Bottom electrode

C
u
rr

en
t

Voltage

SET

RESET

(a) (b) (c)

Figure 3 (Color online) Basics of ReRAMs. (a) Metal-insulator-metal structure of a ReRAM cell; (b) switch between high/low

resistance states; (c) in-situ matrix-vector multiplication in ReRAM crossbars.

2.2 ReRAM basics

Thanks to the significant progress of fabricating non-volatile memories, the non-volatile memories have
become commercially available. For example, the 3D Xpoint [52, 53] is an example of commercial non-
volatile memories fabricated jointly by Micron and Intel. Resistive RAM is a type of non-volatile memory
with nearly zero leakage power, high integration density, and high scalability. Research papers demon-
strated the results of fabricated ReRAM memory cells, memory arrays [6, 54–56] and also neuromorphic
accelerators using ReRAM technology [52, 53, 57–63].

Primarily, the ReRAM can be used as an alternate for main memory [64–66]. Figure 3(a) shows
the ReRAM cell containing the metal-insulator-metal (MIM) structure. The structure is composed of a
bottom electrode, a top electrode and a metal-oxide layer sandwiched between electrodes. An external
voltage can be applied to a ReRAM cell and switch it between a high resistance state (HRS or OFF-state)
and a low resistance state (LRS or ON-state). They can represent the logical “0” and “1”, respectively, as
shown in Figure 3(b). The concern of the lifetime is not as serious for ReRAM as the other non-volatile
memory, such as PCM [67], since the endurance of ReRAM could be up to 1012 [68, 69].

As a secondary but important application, the ReRAM also features the capability to perform in-situ
matrix-vector multiplication [70, 71] as shown in Figure 3(c). It utilizes the property of bitline current
summation in ReRAM crossbars to enable computing with high performance and low energy cost. While
conventional CMOS based architecture showed substantial success on neural network acceleration [72–74],
recent studies [75–78] demonstrated that ReRAM-based architectures can provide significant performance
and energy benefits for the neural network computing that is both compute and memory intensive.

3 Understanding the applications

3.1 Graph processing

3.1.1 Graph computation and application programming interfaces (APIs)

A graph G is defined as an ordered pair (V,E), where each edge in the set E connects a pair of vertices in
V . During the execution, a graph algorithm visits all edges and vertices to extract the hidden structures
and information based on the graph structure. A graph can be naturally considered as an adjacency
matrix, where each matrix row and column correspond to a vertex, and the matrix elements represent
the edges. An element is non-zero if there is an edge between the vertices corresponding to the row and
column. Thus, matrix operations can express most graph algorithms. However, in practice, the graph is
typically sparse—most elements in the adjacency matrix are zeros. If we store the graphs and perform
the computations using matrix format, it will obviously incur both storage and compute resources waste.
Therefore, all graph processing systems support the data representations for sparse graph data. In the
conventional architecture with CPUs or GPUs, each of the simple operation, e.g., multiplication of two
non-zeros, on sparse data is performed as the normal ALU instruction.

Due to the importance of developing graph algorithms, the programmers must be able to easily express
the desired graph computation. For this purpose, several domain-specific programming models that
emphasize the local view of computations are proposed. The key principle is “think like a vertex”—
the user-defined functions just need to specify the local computation on a vertex using the data of

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:6

Table 1 Vertex programming APIs

UDF Input parameters Output Operation

processEdge Source vertex value Partial update User-defined computation for each edge

reduce Reduced/partial update Reduced update Generate update value for dest vertex

apply Reduced update/old value New value Update the value of dest vertex

Figure 4 Vertex programming model.

neighbors and incoming/outgoing edges. The programming models designed based on this principle
include amorphous data-parallel program [79], gather-apply-scatter program [80], vertex program [81],
and some other frameworks [82]. Among them, the vertex program is a commonly supported interface,
which is adopted by several software and hardware accelerated graph processing frameworks adopted this
API, including Tesseract [47], GraphLab [83], and Graphicionado [84]. Table 1 lists the semantics of
three user-defined functions (UDF) of vertex program. Figure 4 illustrates a general graph application
expressed with these primitives.

Typically, the execution of graph processing visits all vertices in the vertex array in a certain order,
when a vertex is visited, its incoming or outgoing edges are also visited. For each edge, an updated value
for the destination vertex is computed and stored in a compute array, which is updated to the vertex
array after an iteration. This process involves three steps that can be expressed in user-defined functions.
(1) Process. The processEdge function computes the partial update of source vertex v through edge
e to the destination vertex u for every out-going edge e of vertex v. (2) Reduce. From each vertex u,
the processEdge function returns the new update, which is aggregated with the current value of u in
compute array by the reduce function. This step incurs a random access. (3) Apply. It is executed after
an iteration, and the updated value of each vertex in the compute array is applied to the vertex array by
the apply function. The graph algorithms are normally iterative, the above steps are repeatedly executed
for multiple iterations until certain convergence condition is achieved. For example, the difference of page
rank of a vertex after two consecutive iterations becomes smaller than a pre-defined threshold.

3.1.2 Architectural challenges

The graph processing applications are generally believed to have poor locality and high memory band-
width requirement. However, it is important to understand the reason. While randomly accessing the
vertices will certainly lead to random accesses, the graph processing execution actually accesses them
mostly sequentially. As we discussed above, all vertices are processed in the order according to how
they are stored in a vertex array, so there is no random access. For each vertex, its edge list is accessed
sequentially as well; the random access only happens when we move from one vertex to another. In
Figure 5(b), it is indicated as the global random access. However, the ratio of such random access is
quite low. The major source of random access actually happens when we update the compute array for
each edge. In synchronous graph processing, the compute array is only updated to the vertex array at
the end of an iteration. For asynchronous graph processing, the vertex array is directly updated. In
either case, storing the new value for the destination vertex of an edge is a random access. Intuitively, we
can consider the graph data access having three aspects: source vertices, edges, and destination vertices.
Among the three, only two can be accessed sequentially.

The reason for the high memory bandwidth requirement is due to the nature of graph algorithms
and the sparse representation. Typically, the computation involved in graph algorithms is quite simple,
e.g., computing the partial update, and then it is followed with a random access to store the newly

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:7

Edges:

Vertices:

(Random access)

(Global random access)

(Local sequential access)

(a) (b)

Figure 5 (Color online) Vertex and edge accesses. (a) Vertex and edge accesses in graph processing; (b) access pattern in

vertexcentric program.

0

0

1

0

0

0

0

4

3

7

0

0

8

0

0

2

0

1

2

3

0 1 2 3

(row ,col,val)

(0,2,3)
(0,3,8)
(1,2,7)
(2,0,1)
(3,1,4)
(3,3,2)

(b)

(row ,val)

0
1
2
3

1
2
4
6

colptr

0

(col,val)

0
1
2
3

2
3
4
6

rowptr

0
1
2
3
4

0

5
(0,8)
(1,7)

(3,4)

(3,2)

(2,1)

(0,3)
1
2
3
4

0

5

(2,3)
(3,8)
(2,7)
(0,1)
(1,4)
(3,2)

(a) (c) (d)

Figure 6 (Color online) (a) Sparse matrix representations in (b) CSC, (c) CSR, (d) COO.

2

0

0

1

1

0

1

1

0

0

0

0

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

0

0

1

1

0

1

0

0

0

0

1

1

0

1

(a) (b) (c)

0 2
0 3
1 2
1 3
2 0
3 0
3 1

4 1
5 0
5 1
6 0
6 1
7 1
6 2
6 3
7 2

4 6
4 7
5 6
5 7
6 4
6 5
7 4
7 6
7 7

B0-0 B0-1 B1-0 B1-1

2

1

0

7

3

4

5

6

Figure 7 (a) A directed graph represented by (b) adjacency matrix and (c) coordinate list.

computed value. Thus, the whole execution timeline can be considered as an alternative sequence of
short computation time and long random access latency. Since the computation is much faster than
memory access in this scenario, the execution is memory bound and requires high memory bandwidth.

3.1.3 Graph representation

As discussed before, graphs are typically stored in the compressed sparse matrix representation. Here,
Figure 6 illustrates three commonly used compressed sparse representations: coordinate list (COO),
compressed sparse row (CSR), and compressed sparse column (CSC). CSC representation stores the non-
zeros in column major order as (row index, value) pairs in a list, so the number of non-zeros is equal to
the number of entries in the list. The starting index of a row in the (row, val) list is kept by another list,
each entry indicates a column starting pointer. In Figure 6(a), 4 in the colptr indicates that the 4-th
entry in (row, val) list, i.e., (0, 8) is the starting of column 3. The number of entries in colptr is equal
to (the number of columns + 1). Similar to CSC, the CSR just swaps the row and column. The COO is
more straightforward: each entry directly indicates the position and the non-zero value by a tuple—(row
index, column index, value).

Given a graph in Figure 7(a), both the adjacency matrix representation and COO representation are
partitioned into four 2 × 2 subgraphs shown in Figures 7(b) and (c). In this example, the coordinate list
saves around 61% space to store the graph than the ordinary adjacency matrix. In the real-world, the
graphs tend to have higher sparsity, making the saving even higher.

3.2 Machine learning acceleration

3.2.1 The computation of deep neural network

CNN is the core component of many deep learning applications including computer vision [85–89], data
mining [90–93], and language processing [94–98]. Figure 8 illustrates the organization of an example CNN

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:8

CONV POOL IP

K

Cl+1Cl

Figure 8 (Color online) Convolutional neural network.

with three types of layers: convolution layer, pooling layer and inner product layer. In a convolution
layer, a set of kernels are convoluted with data of channels from the previous layer (layer l) to generate
data for channels of next layer (layer l + 1). dl is a cube of data in a layer. dl[x, y, c] is the value
at a point in the three dimensional data cube. Let (Xl × Yl × Cl) denote the size of d in layer l, so
0 6 x 6 Xd − 1, 0 6 y 6 Yd − 1, 0 6 c 6 Cd − 1 and Cd is the number of channels. (xl, yl, cl) indicates
a point in layer l’s data cube. K is the kernel composed of a set of weights. Kl is the kernel used in
the computation to generate data in layer l. A kernel represents four dimensional data: the size of each
dimension is Kx, Ky, Cl and Cl+1, where Kx and Ky are determined by algorithm (e.g. in LeNet [99],
Kx and Ky are both 5).

dl+1 is computed as

dl+1[x, y, c] =

Cl−1∑

cl=0

Kx−1∑

kx=0

Ky−1∑

ky=0

Kl[kx, ky, cl, c]× dl[x+ kx, y + ky, cl]. (1)

To perform (1), in total (Xl+1×Yl+1×Cl+1×Cl×Kx×Ky) multiplications and (Xl+1×Yl+1×Cl+1×
(Cl ×Kx ×Ky − 1) additions are performed.

