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Dear editor,

Fault diagnosis of industrial production processes are crucial

for early detection of abnormal conditions and help opera-

tors to prevent accidents in a timely manner. Therefore,

reasonably establishing a fault diagnosis model with better

performance and reducing false alarm rate are vital for im-

proving the efficiency of industrial operations and ensuring

the safety and reliable operation of equipment.

Generally, process monitoring and fault diagnosis meth-

ods are mainly classified into three categories: analyti-

cal model-based, knowledge-based, and data-driven meth-

ods [1]. However, the industrial processes are complex so

that it is difficult to obtain accurate mathematical models

and sufficient process knowledge for large industrial produc-

tion systems. A fault diagnosis method based on data-driven

is more effective compared with the other two types of meth-

ods mentioned above [2]. It only relies on historical data and

real-time data of process variables that are relatively easy to

obtain. Qin et al. [3] used data-driven multivariate statis-

tical methods such as principal component analysis (PCA),

partial least squares (PLS), and fisher discriminant analysis

(FDA) for industrial fault diagnosis. Roweis et al. [4] pro-

posed nonlinear dimensionality reduction techniques based

on manifold learning strategy. However, the actual indus-

trial process data are strongly nonlinear, and the results ob-

tained by the linear dimensionality reduction method may

not reveal the nonlinear structure contained in the origi-

nal data set. It will reduce the performance of the estab-

lished fault diagnosis model. A nonlinear dimensionality re-

duction technique, called parametric t-distributed stochastic

neighbor embedding (parametric t-SNE) [5], can solve these

problems compared with the previously proposed methods

and is used for fault classification of industrial processes in

this study. The main characteristics of the parametric t-

SNE are: (1) it can retain the nonlinear structure of high-

dimensional fault data in the low-dimensional feature space;

(2) it preserves the local and global structures of the origi-

nal data in the feature space to achieve good classification

results.

The model for online fault classification is constructed

by integrating training data, parametric t-SNE algorithm

and k-nearest neighbor (KNN) algorithm. The specific pro-

cess is shown in Figure 1(a). Firstly, the detected real-time

fault data are normalized. Secondly, a feature extraction

model based on optimal parametric t-SNE is proposed to ex-

tract features of fault data. The high-dimensional industrial

fault data are projected into the optimal classification low-

dimensional space by parametric t-SNE. Finally, the KNN

algorithm is used to calculate the extracted features to re-

alize fault classification.

The major contributions of this study are: (1) the pa-

rameter optimization index is defined to select the optimal

parameter for the parametric t-SNE algorithm; (2) an op-

timal fault classification model based on the parametric t-

SNE is established to improve the fault classification perfor-

mance. In addition, compared with traditional discriminant

analysis methods such as FDA and local linear exponential

discriminant analysis (LLEDA), the parametric t-SNE can

better distinguish non-Gaussian nonlinear industrial fault

data without too many features, and the accuracy is further

improved. Meanwhile, the effectiveness and superiority of

the proposed method are verified in the MNIST dataset, the

Tennessee Eastman process, and the penicillin fermentation

process.

Fault classification model and problem formulation. The

fault classification model is shown in Figure 1(b), which

consists of two stages. The first stage is to learn the non-

linear mapping between high-dimensional fault data space

and low-dimensional feature space. The parametric map-

ping f : X −→ Y from the data space X to the low-

dimensional feature space Y is parameterized by means of

a deep belief network (DBN) with weights W [6]. The sec-

ond stage is to fine-tune the parameters of the map. The

network weight is fine-tuned using t-SNE back-propagation

as to minimize the cost function that attempts to retain the

local and global structures of the data in the feature space.
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Figure 1 (Color online) (a) Industrial process fault classification diagnosis flow chart based on parametric t-SNE;

(b) structure of fault classification model based on parametric t-SNE.

Finally, the offline fault classification model based on para-

metric t-SNE is obtained. When establishing a fault clas-

sification model based on the parametric t-SNE algorithm,

the following three problems need to be solved.

Problem 1. Because the training data x1, x2, . . . , xN are

different types of indicators, they cannot be directly used

as input to the model. According to the parametric t-SNE

algorithm, the input data of the fault classification model is

limited to the range of 0 to 1.

Problem 2. The t-SNE cannot learn the nonlinear map-

ping between the original high-dimensional data space and

the low-dimensional feature space. However, the fault classi-

fication model must extract features of fault data by param-

eterizing the mapping function between high-dimensional

data and low-dimensional features.

Problem 3. The parametric t-SNE algorithm has only

one parameter “perplexity” (Perp) that must be pre-

specified by the user, but there is no guidance on how to

choose it [7].

To solve the above three problems, the process of es-

tablishing a fault classification model based on the optimal

parametric t-SNE can be summarized as follows.

Step 1. The training data x1, x2, . . . , xN are normalized

by

xi =
xk − xmin

xmax − xmin
, (1)

where xi denotes normalized training data, xk denotes the

initial data, and xmax and xmin are the maximum and min-

imum values of a single variable in the fault data, respec-

tively.

Step 2. The DBN has enough hidden layers (with a non-

linear activation function) to be able to parameterize any

complex nonlinear functions. DBN is composed of multi-

ple layers of restricted Boltzmann machine (RBM), using

the unsupervised greedy layer-by-layer method to obtain the

weights of pre-training.

Step 3. Fine-tuning. The features obtained by inputting

the historical fault data into the DBN are used as the sample

initial solution y(0) in the t-SNE algorithm. Then, the net-

work weights are fine-tuned using t-SNE back-propagation

as to minimize the cost function. Finally, the optimal model

parameters for the global deep belief network are obtained.

Step 4. The optimal value for Perp of parametric t-SNE

algorithm, Perpopt, can be obtained by

D =
∑

i

∑

j

pij log
pij

qij
, (2)

Perpopt = arg min
Perp

D, (3)

where pij and qij are the probability distribution of data in

X and Y , respectively. The lower the value of D is, the bet-

ter high-dimensional data are represented in the embedded

space. Therefore, a method to determine Perpopt is to run

parametric t-SNE with every possible Prep (Perp ∈ [5, 50])

and select Perpopt according to Eq. (3). Finally, the optimal

fault classification model is obtained. For more details on

fault classification model based on parametric t-SNE, please

refer to Appendix A.

Experiments. The fault classification method based on

optimal parametric t-SNE proposed in this study is used

in the MNIST dataset, the Tennessee Eastman process, and

the penicillin fermentation process to verify the effectiveness

and superiority of this method. Compared with FDA and

LLEDA [8], the parametric t-SNE can achieve better fault

classification results with less features, and the accuracy is

further improved. In addition, the parametric t-SNE can

better distinguish non-Gaussian nonlinear industrial fault

data. For more details on experimental verification and

analysis, please refer to Appendix B.

Conclusion. This study aims to explore the performance

optimization problem of fault classification models in in-

dustry. Based on the analysis of statistical-based, manifold

learning and deep learning methods, an industrial fault clas-

sification method based on the optimal parametric t-SNE

is proposed. This method first normalizes the initial data.

Then, the model based on the optimal parametric t-SNE is

used to extract the characteristics of industrial fault data.

Finally, the KNN classification algorithm is used to calcu-

late the extracted features to realize fault classification. The

advantage of the optimal parametric t-SNE method is that

it can better classify non-Gaussian nonlinear industrial data

without more features. Through industrial data verification,

this method is effective on improving the accuracy of indus-

trial fault classification, and it has less uncertainty.
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