A pooling layer performs the subsampling. Taking average pooling as an example, a window of data
in l is averaged to get one data point in l + 1 as follows:

dl+1[x, y, c] =
1

KxKy

Kx−1∑

kx=0

Ky−1∑

ky=0

dl[Kxx+ kx,Kyy + ky , c]. (2)

This average pooling operation performs (Xl+1 × Yl+1 × Cl+1 × (Kx ×Ky − 1)) additions and (Xl+1 ×
Yl+1 ×Cl+1) multiplications. The multiplication could be implemented as shift operation if (Kx×Ky) is
the power of 2. Max pooling is another variance, where the maximum value among values in a window
in l is selected for l + 1.

In the inner product layer, the values in data tube of l and l+1 are considered as a vector (denoted as
dl and dl+1). If the previous layer is convolution or pooling, the size of dl is Xl × Yl ×Cl. If the previous
layer is also inner product, then the size of dl is the size of the output vector from l. dl+1 is an n × 1
vector, n is determined by the algorithm. Wl+1−l is a weight matrix of size (n×m), m is the size of dl.
b is a vector of bias.

The vector of l + 1 is computed as

dl+1 = Wl+1−ldl + b. (3)

This inner product operation performs (n× (m− 1)) additions and (n×m) multiplications.
Activation function is another important component. It is an element-wise operation and usually a

nonlinear function, such as sigmoid 1
1+e−x or rectified linear unit (ReLU) max(0, x).

3.2.2 Data forward and backward in a neural network

A neural network should be trained with a large amount of data and then deployed into the real-world
applications and perform inference tasks. Compared to training, the inference is simpler. Its goal is to
give input samples, such as an image, to the neural network, which will generate the prediction, e.g., the
type of object in the image. For the modern deep neural networks, the input data samples go through the
layers in sequence in forward direction. This is shown in Figure 9 and is often called forward propagation.
We can see that the input of layer l is the output of layer l − 1. The concrete computations in forward

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:9

d

l 1

1

d

l 1

N
l 1

u

l

1

 f

u

l

N
l

 f

Forward

Backward

l 1
= (W

l
)

l
f (u

l
)

W
l

= d
l 1

(
l
)

b
l

=
l

u
l

= W
l
d

l 1
+ b

l 1

d
l

= f (u
l
)

d
l

1

d
l

N
l

d
l

2

d

l 1

2

u

l

2

 f

Figure 9 Two adjacent layers.

propagation are expressed as the two equations shown above. The goal for training is to generate the
weights with a data set. The computation is much more complex and intensive in a sense that it does not
only perform forward propagation but also backward propagation, which update the weights based on the
errors and newly observed data in the training set. A cost function is needed in training a neural network
since we need a way to measure how well can a neural network make the prediction by comparing the
network’s output with the standard labels. We use y and t to represent the output of a neural network
and the standard label respectively. An L2 norm loss function is defined as J(W, b) = 1

2 ||y − t||22 and
J(W, b) = −

∑
i,j 1(y

i = tj)logp(yi = tj) is the softmax loss function.

The error δ for each layer is defined as δl ,
∂J
∂bl

. If we use an L2 norm loss function, for the last (output)

layer L, the error is δL = f ′(uL) ◦ (y − t) where ◦ represents a Hadamard product, i.e., element-wise
multiplications. For other layers excluding the output layer, the error is δl = (Wl+1)R

Tδl+1 ◦ f ′(ul).
And with a ReLU activation function, the error can be rewritten as δl = (Wl+1)

Tδl+1 ◦ f
′(dl). So that

the backward partial derivative to W l is ∂J
∂Wl

= dl−1(δl)
T. And the backward partial derivative to bl

is ∂J
∂bl

= δl. The gradient descent method can be applied to generate the weight updates of the neural
network. Because the update of weights to a layer depends on the previous layer’s error and earlier
forward propagation, the training has more data dependencies and more time consuming. It is recently
reported that the training can even take more than half a month [100].

4 PIM and NDP architectures for graph processing

4.1 ReRAM-based graph processing accelerator

4.1.1 GraphR

GraphR [101] is the first architecture that leverages ReRAM crossbar to perform graph processing. As
discussed before, the graph computation can be naturally expressed as matrix operations, which can be
performed efficiently in ReRAM crossbar, but at the same time, performing computation on matrix view
also leads to storage and computation waste, e.g., multiplying by zero is always zero. The key insight to
reconcile the conflicting goals is the following. The size of the ReRAM crossbar is typically small, e.g.,
4×4. During graph processing, we can imagine that such a small square covers only a small portion of the
large matrix for the complete graph. If any element in this small square is non-zero, we will perform the
computation for all, but the waste is minimum due to the low computation cost. On the other side, if the
graph is highly sparse, then it is also likely that all elements inside the square are zeros, in this case, the
whole square can be skipped. Since the graph is stored in sparse format, we can apply graph reordering
based on the architecture parameters so that each such square covered by the ReRAM crossbars is filled
by sequentially accessing the edges (non-zeros) in the sparse graph data. With the high level insights,
next we explain the detailed mapping of graph processing procedure to ReRAM crossbars.

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:10

V4

V 7

V1

V2

processEdge

reduce/apply

V
4

V 1 V 2 V 7

Edges to V4

Value of all vertices

=

New value
of V 4

ReRAM

crossbar (CB)

perform SpMV in

analog manner

2 graph
engines (GEs)

the block
All GEs “scan”

(sliding window)

CB

CB

CB

CB

Reduce

Block

CB

CB

CB

CB

Scan

V15

(a) (c)(b) (d)

Figure 10 (Color online) GraphR key insight: supporting graph processing with ReRAM crossbars. (a) Vertex program in graph

view. (b) Vertex program in matrix view. (c) Ideal case: CB of |V | × |V |, |V | is the number of vertices in a graph. (d) Realistic

case: memory ReRAM stores a block of graph; ReRAM GEs process/scan subgraphs (sliding window).

The graph view of the vertex program is shown in Figure 10(a). Here, the processEdge function is
executed for V15, V7, V1 and V2, and the outputs are stored in the edges from each of these vertexes
to V4. When all incoming edges of V4 are processed, the reduce function is executed to generate V4’s
new property, which is applied to the vertex. For graph processing, the computation performed in
processEdge function is typically a multiplication that generates the updated property for each vertex.
To generate the final update, partial results are reduced by a multiply-accumulate (MAC) operation. In
this sense, executing the vertex program of each vertex is equivalent to performing a sparse matrix vector
multiplication (SpMV). The connection is shown in Figure 10(b).

Let A be the sparse adjacency matrix, and V.prop of all vertices is stored in a vector x. The vertex
program of all vertices covered by the crossbar can be computed in parallel in matrix view as ATx. This
explains why the waste of computation on zeros is not significant with the ReRAM, because the extra
computations do not lead to longer execution time. Therefore, a ReRAM crossbar is able to perform
matrix-vector multiplication efficiently, as shown in Figure 3(c). Since a vertex program is equivalent to
an SpMV, a ReRAM crossbar can accelerate the computation.

From Figure 10(b), we see that the sizes of the matrix and vector are |V | × |V | and |V |, respectively,
where V is the number of vertices in the subgraph. With a ReRAM CB of size |V | × |V |, the partial
update of each vertex can be computed in parallel (i.e., V.prop in Figure 4). Using such crossbars as the
building blocks, we can construct graph engines (GEs) composed of small CBs to process all subgraphs
in a whole graph. There are still two remaining questions: (1) what is the size of subgraphs that should
be processed together? (2) what is the order that all subgraphs should be processed?

The answer to the first question is intuitive, since it indicates a trade-off between the performance
and efficiency. With larger subgraphs, all edges inside it can be processed in parallel, but if there are
only a few edges, the wasted computation is high. In the extreme case, a subgraph is processed just
because there is one edge inside it. With smaller subgraphs, the wasted computation is less but the
performance is lower because all subgraphs should be processed sequentially following a certain order.
In the experiments, we find that the subgraph sizes of 4 or 8 × 8 works well, which maps nicely to the
realistic crossbar sizes. The second question is more subtle, and the GraphR design uses a column-major
stream-apply execution model to reduce the needed register to store the intermediate results. The insight
is that, we can divide the columns into several partitions, and we let the “square” in the matrix that is
covered by all GEs in the architecture move vertically through each column partition one by one. This
means that we first compute the final updates of a set of vertices before moving to another set. Compared
to the column-major order, this method can effectively reduce the needed registers to store the partial
accumulated updates.

Finally, we consider the mapping of algorithms to the ReRAM crossbars. GraphR can support two
types of algorithms that are mapped in different manner with different parallelism. The key distinction
is the type of computation performed by the processEdge function. For algorithms like Pagerank,
processEdge performs a multiplication, which can be mapped to each cell and achieve N ×N speedups.
For algorithms like SSSP, processEdge performs an addition and all vertices in the same column need
to be processed to generate the final reduced value. In this case, while we cannot achieve the parallelism
among rows, multiple columns can be processed in parallel. Thus, with a N ×N crossbar, the parallelism
achieved is N .

Figure 11 shows the architecture of one GraphR node. GraphR is a ReRAM-based memory module

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:11

IO interfaceCTRL

DRV

S/H

S
/H

D
R

V

S/H

DRV

D
R

V

S
/H

RegI

ADC S/A sALU RegO

Memory

ReRAM

GEGE

Memory

ReRAM

GE GE GE

CTRL

GE

DRV

S/H

RegO

RegI

sALU

S/A

Input register

Output register

Simple ALU

Shift & add unit

Sample & hold

Driver

Graph engine

Controller

ADC Analog to digital converter

Memory

ReRAM

Memory

ReRAM

Figure 11 (Color online) GraphR architecture.

that performs efficient in-memory graph processing. It contains two key components: memory ReRAM
and GE. Memory ReRAM stores graph data in original compressed sparse representation. GEs perform
efficient matrix-vector multiplications on matrix representation. The execution first loads the edges
from memory ReRAM with sequential read, thanks to the pre-processing step based on architectural
parameters, e.g., the number of GEs contained in the node, and the size of the crossbar. Then the
computation is performed in matrix form by the GEs. Intuitively, the sparse data for each subgraph
must be “decompressed” into a small matrix for computation. A GE contains a number of ReRAM CBs,
drivers (DRVs), sample and hold (S/H) components placed in mesh, and they are connected with analog
to digital converter (ADC), shift and add units (S/A) and simple algorithmic and logic units (sALU).
The input and output registers (RegI/RegO) are used to cache data flow.

4.1.2 GraphSAR

With high sparsity, even with small crossbars, GraphR still leads to considerable ineffectual computations.
This is particularly a challenge for the real-world graphs that often have the skewed degree distribution.
To address this problem, GraphSAR [102] is proposed based on the insights that the sparsity can be
adjusted with graph reordering. Still considering the matrix view of a graph, if an update of a vertex is
computed using all non-zeros in a column, it is possible to “move” the non-zeros close to each other so
that the subgraphs covered by the GEs become denser, thereby reducing the computation waste.

GraphSAR uses a random-wordline-regular-bitline (RdWRgB) vertex mapping to guide the design of
ReRAM based graph analytics accelerators. The Spara architecture is a new ReRAM-based accelerator for
sparse graph analytics applications. It maximizes the workload density of ReRAM crossbars dynamically.
The paper proposed an effective and fast preprocessing method to generate a CSR representation that
fits the RdWRgB scheme. This representation enables quick access to the active data.

4.2 HMC/HBM-based graph processing accelerator

4.2.1 Tesseract

Tesseract [47] is a HMC-based graph processing accelerator with HMCs. The graph is partitioned among
all the HMCs and the in-order cores embedded in each cube process the local subgraphs in parallel.
During the execution, remote data may be accessed depending on the partition, which incurs the inter-
cube communication. Tesseract is based on the vertex program model, providing low-level primitives to
express the graph algorithms. For each vertex, the runtime system iterates over all its edges/neighbors
and executes a put function for each of them. The signature of this put function is put(id, void* func,

void* arg, size t arg size, void* prefethch addr). The semantics is the following. A function
call func with argument arg is executed on the id-th cube. The execution can be one of the two cases:
(1) a remote function call if the destination vertex is assigned to a different cube from source vertex;
or otherwise (2) a local function call that only uses the data of the local subgraph. At the end of each
iteration, a barrier ensures that all operations in the current iteration are performed before the start of
the next iteration.

For clarity, Figure 12(a) shows the source of inter-cube communication in an adjacency matrix view.
The rows and columns correspond to the vertices, if an edge between two vertices intersection of the row

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:12

Destination vertices

S
o
u
rc

e
v
er

ti
ce

s Cube 0

Cube 1

Cube 2

Cube 3

i

j

Irregular message from

cube 0 cube 2

1 2

1 5

1 8

2 1

2 5

2 3

2 7

3 2

3 5

3 8

5 6

8 9

1

1

1

2

2

2

2

3

3

3

5

8

S
eq

u
en

ti
al

 s
o
u
rc

e
v
er

te
x
 a

cc
es

se
s 1 2

1

S
eq

u
en

ti
al

 e
d
g
e

ac
ce

ss
es

2

3

R
an

d
o
m

 d
es

ti
n
at

io
n
 v

er
te

x
 a

cc
es

se
s

3

Remote func (v)

Process

Reduce

apply

Batching

(a) (b)

j

Figure 12 (Color online) Tesseract’s access patterns. (a) Inter-cube communications; (b) intra-cube accesses.

and column contains a non-zero value, denoted by a dot. In this example, the vertices are partitioned
among four cubes—each cube is assigned with a set of rows. The circled dot represents an edge from
a vertex in cube 0 to a vertex in cube 2: (vi → vj). During execution, if the value of the vertex in
cube 0 is updated, it will be propagated to the vertex in cube 2, resulting in an inter-cube message from
cube 0 to cube 2. The communication pattern and amount among the cubes is determined by the graph
structure. While intuitive, the execution will likely lead to the small and irregular inter-cube messages
that affect the performance in two ways. First, since the time of message arrival is not predictable (a
function of the graph data), the destination cube is interrupted to process the received messages. Even
if such messages can be processed in batch (indicated as the square in Figure 12(a)), the benefit is
not guaranteed. Second, Tesseract introduce one inter-cube message for each cross-cube edge after the
partition, leading to excessive communication between cubes. We will explain that it can be reduced
drastically.

A more subtle implication of the irregular communication between cubes is that it can affect the load
balancing and hardware utilization. As discussed before, the communication depends on the graph data,
and thus nothing prevents the pathological scenario when multiple messages are sent to the same cube
from different senders. In this case, the receiver cube’s message queue may become full, which will prevent
receiving further messages. In essence, it generates the “feedbacks” through the interconnection to prevent
senders from generating more messages. At this point, we can imagine that some cubes are busy with
processing the received messages and cannot catch up with processing its own subgraph, while other cubes
may be idle and waiting for the finish of the current iteration. Finally, from the hardware and energy
consumption perspective, the dynamic communication pattern leads to excessive energy consumption of
inter-cube links because it prevents the energy saving optimizations. To be specific, to save energy, each
inter-cube link can be set to a low-power state (e.g., the Power-Down mode in HMC [45]). However, it
is only feasible when the time of receiving message is known. In another word, such optimization is not
possible when a message can go through the link at any time.

Finally, let us consider the data access inside a cube. Figure 12 shows an example of the intra-cube
data movement. When an edge is processed, if its destination is assigned to the local cube, local applying
is performed. In this case, a random write is incurred, which will interfere with the vertex and edge array
accesses with good locality. Specifically, accesses to vertex array (①) and edge array (②) are sequential
reads. However, the accesses to compute array for the destination vertices are random (③). This problem
also exists in the conventional architecture when executing the vertex programs. The key question is
that, if we had a chance to modify the hardware, is it possible to eliminate such interference? Similarly,
the remote function call initiated by a remote cube will also introduce random accesses.

4.2.2 Reducing data movement

Earlier we mention that the inter-cube communication in Tesseract is excessive. Here we try to under-
stand the problem better by considering the graph partition of Tesseract in a matrix view. Considering
Figure 13(a), in Tesseract, each cube is assigned with a set of vertices based on the vertex-centric par-
tition, and this corresponds to a set of rows. The edges, which are the non-zero elements in the matrix,

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:13

Destination
vertices

S
o
u
rc

e
v
er

ti
ce

s

Cube 0

Cube 1

Cube 2

Cube 3

Edge

One put per edge

Destination
vertices

S
o
u
rc

e
v
er

ti
ce

s

Cube 0 Cube 1 Cube 2 Cube 3

One update per replica

Replica
Cube 1 generates

update for vi

locally

j
One put per cross-cube edge

One update per replica

v1

v1

Vertex

Replica

Cross-cube
communication

Intra-cube read

v1

HMC 0 HMC 1

HMC 0 HMC 1

Put

Put

v1 v1

v2

v3

v2

v3

Update

Master

i

(a) (c)(b)

Figure 13 (Color online) (a) Graph partition for vertex program, (b) source-cut in matrix view and (c) source-cut in graph view.

are denoted as black dots. Such partition cuts the matrix into grids, each of which contains the set of
edges from vertices assigned to cube i to vertices assigned to cube j. It is similar to the concept in
GridGraph [103]. With N cubes, the whole matrix is divided into N2 grids. Among them, the grids
on the diagonal contain the local edges, whose source and destination vertex are assigned to the same
cube. In Tesseract, each non-local edge incurs a cross-cube communication. If we consider the region in
the matrix that can potentially generate such inter-cube communication, they are the gray grids except
for the diagonal ones. Assuming that edges distribute in the graph uniformly, the amount of cross-cube

communication in one iteration is O(N(N − 1) |E|
N2) = O((N−1)

N
|E|).

To reduce communication, Zhang et al. [104] proposed a new graph partition strategy named source-
cut and the GraphP architecture. According to this method, if a vertex (e.g., vj) is assigned to a cube
(e.g., cube 1), all the incoming edges of vj are also assigned to the same cube, as shown in Figure 13(b).
Different from Tesseract, the matrix is cut vertically: each cube is assigned with a set of columns, instead
of rows. To propagate the value of the source vertex through an edge to the destination, a replica (denoted
as red dot) is generated if a cube only contains the edge and its destination vertex. The masters (denoted
as black dot) are the vertices in a cube that serve as the destination. With this data partition policy,
the column of vj corresponds to vj ’s all incoming edges and neighbors, and therefore, vj ’s update can be
computed locally. The sources of edges in a column can be masters (black dot) or replicas (red dot).

Interestingly, the amount of inter-cube communication can be reduced with the source-cut graph
partition method. The key reason is that, in source-cue, the communication is incurred when the replica
synchronization is performed. Specifically, the values of all replicas in other cubes are updated with the
new value of the master vertex. In the matrix view, it means that each master vertex in the diagonal
grids updates its replicas in other cubes in the same row. In Figure 13(b), consider the master vertex vi in
cube 0. With source-cut, cube 0 sends vi’s value to both cube 1 and cube 3, but not cube 2, since cube 2
does not have any edge from vi. In such replica synchronization, only one message is sent from cube 0
to cube 1, even if there are three edges from vi to different vertices in cube 1. In essence, the reason for
the reduced communication is: the source-cut requires one update per replica while the graph partition
based on edge cut (used in Tesseract) would incur one put per cross-cube edge, shown in Figure 13(c).

GraphP is an important HMC-based accelerator design with new data partition and programming
model. While the ideas seem to be intuitive, the design identifies data movement as performance bot-
tleneck in HMC-based architectures. It is especially serious to graph processing and other irregular
applications with random data access and high memory bandwidth requirement. GraphP is the first de-
sign that takes the data partition as first-order design consideration. The results show that the amount
of communication can be reduced without sacrificing the programmability. There is another line of de-
sign principle in other graph accelerators [105] that aims for best performance and considers computer
architecture first. The consequence is that changes in programming interface are nontrivial: the design
contains architecture specific optimization and asks the programmers to modify the existing code heavily
to be efficient.

4.2.3 Enabling regular data movement

Zhuo et al. [106] proposed GraphQ, the first multi-node HMC-based graph processing architecture built
on Tesseract. The key insights are shown in Figure 14 with the adjacency matrix. First, GraphQ executes
the reduce function in the source cube. Specifically, the source cube locally performs the reduction and
generates the update for each destination vertex from the source vertices of edges in the same column.

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:14

Destination vertices

S
o
u
rc

e
v
er

ti
ce

s

Cube 0

Cube 1

Cube 2

Cube 3

i
Process

Reduce

apply

Combine

Batched message
cube 0 cube 2

Batched message

Block

Figure 14 (Color online) Batched communications.

Cube 0 Cube 1 Cube 2 Cube 3

Apply

Process

Process/comm

(0,1) Round 0

Round 1

It
er

at
io

n

(0,1)

Destination vertices

S
o
u
rc

e
v
er

ti
ce

s

(0,2) (0,3) (0,0)

(1,2) (1,3) (1,0) (1,1)

(2,3) (2,0) (2,1) (2,2)

(3,0) (3,1) (3,2) (3,3)

Cube 0

Cube 1

Cube 2

Cube 3

(cube_id,

block_id)

Round 0 1 2 3

Reduce
Process/comm Round 2
Reduce

Process/comm Round 3
Reduce

Figure 15 (Color online) Overlapped computation and communications. (a) GraphQ execution; (b) regular and overlapped

communications.

It
er

at
io

n

Bottleneck:
inter-node
message

Node 0
C1 C2 C3 C4

Node 1
C1 C2 C3 C4

G
lo

b
al

 i
te

ra
ti

o
n

Node 0
C1 C2 C3 C4

Node 1
C1 C2 C3 C4

L
o
ca

l
it

er
at

io
n

1 2 3 4 5 6

Node 0 Node 1

0Dist

1 6

1 6

2 1

3 2

4 3

5 4

6 5

It 1

d[6]=1

d[5]=2

It 2

d[4]=3

It 3

d[3]=4

It 4

d[2]=5

(a) (c)(b)

Figure 16 (Color online) Hybrid execution model. (a) GraphQ with batched and overlapped inter-node communication;

(b) GraphQ with hybrid execution model; (c) insights of hybrid model by example.

It avoids sending the function and parameters to a remote cube for each edge. Second, we generate
all messages for the same remote cube together, so that they can be batched in a batched message.
To support this, the whole graph is partitioned into blocks, each of which contains the edges that will
contribute to the batched message between a pair of cubes. For example, the third block in the first row
will generate a batched message from cube 0 to cube 2.

The batched communication enables the new optimization to support the overlap of communication
and computation. The insight is illustrated in Figure 15. We use the (cube id, block id) pair to indicate
the source and destination of the batched messages. The order of batched messages is determined by
the order of blocks in each cube, which is indicated from left to right. This execution model is called as
rounded execution, because each iteration is separated into M rounds, and M is equal to the number of
cubes. Thus an iteration contains four rounds with four cubes. The key advantage is that, each cube
only generates one batched message for one remote cube at the end of a round.

To overcome inter-node communication bottleneck shown in Figure 16(a), GraphQ adopts a bandwidth-
aware hybrid execution model, which performs potentially useful computation during idle time. Fig-

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:15

ure 16(b) demonstrates the idea with a concrete example. After each node finishes the execution of an
iteration and while it is waiting for the batched message from a remote cube, it can simply run more
iterations based on local subgraph. In this fashion, the idle time in each cube is not wasted because the
computation can be performed opportunistically. We call a normal iteration a global iteration, which
contains a number of local iterations. Within a global iteration, after receiving the most recent remote
updates, the cube performs the first local iteration. During waiting, it performs the local iterations
using locally available subgraph data. Thus, each node essentially executes multiple local iterations
“asynchronously” within the cube before a global synchronization.

To implement the batched and overlapped inter-cube communication, GraphQ defines a set of low level
primitives for synchronization (e.g., non-blocking inter-cube and inter-node communication) and buffer
management. The paper also studies the memory overhead due to the send buffer for batched messages
and understands its trade-off between performance overhead of processing received small messages.

5 PIM and NDP architectures for machine learning acceleration

5.1 ReRAM-based machine learning accelerator

5.1.1 Accelerator for inference

Given that the computation kernel in DNNs can be naturally expressed as matrix-vector multiplication,
several ReRAM-based architectures have been developed for machine learning inference acceleration.

PRIME [76] is one of the first architectures for efficient neural network computation built upon ReRAM
crossbar arrays. The design focuses on how to map the neural network computation from the software
program down to hardware. The architecture leverages a portion of memory arrays besides normal
memory to enable in-memory neural network inference acceleration. It is the first holistic solution with
a software interface, and detailed architecture and circuit organization to allow the ReRAM arrays to
be dynamically reconfigured between memory and accelerators. The architecture precisely leverages the
advantage of ReRAM’s compute capability: the same ReRAM memory can store the model weights and
perform matrix-vector multiplication as the kernel for DNNs during inference. The execution does not
move any data for the weights, significantly reduce the data movements. An inherit limitation of using
ReRAM crossbar for computation is the precision, i.e., the number of bits supported. PRIME’s results
demonstrate that the inference task is quite resilient for the lower precision. For a number of large
multilayer perceptrons (MLPs) and CNNs, the state-of-the-art performance can be achieved on varieties
of deep learning applications. The energy saving of PRIME is significant, which attributes to both the
efficient and low-cost computation using ReRAM and the reduction of data movement. The PRIME
architecture can work in a stand-alone fashion without the involvement of another dedicated processor.
Therefore, the hardware area overhead is also minimum. In terms of manufacturing in practice, the
design also incurs very low cost. Compared to HMC/HBM-like structures, the architecture mostly deals
with the memory system design and does not require sophisticated implementation considerations when
integrating compute logic in 3D stacking.

In particular, the PRIME architecture is important because it provides a clear flow of how to map DNNs
models described by programs to hardware and execute on the ReRAM crossbar. The whole procedure
is composed of three steps: (1) expressing the models and controlling the hardware configuration with a
programming interface, (2) compilation and optimization, and (3) hardware execution. PRIME provides
the convenient application programming interface (APIs) to allow programmers to (1) specify how to
map the DNNs to ReRAM subarrays, (2) write the model weights into mats, (3) set up the data paths
of the ReRAM subarrays, (4) initiate execution, and (5) collect the inference results. It assumes that
the models are pre-trained and can be used as the input for certain APIs. In the second compilation and
optimization step, the DNNs are mapped to the ReRAM subarrays based on the user specification with
certain optimizations for input data allocation. This step produces the specification for weights mapping,
data path configuration, and execution instructions to manage data and control flow. The execution step
performs the inference based on such a specification. The PRIME controller writes the weights to the
dedicated and known addresses in the subarrays, then configures the peripheral circuits accordingly, and
finally, orchestrates the data movements into or out of subarrays at execution time.

The compilation and optimization step is important for achieving high performance, which contains
both DNN mapping and data placement. For DNN mapping, different strategies are applied based on the

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:16

scale of networks. The small-scale DNNs are replicated to the independent portions of the mat to maxi-
mize the performance gain. This strategy can be applied to both fully-connected and convolution layers.
The medium-scale DNNs are split into smaller ones, similar to graph partition. After the computation,
the results are simply merged. Note that there is extra computation to generate the merged results. The
large-scale DNNs may use multiple banks, the optimization focuses on streamlining the data movements
among each other so that the execution can be performed in a pipelined fashion with high throughput.
To achieve bank-level parallelism and data placement, for small or medium networks, when they can fit
into one bank, the subarrays in all the banks are configured in the same way and run in parallel.

ISAAC [75] is another ReRAM-based DNN inference accelerator that was proposed concurrently with
PRIME. While PRIME mainly focuses on providing a complete software and hardware solution, ISACC
adopts a more sophisticated pipelined design to improve the throughput. The main idea is to divide a
layer into small tiles and establish data flow between two consecutive layers at the tile level. It means
that the next layer can start the computation based on the partial results of the previous, without waiting
for the whole outcome. In some senses, it fuses the execution of multiple layers. The results show that
the deep pipeline can indeed achieve considerable performance gains. Specifically, a large amount of
input data (either the input of the previous layer or input to the network) can be fed into the pipeline
continuously. After the initial cycles to fill the pipeline, the outputs can be produced each cycle. Note
that this design may not be suitable for the training phase, because the weights are updated at the end
of a batch. Thus, the inputs of the next batch can be only processed based on the updated weights. In
another word, it is unlikely to achieve a large amount of consecutive input data to establish the pipeline.

Another drawback of ISSAC is due to the potential pipeline bubble that causes execution stall. We
elaborate on the issue using an example. Consider a hypothetical network in which all kernels have size
2× 2× 1. One point p in layer l5 will depend on 4, 16, 64, 256 points in layer l4, l3, l2 and l1. It means
that the computation to produce p is stalled when any of the 340 (= 4+16+ 64+ 256) points is delayed.
Moreover, certain computations can depend on the value of p, and they will be also stalled. Obviously,
such data dependencies are complex in the training phase due to the non-linear structure of the modern
DNNs. For example, layer l may not only depend on layer l − 1, but also from earlier layers. The issue
of the pipeline bubble is acknowledged in [75]. As discussed above, this also explains why ISAAC is not
designed for training.

Later, an improved design of ISSAC, Newton [107], was proposed to address two hardware implementa-
tion issues. First, the ADCs consume high hardware power and area budget. Second, the original design
partitions the hardware resources for the worst case. To solve the two problems, Newton introduces
multiple new ideas for different levels of the tile hierarchy. A key factor determining the ADC hardware
cost is precision. Thus, the design adopts the precision based on the computations’ requirements. As long
as reducing precision does not degrade accuracy, ADC precision can be adjusted to a lower level to save
energy. On the other side, the hardware overhead is also reduced by a more friendly divide-and-conquer
numeric algorithms.

A key consideration of the ReRAM-based DNN accelerator is that although the weights stored in
ReRAM crossbar cells can be either positive or negative, the in-situ computation assumes all cells on
each crossbar column hold the values with the same sign, i.e., all positive or all negative. The existing
designs use two approaches to tackle the problem. PRIME uses two ReRAM crossbars to hold the positive
magnitude and negative magnitude of weights separately, doubling the ReRAM portion of hardware cost.
It is also used several other designs [108–111]. In contrast, ISAAC [75] adds an offset to weights so that all
values become positive. While keeping the number of crossbars the same, the latter approach introduces
additional hardware costs for the peripheral circuits by adding extra offset circuits.

In ReRAM, the computations are conducted on multi-level cell (MLC) that have limited precision.
The implication is that, in general, the ReRAM-based accelerator is vulnerable to noises. While it can
be mitigated by hardware supports, a natural solution is to adopt the binarized neural network (BNN).
Inherently, it is a hardware-friendly model that can dramatically reduce the computation and storage
overheads while at the same time being quite vulnerable to noises. However, directly applying this
idea to ReRAM faces obstacles. It is because, XNOR, the key operation in BNNs, cannot be directly
computed in ReRAM due to its nonlinear behavior. To enable efficient processing of BNNs in ReRAM,
Song et al. [112] modified the BNN algorithm to enable direct computation of XNOR, POPCOUNT and
POOL based on ReRAM cells. The complementary resistive cell (CRC) design is proposed to efficiently
conduct XNOR operations and optimize the pipeline design with decoupled buffer and computation
stages. XNORBIN [113] developed a BNN accelerator that exploits data reuse opportunities and the

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:17

A1
W1

A2
W2

A3
W3

A11
d0

A21
d1

A31
d2

T

A22
(W2)

*
A32
(W3)

*

d0 d1 d2 d3

1

 W3 W2 W1

T0 T1 T2 T3

T4T5T6T7

(a)

(b) δ 3δ2δ

Figure 17 (Color online) PipeLayer for training. (a) Forward; (b) backward.

parallelism among primitive operations. Conti et al. [114] proposed an XNOR-based binarized neural
network computing engine that optimizes the data path for XNOR-and-popcount operations. Jafari et
al. [115] proposed an accelerator cluster architecture to support large models. Recently, Andri et al. [116]
designed a highly energy-efficient BNN accelerator that achieves several hundreds of TOPS/W efficiency.

5.1.2 Accelerator for training

PipeLayer [77] is the first architecture that supports both DNN inference and training. The supporting
training phase is more complex and challenging because it involves weight updates and complex data
dependencies. For inference tasks, a ReRAM-based accelerator can directly compute the weights obtained
after training, thereby only need to write ReRAM once before the execution. It is challenging to achieve
high throughput for DNNs with a large number of layers, and PipeLayer adopts a novel and coarser
grained pipelined architecture. Different from ISACC [75], the pipeline is established between layers,
rather than the small tiles inside layers. We have analyzed that the ISACC design will actually negatively
affect performance in training. With the pipeline in PipeLayer, the data can be continuously accepted
by the accelerated and get processed in consecutive cycles. Based on the pipeline, the design explores
different data input and kernel mapping schemes to achieve the balance between hardware cost and data
processing parallelism. PipeLayer also makes an effort to reduce the overhead of ADCs and DACs by
replacing the voltage-level based scheme for data input by a spike-based scheme. This technique can be
also applied to accelerators for inference. For the spike-based scheme, more cycles are required to inject
data, but the impact on performance is offset by the pipelined architecture among multiple layers. Note
that ISSAC [75] also uses the spike-based inputs, which can also avoid DACs. The difference is that, the
ADCs of integration and fire component are also eliminated in PipeLayer.

Similar to PRIME, the PipeLayer architecture has two regions of the ReRAM-based main memory:
morphable subarrays (Morp) and memory subarrays (Mem). The PipeLayer configuration to execute the
training task of a 3-layer CNN is shown in Figure 17. A layer of morphable subarrays is represented by
the rectangles. The memory subarrays that store the intermediate results transferred between morphable
subarrays for different layers are indicated as circles. We can observe the data dependencies between
forward and backward propagation. Starting from forward computation, the initial cycle is T0, in cycle
T1, the input (d0) enters A1 (morphable subarrays), which perform the matrix-vector multiplication. The
results are written to a memory subarray, d1 at the end of T1. The system state between two consecutive
cycles is indicated by the red dashed lines. The data dependencies are marked by the solid lines between
rectangles (morphable subarrays) and circles (memory subarrays).

Before the backward computation starting at T4, the results of forward computation are stored in d3.
The errors (δl) (l is the layer) and partial derivatives to b and W (∇bl and ∇Wl) are produced by the
backward computations. The error for the last (third) layer (δ3) is computed in T4 at the first step. It
is stored in the memory subarrays and will be used as the input of the next cycle’s computation. In
T5, two computations can be performed in parallel: (1) the partial derivatives (∇W3) are generated by
previous results in d2 and δ3; (2) the errors (δ2) of the second layer are computed from δ3. Both of them
depend on δ3 computed in T4. ∇W3 is stored in memory subarrays. They are used to update weights
in A3 and A32 later. Finally, T7 computes the partial derivatives for the first layer (∇W1), which are
stored in memory subarrays. In training, batch size (B) indicates the number of data samples processed
together before a weight update. If B = 1, ∇W1, ∇W2 and ∇W3 are used to update the weights in A1,
A2, A3 and A22, A32. If B > 1, ∇W1, ∇W2 and ∇W3 are stored in the buffers, and later the average of

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:18

0

16

1

3

17

256

1
1
5
2

1
1
5
2

1
2
8

128

2

2
9
4
9
1
2

49

G=256

(256=2×128)

(1
1
5
2
=

9
×

1
2
8
)

(49=12544/G)

(2
9
4
9
1
2
=

 G
×

1
1
5
2
)

Figure 18 (Color online) Balanced scheme for data input and kernel mapping.

T0

A32

A31

A22

A21
A11ErrLA3A2A1

T1 T2 T3 T4 T5 T6 T7 T8 T9

A32

A31

A22

A21
A11ErrLA3A2A1

A32

A31

A22

A21
A11ErrLA3A2A1

Figure 19 (Color online) Training pipeline in PipeLayer.

all partial derivatives is computed accordingly.
The large models can be partitioned to fit into the ReRAM array size. In PipeLayer, the 1152× 256

matrix is decomposed to a group of 18 (=9 × 2) matrices and each of them is mapped to a 128 × 128
ReRAM array. It is shown in the right part of Figure 18. The right results can be obtained by horizontally
collecting array outputs and vertically summing them. To systematically capture the design space, the
authors define a metric called parallelism granularity (G) to represent the number of duplicated copies
of ReRAM arrays that store the same weights. If G = 1, the design is the same as the naive scheme. If
G = 12544, the results of a layer can be produced in just one cycle but the hardware cost is prohibitive.
Thus, the notion of parallelism granularity allows the designer to trade-off between the hardware resource
of ReRAM array and performance. A good trade-off requires a carefully chosen G. Figure 18 shows an
example with G = 256.

The training phase processes the input data in batchs. For the inputs of the same batch, they are all
trained based on the weights at the start of the batch. In another word, the inputs in the same batch
cannot observe the weight changes by each other. The weight updates are kept and only applied to at
the end of a batch. It means that there is no dependency among data inputs of the same batch. The
reason that PipeLayer can achieve performance gain is that the batch size is typically much larger than
1. Without such assumption, each input needs to be processed sequentially. Figure 19 illustrates an
example of the pipelined execution.

5.2 HMC/HBM-based machine learning accelerator

Neurocube [117] is the first programmable and scalable machine learning accelerator based on 3D high-
density memory such as HMC. The efficient neural computation supports are implemented in HMC’s
logic die. The architecture is composed of a cluster of processing engines, which are connected by a
2D mesh network. The major performance gain is achieved because the processing engines can access
multiple vaults in parallel.

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:19

DRAM Die

PE PE PE PE

R R R RNoC

Vault

Link

TSV

Host

Program & Initiate
new layer

One layer is done
For all layers

Xi

Layerwise operation

Current layer

Wi, j

Mapped into
memory

Figure 20 Neurocube SW/HW flow.

DRAM Die

PE PE PE PE

R R R RNoC

Vault

Link

TSV

Cache

Mac

Mem for
Weights

Op
Counter

Router

PE

W Buffer Cnt

M M M

X
A

B
+

C

Y = AB + C

Text

(a) (b)

Figure 21 Neurocube architecture. (a) The neurocube architecture; (b) processing element (PE) architecture.

Figure 20 shows the flow of how a DNN layer is mapped to the different components of Neurocube
architecture. The weights of the network layer are stored in the DRAM stack. The architecture sets
up the address of the weights in different layers before execution. This address information, together
with the network structures, determines the data movement patterns. With both known, the hardware
can optimize the data movement paths between the DRAM layers and the logic layer to perform neural
computation. Specifically, the data movement paths are compiled into the state machine descriptions
that drive the programmable neurosequence generators (PNGs), which are integrated with the vault
controllers. To start the execution, the host loads the state machine to stream data to the compute layer.
Then the operations are performed in a data-driven manner.

Figure 21 shows the major components of the Neurocube architecture. They are implemented in
the logic die of an HMC. With high-bandwidth TSVs, multiple processing elements can communicate
concurrently with multiple DRAM vaults. The host communicates with the Neurocube through external
links of the HMC to control the execution of specific neural network structures. The information provided
includes the dimension of layers, the number of layers, and types of layers. Overall, the Neurocube
architecture is composed of a global controller, PNG for DRAM, routers for a 2D-mesh network on chip,
and processing elements.

The processing engines are interconnected by a 2D mesh network as shown in Figure 22. Figure 22(c)
illustrates a block diagram of a router. Each processing engine is connected to a single router, which has
six input and output channels (four for neighboring routers and two for PE and memory). The router is
wormhole switched and uses the credit-based flow control. It maintains a packet buffer with 16 entries
for both input and output channels. The deterministic X-Y routing is implemented with a routing table.
To arbitrate among the inputs requesting the same outputs, a rotating daisy chain priority scheme is
used, where the priority is updated every cycle. Based on the results, the network-on-chip (NoC) has
an important impact on the performance. It is especially the case for the layer with dense connections.
However, there is no significant throughput degradation from the locally connected layer to the fully

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:20

R: router

R

North

West

East

South

PE

Memory

Routing

LUT

Priority

Reg.

North

West

East

South

PE

Memory

R

(a) (b)

(c)

Figure 22 Neurocube interconnection. (a) 2D mesh NoC; (b) 2D fully connected NoC; (c) router design for 2D mesh NoC.

connected layer. It is because the lateral traffic is not injected into the NoC.

6 Research directions

In this section, we discuss several potential future research directions based on the understanding of the
state-of-the-art architectures.

Applying the techniques in distributed graph processing. While at a different level, PIM
architecture shares a common abstraction with distributed graph processing: graph processing can be
performed with multiple nodes connected by certain communication links, while each node has its own
local memory and computation capability. For distributed graph processing, each node corresponds to
a machine with multi-cores and the memory hierarchy. In high performance clusters, the machines are
connected by remote direct memory access (RDMA) network. The latency and bandwidth of accessing
local memory are far cheaper than accessing remote memory in another machine. For PIM architectures
such as HMC, each node is a memory cube, which contains stacks of HBM and computation logic. The
memory cubes are connected by SerDes links, with 120 GB/s per link, and each cube can support up to
4 links. Although the total external bandwidth between memory cubes is higher than internal bandwidth,
recent studies [47, 104, 106] have shown that the remote communication is still the bottleneck. We can
apply ideas in the distributed graph processing such as [118] to further reduce the communication amount
and improve performance.

Accelerator for graph neural network (GNN). GNNs reduce the dimensionality of the feature
representations of graph data by aggregating the features of connected nodes and transforming them us-
ing shared machine learning layers. Graph convolutional neural network characteristics are significantly
different from conventional DNNs such as CNNs and RNNs. GNNs explore random memory accesses and
irregular or unstructured computations due to graph traversal during the aggregation phase, and sequen-
tial and structured computations during the transformation phase. As a result, the inference operation
incurs hybrid compute and memory access patterns. Adopting GNNs into crossbar architectures is diffi-
cult. The existing ReRAM-based DNN and graph processing accelerator architectures can be potentially
leveraged to accelerate the combination and aggregation kernels, but applying them simultaneously into
GNNs as a unified architecture remains challenging. The ReRAM-based DNN accelerators map weight
parameters of all layers into crossbars. However, features in a layer for GNNs are operated not only on
weight parameters but also on sparse graph data. This makes conventional DNN accelerator architectures
no longer suitable. Moreover, the graph sparsity leads to low efficiency of hardware. GNNs often have
100× to 1000× vertex dimensions than traditional graph algorithms. Aggregating such a multi-dimension
vertex will further exaggerate the ineffective computation due to the crossbar sparsity.

From graph computation to graph mining. Different from the traditional iterative graph compu-
tation(e.g.,PageRank, BFS, SSSP)with simple computations, graph mining applications are computation-

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:21

intensive [119–124]. The goal of graph mining is to find all embeddings that match specific patterns. The
tasks are more challenging since the number of embeddings could be large. For example, in WikiVote, a
small graph with merely 7k vertices, the number of vertex-induced 5-chain embeddings can reach 71 bil-
lion. In a state-of-the-art graph mining algorithm [121], the frequent intersection operations between
two edge lists for constructing patterns pose a key challenge. We find that the execution time for the
intersection operations is substantial in mining several representative graph patterns. Thus, to accelerate
graph mining, efficient execution of intersection operation using PIM is an interesting and open problem.

Algorithm and hardware co-design. As discussed before, the ReRAM-based DNN accelerators
need to store both positive and negative weights. The solutions in the current designs—using two crossbars
(PRIME) or adding offsets (ISSAC)—are both not ideal. Alternatively, it may be possible to enforce
exactly what is assumed in the in-situ computation—ensuring the pattern that all weights in the same
column of a crossbar have the same sign. This approach takes the opportunity of algorithm and hardware
co-design, and is motivated by the capability of the powerful alternating direction method of multipliers
(ADMM) regularized optimization [125], which is exactly able to enforce patterns in DNN training while
maintaining high accuracy. Based on this idea, we can train a DNN model using ADMM with our novel
constraints such that the weights mapped to the same crossbar columns are all positive or negative.
In general, the ADMM-based structured training has been shown as a powerful tool to enforce various
structures with different benefits either in hardware [126] or compiler level [127].

Principled architecture design considering both communication and computation. To de-
sign efficient architecture for training, the fundamental problem is how to use multiple nodes (e.g., HMC)
to achieve high throughput in processing a large amount of training data. Different from inference,
each accelerator is normally abstracted as a “black box” with certain computing capability. In this sce-
nario, the communication between accelerators becomes a key problem. Specifically, we need to consider
the sophisticated interactions between model architecture (layer types and how layers are connected),
parallelism configuration (data or model or hybrid parallelism), and architecture (computation, commu-
nication, and synchronization cost). With different parallelism configurations, the communication can
happen at different phases (forward, backward, and gradient) with data transfer amount determined
by layer structure. The crux of the problem is exhaustively enumerating all possible partitions of the
tensors involved in the three phases. This is why a principled approach is required. The recent studies
HyPar [128] and AccPar [129] advanced state-of-the-art using a systematic approach with a solid math-
ematical foundation. It is interesting to consider the problem in the context of HMC/HBM with their
unique hardware and communication constraints.

Beyond graph processing and machine learning. While significant research efforts have been
devoted to the ReRAM-based graph processing and machine learning acceleration, there are other impor-
tant domains that have not been thoroughly investigated. For example, it is important to accelerate the
scientific computing problems that model a complex system with partial differential equations (PDEs)
to understand the natural phenomena in science [130, 131], or the design and decision-making of engi-
neered systems [132,133]. Most problems in continuous mathematics modeled by PDEs cannot be solved
directly. In practice, the PDEs are converted to a linear system Ax = b, and then solved through an iter-
ative solver that ultimately converges to a numerical solution [134,135]. To obtain an acceptable answer
where the residual is less than a desired threshold, intensive computing power [136, 137] is required to
perform the floating-point SpMV—the key computation kernel. Performing floating-point computation
on ReRAM leads to much higher hardware cost and execution time than fixed-point due to the greater
value range. To make it practical, the current solution truncates the higher bits in the exponent, e.g.,
using the low 6 bits or module 64 of the exponent to represent each original value. This ad-hoc solu-
tion does not ensure convergence of iterative computation due to the inaccurate exponent values, while
unnecessarily paying the hardware and execution time cost for the full precision of fractions. Thus, a
promising research direction is to investigate the efficient floating-point computation based on the nature
of applications using ReRAM.

7 Conclusion

As we approach the end of Moore’s law and Dennard scaling, it is important to explore the potential of
new memory technologies to improve the performance of key applications. One of the main challenges
for the domain-specific architecture is the high cost of data movement. To reduce the data movement

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:22

and computing cost, this paper surveys domain-specific architectures built from two emerging memory
technologies. HMC and HBM can reduce data movement between memory and computation by placing
computing logic inside memory dies. On the other hand, the emerging non-volatile memory, metal-
oxide ReRAM has been considered as a promising candidate for future memory architecture due to
its high density, fast read access and low leakage power. The key feature is ReRAM’s capability to
perform the inherently parallel in-situ matrix-vector multiplication in the analog domain. We focus on
the domain-specific architectures for two important applications—graph processing and machine learning
acceleration. Based on the understanding of the recent architectures and our research experience, we also
discuss several potential research directions.

References

1 Hennessy J L, Patterson D A. A new golden age for computer architecture. Commun ACM, 2019, 62: 48–60

2 Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks. In: Proceedings of

the 25th International Conference on Neural Information Processing Systems, 2012. 1097–1105

3 Farmahini-Farahani A, Ahn J H, Morrow K, et al. NDA: near-DRAM acceleration architecture leveraging commodity DRAM

devices and standard memory modules. In: Proceedings of High-Performance Computer Architecture, 2015

4 Hybrid Memory Cube Consortium. Hybrid Memory Cube Specification Version 2.1. Technical Report. 2015

5 Lee D U, Kim K W, Kim K W, et al. A 1.2 V 8 Gb 8-channel 128 GB/s high-bandwidth memory (HBM) stacked DRAM

with effective microbump I/O test methods using 29 nm process and TSV. In: Proceedings of IEEE International Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), 2014. 432–433

6 Wong H S P, Lee H Y, Yu S, et al. Metal-oxide RRAM. Proc IEEE, 2012, 100: 1951–1970

7 Xia L, Li B, Tang T, et al. MNSIM: simulation platform for memristor-based neuromorphic computing system. IEEE Trans

Comput-Aided Des Integr Circuits Syst, 2017, 37: 1009–1022

8 Prezioso M, Merrikh-Bayat F, Hoskins B D, et al. Training and operation of an integrated neuromorphic network based on

metal-oxide memristors. Nature, 2015, 521: 61–64

9 Thomas A. Memristor-based neural networks. J Phys D-Appl Phys, 2013, 46: 093001

10 Xiao W, Xue J, Miao Y, et al. TUX2: distributed graph computation for machine learning. In: Proceedings of the 14th

USENIX Symposium on Networked Systems Design and Implementation, 2017

11 Alexandrescu A, Kirchhoff K. Data-driven graph construction for semi-supervised graph-based learning in NLP. In: Pro-

ceedings of Human Language Technology Conference of the North American Chapter of the Association of Computational

Linguistics, 2007. 204–211

12 Goyal A, Daumé III H, Guerra R. Fast large-scale approximate graph construction for NLP. In: Proceedings of the 2012

Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning,

2012. 1069–1080

13 Zesch T, Gurevych I. Analysis of the wikipedia category graph for NLP applications. In: Proceedings of the TextGraphs-2

Workshop (NAACL-HLT 2007), 2007. 1–8

14 Qiu M, Zhang L, Ming Z, et al. Security-aware optimization for ubiquitous computing systems with SEAT graph approach.

J Comput Syst Sci, 2013, 79: 518–529

15 Stankovic A M, Calovic M S. Graph oriented algorithm for the steady-state security enhancement in distribution networks.

IEEE Trans Power Deliver, 1989, 4: 539–544

16 Wang Y J, Xian M, Liu J, et al. Study of network security evaluation based on attack graph model (in Chinese). J Commun,

2007, 28: 29–34

17 Shun J, Roosta-Khorasani F, Fountoulakis K, et al. Parallel local graph clustering. Proc VLDB Endow, 2016, 9: 1041–1052

18 Schaeffer S E. Survey: graph clustering. Comput Sci Rev, 2007, 1: 27–64

19 Fouss F, Pirotte A, Renders J M, et al. Random-walk computation of similarities between nodes of a graph with application

to collaborative recommendation. IEEE Trans Knowl Data Eng, 2007, 19: 355–369

20 Guan Z, Bu J, Mei Q, et al. Personalized tag recommendation using graph-based ranking on multi-type interrelated objects.

In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval,

2009. 540–547

21 Lo S, Lin C. WMR—a graph-based algorithm for friend recommendation. In: Proceedings of the 2006 IEEE/WIC/ACM

International Conference on Web Intelligence, 2006. 121–128

22 Mirza B J, Keller B J, Ramakrishnan N. Studying recommendation algorithms by graph analysis. J Intell Inf Syst, 2003, 20:

131–160

23 Campbell W M, Dagli C K, Weinstein C J. Social network analysis with content and graphs. Lincoln Laboratory J, 2013,

20: 61–81

24 Tang L, Liu H. Graph mining applications to social network analysis. In: Managing and Mining Graph Data. Berlin:

Springer, 2010. 487–513

25 Wang T, Chen Y, Zhang Z, et al. Understanding graph sampling algorithms for social network analysis. In: Proceedings of

the 31st International Conference on Distributed Computing Systems Workshops, 2011. 123–128

26 Aittokallio T, Schwikowski B. Graph-based methods for analysing networks in cell biology. Briefings Bioinf, 2006, 7: 243–255

27 Enright A J, Ouzounis C A. BioLayout—an automatic graph layout algorithm for similarity visualization. Bioinformatics,

2001, 17: 853–854

28 Novére N L, Hucka M, Mi H, et al. The systems biology graphical notation. Nat Biotechnol, 2009, 27: 735–741

29 Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT Press, 2016

30 Han S, Pool J, Tran J, et al. Learning both weights and connections for efficient neural network. In: Proceedings of the

28th International Conference on Neural Information Processing Systems, 2015. 1135–1143

31 WenW, Wu C, Wang Y, et al. Learning structured sparsity in deep neural networks. In: Proceedings of the 30th International

Conference on Neural Information Processing Systems, 2016. 2074–2082

32 Park E, Ahn J, Yoo S. Weighted-entropy-based quantization for deep neural networks. In: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2017. 5456–5464

33 Wu J, Leng C, Wang Y, et al. Quantized convolutional neural networks for mobile devices. In: Proceedings of IEEE

https://doi.org/10.1145/3282307
https://doi.org/10.1109/JPROC.2012.2190369
https://doi.org/10.1109/TCAD.2017.2729466
https://doi.org/10.1038/nature14441
https://doi.org/10.1088/0022-3727/46/9/093001
https://doi.org/10.1016/j.jcss.2012.11.002
https://doi.org/10.1109/61.19245
https://doi.org/10.14778/2994509.2994522
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1109/TKDE.2007.46
https://doi.org/10.1023/A:1021819901281
https://doi.org/10.1093/bib/bbl022
https://doi.org/10.1093/bioinformatics/17.9.853
https://doi.org/10.1038/nbt.1558

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:23

Conference on Computer Vision and Pattern Recognition (CVPR), 2016

34 Alwani M, Chen H, Ferdman M, et al. Fused-layer CNN accelerators. In: Proceedings of the 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), 2016. 1–12

35 Shen Y, Ferdman M, Milder P. Maximizing CNN accelerator efficiency through resource partitioning. In: Proceedings of the

44th Annual International Symposium on Computer Architecture, 2017. 535–547

36 Chen T, Du Z D, Sun N H, et al. DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-learning.

In: Proceedings of ACM SIGARCH Computer Architecture News, 2014. 269–284

37 Merolla P A, Arthur J V, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication

network and interface. Science, 2014, 345: 668–673

38 Sharma H, Park J, Mahajan D, et al. From high-level deep neural models to FPGAs. In: Proceedings of the 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016. 1–12

39 Shen Y, Ferdman M, Milder P. Escher: a CNN accelerator with flexible buffering to minimize off-chip transfer. In: Pro-

ceedings of the 25th IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM17). Los

Alamitos: IEEE Computer Society, 2017

40 Ovtcharov K, Ruwase O, Kim J Y, et al. Toward accelerating deep learning at scale using specialized hardware in the

datacenter. In: Proceedings of IEEE Hot Chips 27 Symposium (HCS), 2015. 1–38

41 Ovtcharov K, Ruwase O, Kim J Y, et al. Accelerating deep convolutional neural networks using specialized hardware.

Microsoft Research Whitepaper, 2015, 2: 1–4

42 Sharma H, Park J, Amaro E, et al. Dnnweaver: from high-level deep network models to FPGA acceleration. In: Proceedings

of the Workshop on Cognitive Architectures, 2016

43 Waldrop M M. The chips are down for Moore’s law. Nature, 2016, 530: 144–147

44 Black B, Annavaram M, Brekelbaum N, et al. Die stacking (3D) microarchitecture. In: Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO’06), 2006. 469–479

45 Hybrid Memory Cube Consortium. Hybrid Memory Cube Specification 2.1, 2015

46 OĆonnor M. Highlights of the high-bandwidth memory (HBM) standard. In: Proceedings of Memory Forum Workshop, 2014

47 Ahn J, Hong S, Yoo S, et al. A scalable processing-in-memory accelerator for parallel graph processing. In: Proceedings of

ACM SIGARCH Computer Architecture News, 2015. 105–117

48 Shevgoor M, Kim J S, Chatterjee N, et al. Quantifying the relationship between the power delivery network and architectural

policies in a 3D-stacked memory device. In: Proceedings of the 46th Annual IEEE/ACM International Symposium on

Microarchitecture, 2013. 198–209

49 Kim G, Kim J, Ahn J H, et al. Memory-centric system interconnect design with hybrid memory cubes. In: Proceedings of

the 22nd International Conference on Parallel Architectures and Compilation Techniques. Piscataway: IEEE Press, 2013.

145–156

50 Kim J, Dally W, Scott S, et al. Cost-efficient dragonfly topology for large-scale systems. IEEE Micro, 2009, 29: 33–40

51 Kim J, Dally W J, Abts D. Flattened butterfly: a cost-efficient topology for high-radix networks. In: Proceedings of ACM

SIGARCH Computer Architecture News, 2007. 126–137

52 Izraelevitz J, Yang J, Zhang L, et al. Basic performance measurements of the Intel Optane DC persistent memory module.

2019. ArXiv:1903.05714

53 Hady F T, Foong A, Veal B, et al. Platform storage performance with 3D XPoint technology. Proc IEEE, 2017, 105:

1822–1833

54 Akinaga H, Shima H. Resistive random access memory (ReRAM) based on metal oxides. Proc IEEE, 2010, 98: 2237–2251

55 Liu W, Pey K L, Raghavan N, et al. Fabrication of RRAM cell using CMOS compatible processes. US Patent App.

13/052,864, 2012

56 Trinh H D, Tsai C Y, Lin H L. Resistive RAM structure and method of fabrication thereof. US Patent 9,978,938, 2018

57 Adam G C, Chrakrabarti B, Nili H, et al. 3D ReRAM arrays and crossbars: fabrication, characterization and applications.

In: Proceedings of IEEE 17th International Conference on Nanotechnology (IEEE-NANO), 2017. 844–849

58 Chen W H, Lin W J, Lai L Y, et al. A 16 Mb dual-mode ReRAM macro with sub-14 ns computing-in-memory and memory

functions enabled by self-write termination scheme. In: Proceedings of IEEE International Electron Devices Meeting (IEDM),

2017

59 Chang M F, Lin C C, Lee A, et al. A 3T1R nonvolatile TCAM using MLC ReRAM with sub-1 ns search time. In: Proceedings

of IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers, 2015. 1–3

60 Han R, Huang P, Zhao Y, et al. Demonstration of logic operations in high-performance RRAM crossbar array fabricated by

atomic layer deposition technique. Nanoscale Res Lett, 2017, 12: 1–6

61 Kataeva I, Ohtsuka S, Nili H, et al. Towards the development of analog neuromorphic chip prototype with 2.4 m integrated

memristors. In: Proceedings of 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019. 1–5

62 Bayat F M, Prezioso M, Chakrabarti B, et al. Implementation of multilayer perceptron network with highly uniform passive

memristive crossbar circuits. Nature Commun, 2018, 9: 1–7

63 Cai F, Correll J M, Lee S H, et al. A fully integrated reprogrammable memristor-CMOS system for efficient multiply-

accumulate operations. Nat Electron, 2019, 2: 290–299

64 Xu C, Niu D, Muralimanohar N, et al. Overcoming the challenges of crossbar resistive memory architectures. In: Proceedings

of IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), 2015. 476–488

65 Liu T, Yan T H, Scheuerlein R, et al. A 130.7-mm2 2-layer 32-Gb ReRAM memory device in 24-nm technology. IEEE J

Solid-State Circ, 2014, 49: 140–153

66 Fackenthal R, Kitagawa M, Otsuka W, et al. 19.7 a 16 Gb ReRAM with 200 MB/s write and 1 GB/s read in 27 nm technology.

In: Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014. 338–339

67 Qureshi M K, Karidis J, Franceschini M, et al. Enhancing lifetime and security of PCM-based main memory with start-gap

wear leveling. In: Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture, 2009. 14–23

68 Lee M J, Lee C B, Lee D, et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric

Ta2O5−x/TaO2−x bilayer structures. Nat Mater, 2011, 10: 625–630

69 Hsu C, Wang I, Lo C, et al. Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 1012 cycles for 3D

high-density storage-class memory VLSI tech. In: Proceedings of Symposium on VLSI Technology, 2013. 166–167

70 Hu M, Strachan J P, Li Z, et al. Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate

matrix-vector multiplication. In: Proceedings of the 53rd ACM/EDAC/IEEE Design Automation Conference (DAC), 2016

71 Hu M, Li H, Wu Q, et al. Hardware realization of BSB recall function using memristor crossbar arrays. In: Proceedings of

https://doi.org/10.1126/science.1254642
https://doi.org/10.1038/530144a
https://doi.org/10.1109/MM.2009.5
https://arxiv.org/abs/1903.05714
https://doi.org/10.1109/JPROC.2017.2731776
https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1038/s41928-019-0270-x
https://doi.org/10.1109/JSSC.2013.2280296
https://doi.org/10.1038/nmat3070

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:24

the 49th Annual Design Automation Conference, 2012. 498–503

72 Chen Y, Luo T, Liu S, et al. DaDianNao: a machine-learning supercomputer. In: Proceedings of the 47th Annual IEEE/ACM

International Symposium on Microarchitecture, Cambridge, 2014. 609–622

73 Mahajan D, Park J, Amaro E, et al. TABLA: a unified template-based framework for accelerating statistical machine

learning. In: Proceedings of IEEE International Symposium on High Performance Computer Architecture (HPCA), 2016.

14–26

74 Albericio J, Judd P, Hetherington T, et al. Cnvlutin: ineffectual-neuron-free deep neural network computing. In: Proceedings

of ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), 2016. 1–13

75 Shafiee A, Nag A, Muralimanohar N, et al. ISAAC: a convolutional neural network accelerator with in-situ analog arithmetic

in crossbars. In: Proceedings of ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), 2016

76 Chi P, Li S, Xu C, et al. PRIME: a novel processing-in-memory architecture for neural network computation in ReRAM-based

main memory. In: Proceedings of ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA),

2016

77 Song L, Qian X, Li H, et al. PipeLayer: a pipelined ReRAM-based accelerator for deep learning. In: Proceedings of IEEE

23rd International Symposium on High Performance Computer Architecture (HPCA), 2017

78 Liu X, Mao M, Liu B, et al. Reno: a high-efficient reconfigurable neuromorphic computing accelerator design. In: Proceedings

of the 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015. 1–6

79 Pingali K, Nguyen D, Kulkarni M, et al. The tao of parallelism in algorithms. In: Proceedings of ACM Sigplan Notices,

2011. 12–25

80 Gonzalez J E, Low Y, Gu H, et al. Powergraph: distributed graph-parallel computation on natural graphs. In: Proceedings

of the 10th USENIX Conference on Operating Systems Design and Implementation, 2012. 17–30

81 Malewicz G, Austern M H, Bik A J, et al. Pregel: a system for large-scale graph processing. In: Proceedings of the 2010

ACM SIGMOD International Conference on Management of Data, 2010

82 Shun J, Blelloch G E. Ligra: a lightweight graph processing framework for shared memory. In: ACM Sigplan Notices, 2013.

135–146

83 Low Y, Bickson D, Gonzalez J, et al. Distributed GraphLab: a framework for machine learning and data mining in the

cloud. Proc VLDB Endow, 2012, 5: 716–727

84 Ham T J, Wu L, Sundaram N, et al. Graphicionado: a high-performance and energy-efficient accelerator for graph analytics.

In: Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016. 1–13

85 Lee H, Grosse R, Ranganath R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical

representations. In: Proceedings of the 26th Annual International Conference on Machine Learning, 2009

86 Ciresan D, Meier U, Schmidhuber J, et al. Multi-column deep neural networks for image classification. In: Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition, 2012

87 Ciresan D C, Meier U, Masci J, et al. Flexible, high performance convolutional neural networks for image classification.

In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, 2011

88 Sermanet P, Chintala S, LeCun Y, et al. Convolutional neural networks applied to house numbers digit classification.

In: Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2012

89 Oquab M, Bottou L, Laptev I, et al. Learning and transferring mid-level image representations using convolutional neural

networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014

90 LeCun Y, Boser B, Denker J S, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput, 1989,

1: 541–551

91 Kim Y. Convolutional neural networks for sentence classification. 2014. ArXiv:1408.5882

92 Howard A G. Some improvements on deep convolutional neural network based image classification. 2013. ArXiv:1312.5402

93 Gong Y, Jia Y Q, Leung T, et al. Deep convolutional ranking for multilabel image annotation. 2013. ArXiv:1312.4894

94 Collobert R, Weston J. A unified architecture for natural language processing: deep neural networks with multitask learning.

In: Proceedings of the 25th International Conference on Machine Learning, 2008. 160–167

95 Abdel-Hamid O, Mohamed A, Jiang H, et al. Applying convolutional neural networks concepts to hybrid NN-HMM model for

speech recognition. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

2012

96 Kalchbrenner N, Grefenstette E, Blunsom P, et al. A convolutional neural network for modelling sentences. 2014.

ArXiv:1404.2188

97 Deng L, Hinton G, Kingsbury B. New types of deep neural network learning for speech recognition and related applications:

an overview. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2013

98 Graves A, Mohamed A, Hinton G. Speech recognition with deep recurrent neural networks. In: Proceedings of IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing, 2013

99 LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86:

2278–2324

100 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. ArXiv:1409.1556

101 Song L, Zhuo Y, Qian X H, et al. GraphR: accelerating graph processing using ReRAM. In: Proceedings of the 24th

International Symposium on High-Performance Computer Architecture, 2018

102 Zheng L, Zhao J, Huang Y, et al. Spara: an energy-efficient ReRAM-based accelerator for sparse graph analytics applications.

In: Proceedings of 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2020. 696–707

103 Zhu X, Han W, Chen W. Gridgraph: large-scale graph processing on a single machine using 2-level hierarchical partitioning.

In: Proceedings of 2015 USENIX Annual Technical Conference (USENIX ATC 15), 2015. 375–386

104 Zhang M, Zhuo Y, Wang C, et al. Graphp: reducing communication for PIM-based graph processing with efficient data

partition. In: Proceedings of IEEE International Symposium on High Performance Computer Architecture (HPCA), 2018.

544–557

105 Ozdal M M, Yesil S, Kim T, et al. Energy efficient architecture for graph analytics accelerators. In: Proceedings of

ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), 2016. 166–177

106 Zhuo Y, Wang C, Zhang M, et al. GraphQ: scalable PIM-based graph processing. In: Proceedings of the 52nd International

Symposium on Microarchitecture, 2019

107 Nag A, Balasubramonian R, Srikumar V, et al. Newton: gravitating towards the physical limits of crossbar acceleration.

IEEE Micro, 2018, 38: 41–49

108 Choi S, Jang S, Moon J H, et al. A self-rectifying TaOy/nanoporous TaOx memristor synaptic array for learning and

https://doi.org/10.14778/2212351.2212354
https://doi.org/10.1162/neco.1989.1.4.541
https://arxiv.org/abs/1408.5882
https://arxiv.org/abs/1312.5402
https://arxiv.org/abs/1312.4894
https://arxiv.org/abs/1404.2188
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/MM.2018.053631140

Qian X H Sci China Inf Sci June 2021 Vol. 64 160401:25

energy-efficient neuromorphic systems. NPG Asia Mater, 2018, 10: 1097–1106

109 Li C, Belkin D, Li Y, et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat Commun,

2018, 9: 2385

110 Liu Z, Tang J, Gao B, et al. Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces.

Nature Commun, 2020, 11: 1–9

111 Krestinskaya O, Choubey B, James A. Memristive GAN in analog. Sci Report, 2020, 10: 1–14

112 Song L, Wu Y, Qian X, et al. ReBNN: in-situ acceleration of binarized neural networks in ReRAM using complementary

resistive cell. CCF Trans HPC, 2019, 1: 196–208

113 Bahou A A, Karunaratne G, Andri R, et al. XNORBIN: a 95 TOp/s/W hardware accelerator for binary convolutional neural

networks. In: Proceedings of IEEE Symposium in Low-Power and High Speed Chips (COOL CHIPS), 2018

114 Conti F, Schiavone P D, Benini L. XNOR neural engine: a hardware accelerator IP for 21.6-fJ/op binary neural network

inference. IEEE Trans Comput-Aided Des Integr Circ Syst, 2018, 37: 2940–2951

115 Jafari A, Hosseini M, Kulkarni A, et al. BiNMAC: binarized neural network manycore accelerator. In: Proceedings of Great

Lakes Symposium on VLSI, 2018. 443–446

116 Andri R, Karunaratne G, Cavigelli L, et al. ChewBaccaNN: a flexible 223 TOPS/W BNN accelerator. 2020. arXiv:2005.07137

117 Kim D, Kung J, Chai S, et al. Neurocube: a programmable digital neuromorphic architecture with high-density 3D memory.

In: Proceedings of ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), 2016. 380–392

118 Zhuo Y, Chen J, Luo Q, et al. SympleGraph: distributed graph processing with precise loop-carried dependency guarantee.

In: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation, 2020

119 Teixeira C H, Fonseca A J, Serafini M, et al. Arabesque: a system for distributed graph mining. In: Proceedings of the 25th

Symposium on Operating Systems Principles, 2015. 425–440

120 Wang K, Zuo Z, Thorpe J, et al. RStream: marrying relational algebra with streaming for efficient graph mining on a

single machine. In: Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation, 2018.

763–782

121 Mawhirter D, Wu B. Automine: harmonizing high-level abstraction and high performance for graph mining. In: Proceedings

of the 27th ACM Symposium on Operating Systems Principles, 2019. 509–523

122 Jamshidi K, Mahadasa R, Vora K. Peregrine: a pattern-aware graph mining system. In: Proceedings of the 15th European

Conference on Computer Systems, 2020. 1–16

123 Chen X, Dathathri R, Gill G, et al. Pangolin: an efficient and flexible graph mining system on CPU and GPU. 2019.

ArXiv:1911.06969

124 Iyer A P, Liu Z, Jin X, et al. ASAP: fast, approximate graph pattern mining at scale. In: Proceedings of the 13th USENIX

Symposium on Operating Systems Design and Implementation, 2018. 745–761

125 Boyd S. Distributed optimization and statistical learning via the alternating direction method of multipliers. FNT Mach

Learn, 2010, 3: 1–122

126 Ren A, Zhang T, Ye S, et al. ADMM-NN: an algorithm-hardware co-design framework of DNNs using alternating direction

methods of multipliers. In: Proceedings of the 24th International Conference on Architectural Support for Programming

Languages and Operating Systems, 2019. 925–938

127 Niu W, Ma X, Lin S, et al. PatDNN: achieving real-time DNN execution on mobile devices with pattern-based weight

pruning. In: Proceedings of the 25th International Conference on Architectural Support for Programming Languages and

Operating Systems, 2020

128 Song L, Mao J, Zhuo Y, et al. HyPar: towards hybrid parallelism for deep learning accelerator array. In: Proceedings of

the 25th IEEE International Symposium on High-Performance Computer Architecture, 2019

129 Song L, Chen F, Zhuo Y, et al. AccPar: tensor partitioning for heterogeneous deep learning accelerators. In: Proceedings

of the 26th IEEE International Symposium on High-Performance Computer Architecture, 2020

130 Harrison P, Valavanis A. Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanos-

tructures. Hoboken: John Wiley & Sons, 2016

131 Jensen F. Introduction to Computational Chemistry. Hoboken: John Wiley & Sons, 2017

132 Chapman T, Avery P, Collins P, et al. Accelerated mesh sampling for the hyper reduction of nonlinear computational models.

Int J Numer Meth Engng, 2017, 109: 1623–1654

133 Nobile M S, Cazzaniga P, Tangherloni A, et al. Graphics processing units in bioinformatics, computational biology and

systems biology. Brief Bioinform, 201, 18: 870–885

134 Arioli M, Demmel J W, Duff I S. Solving sparse linear systems with sparse backward error. SIAM J Matrix Anal Appl, 1989,

10: 165–190

135 Saad Y. Iterative methods for sparse linear systems. SIAM, 2003, 82

136 Fan Z, Qiu F, Kaufman A, et al. GPU cluster for high performance computing. In: Proceedings of the 2004 ACM/IEEE

Conference on Supercomputing, 2004. 47

137 Song F, Tomov S, Dongarra J. Enabling and scaling matrix computations on heterogeneous multi-core and multi-GPU

systems. In: Proceedings of the 26th ACM International Conference on Supercomputing, 2012. 365–376

https://doi.org/10.1038/s41427-018-0101-y
https://doi.org/10.1038/s41467-018-04484-2
https://doi.org/10.1007/s42514-019-00014-8
https://doi.org/10.1109/TCAD.2018.2857019
https://arxiv.org/abs/1911.06969
https://doi.org/10.1561/2200000016
https://doi.org/10.1002/nme.5332
https://doi.org/10.1093/bib/bbw058
https://doi.org/10.1137/0610013

	Introduction
	Emerging memory technologies
	Hybrid memory cube
	ReRAM basics

	Understanding the applications
	Graph processing
	Graph computation and application programming interfaces (APIs)
	Architectural challenges
	Graph representation

	Machine learning acceleration
	The computation of deep neural network
	Data forward and backward in a neural network

	PIM and NDP architectures for graph processing
	ReRAM-based graph processing accelerator
	GraphR
	GraphSAR

	HMC/HBM-based graph processing accelerator
	Tesseract
	Reducing data movement
	Enabling regular data movement

	PIM and NDP architectures for machine learning acceleration
	ReRAM-based machine learning accelerator
	Accelerator for inference
	Accelerator for training

	HMC/HBM-based machine learning accelerator

	Research directions
	Conclusion

