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Appendix A Fault classification model based on parametric t-SNE

At present, data-driven fault diagnosis methods for industrial processes are complex and diverse, but the goals are to analyze

and process the operational data. The fault diagnosis of the system is done quickly and accurately without knowing the

precise analytical model. The industrial process data has many variables, high complexity and strong correlation. The main

purpose of adopting the method in fault diagnosis is to extract fault data features through dimensionality reduction, while

the extracted fault features maintain the correlation of original data. Finally, fault diagnosis is realized by fault feature

classification. Since the parametric t-SNE can preserve local structure and global classification information of fault data in

the low-dimensional feature space, the fault classification model based on the parametric t-SNE is established to reveal the

nonlinear structure of original data and ensure the accuracy of fault type diagnosis.

In parametric t-SNE, the parametric mapping f : X −→ Y from the data space X to the low-dimensional feature space

Y is parametrized by means of a deep belief network (DBN) with weights W. Then, the network weight is fine-tuned using

t-SNE backpropagation as to minimize the cost function that attempts to retain the local structure of the data in the

feature space [1]. Therefore, as shown in figure A1, the specific process of establishing offline fault classification model by

using t-SNE algorithm is as follows:

(1) Normalize the training sample data X = {x1, . . . , xN}, xi ∈ RD. Let V1 = xi.

(2) Perform the first-level RBM training on the preprocessed data. After training, the hidden layer output is used as

the input of the second-level RBM, and the next layer of training is continued until each layer was trained successively

according to the preset network structure. Then, the network model parameters are obtained.

(3) Fine-tuning: The feature data obtained by inputting the historical fault data into the deep belief network is used

as the sample initial solution y(0) in the t-random neighbor embedding algorithm. Then, the network weight is fine-tuned

using t-SNE backpropagation as to minimize the cost function. Finally, the optimal model parameters for the global deep

belief network are obtained.

Appendix A.1 Deep belief network pre-training

The deep belief network has enough hidden layers (with a nonlinear activation function) to be able to parameterize any

complex nonlinear functions. Therefore, a deep belief network is chosen to learn the nonlinear mapping between high-

dimensional fault data space and low-dimensional feature space. DBN is composed of multiple layers of RBM, and its

training process is: use unsupervised greedy layer by layer method to obtain the weight of pre-training.

Restricted Boltzmann Machine (RBM) is an undirected probability graph model that is interpreted using random neural

networks. The structure of RBM is a fully connected bipartite graph which is divided into two layers, the visible layer

(input layer) and the hidden layer. The number of neurons in the visible layer is equal to the dimension of the input

high-dimensional data, and the number of nodes in the hidden layer is the dimension of the extracted feature vector. The

connection between neurons is characterized by no connection within the layer and full connection between layers. Given

a training sample, the RBM is trained by adjusting the parameters of RBM model, so that the probability distribution

of visible nodes represented by RBM under this parameter is as consistent as possible with the probability distribution of

training data.

RBM is a special case of Markov random fields. When a set of visible layer states v and hidden layer states h are given,

the joint distribution among all the nodes is represented by the energy function E(v, h p θ),
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Figure A1 Structure of fault classification model based on parametric t-SNE.

E(v, h p θ) = −
n∑
i=1

m∑
j=1

wijvihj −
n∑
i=1

viai −
m∑
j=1

hjbj , (1)

where vi is the node state of visible layer, hj is the node state of hidden layer, θ = w, a, b is the model parameter, wij is

the weight of the connection between nodes vi and hj , ai is the bias on the node vi, bj is the bias on the node hj .

P (v p θ) is obtained by Indexing and regularizing the energy function E(v, h p θ). So P (v p θ) needs to be maximized,

P (v p θ) =
∑
h

exp−E(v,hpθ) /
∑
v,h

exp−E(v,hpθ), (2)

where,
∑
v,h exp−E(v,hpθ) is a normalization factor that represents the sum of all possible states (energy index) of the visible

layer and hidden layer node sets;
∑
h exp−E(v,hpθ) represents the probability of the visible layer node set under a certain

state distribution. The maximization of the cost function is performed using a gradient ascent method. Model parameter

is updated by

θi+1 = θi + µ
∂ lnP (vt)

∂θi
, (3)

where, µ denotes the learning rate, vt denotes the input data of the model. Because the joint probability distribution

P (v) of the visible layer cannot be obtained directly, we use the contrast divergence CD-k algorithm to reconstruct P (v).

Sample data is repeated (4), (5) after iteration k times, the state of the visible layer vi will converge on the joint probability

distribution P (vi).

P (hj = 1 p vt) =
1

1 + exp(−
∑
i viwij − bj)

, (4)

P (vi = 1 p h) =
1

1 + exp(−
∑
j hjwij − ai)

, (5)

Here, because a large amount of the same or similar data is trained in the sample data, It is equivalent to a sample

iterating multiple times. Therefore, the number of iterations is taken as k = 1.

Therefore, the pre-training process of the deep belief network is as follows:

(1) Normalize the training sample data X = {x1, . . . , xN}, xi ∈ RD. Let V1 = xi.

(2) Perform the first-level RBM training on the preprocessed data. After training, the hidden layer output is used as

the input of the second-level RBM, and the next layer of training is continued until each layer was trained successively

according to the preset network structure.

Appendix A.2 t-SNE backpropagation fine-tuning model parameters

The t-Distributed Stochastic Neighbor Embedding (t-SNE) [1] is a machine learning algorithm for dimensionality reduction.

In addition, t-SNE is a non-linear dimensionality reduction algorithm, which is very suitable for visualizing high-dimensional

data by dimension reduction to 2D or 3D. Compared with other dimensionality-reduction techniques, t-SNE can can preserve

the local structure and global structure in low-dimensional space. In other words, it has a certain degree of clustering effect

and better visualization of high-dimensional data to reduce dimension to a 2-dimensional plane.
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The t-SNE starts by converting the high-dimensional Euclidean distances between data points into conditional probabil-

ities that represent similarities. Specifically, given a training sample set {x1, . . . , xN}, xi ∈ Rd, the conditional probability

of data point xj to data point xi is pjpi, and pjpi is proportional to similarity between xi and xj . The conditional probability

pjpi is given by

pjpi =
exp(− q xi − xj q2 /2σ2

i )∑
k 6=i exp(− q xi − xk q2 /2σ2

i )
, (6)

where, σi is the Gaussian variance centered on data point xi. For different points xi, σi does not have the same value. It is

not possible for σi to be optimal for all data points in the data set because the density of the data may change. Therefore,

the t-SNE performs the value of the binary search σi using the fixed confusion level Perp specified by the user. The usual

perplexity level is between 5− 50. The relationship between perplexity Perp and σi is as shown in equations (7) and (8)

Prep(Pi) = 2H(Pi), (7)

H(Pi) = −
∑
j

pjpi log2 pjpi, (8)

In t-SNE, the degree of confusion is the parameter we set primarily, which is roughly equivalent to the nearest neighbors

that are considered when matching the original and fitted distribution of each point. For different data sets, we need to

adjust the confusion by experiment. The specific setting of the degree of confusion Perp performs the binary search σi
value as follows:

1) Calculate the Euclidean distance square between the data points from the sample set X, and construct a pairwise

distance matrix D, where the i− th row and the j− th column element are the Euclidean distance square between the input

points xi and xj .

2) Convert the pairwise distance matrix D between data points into a conditional probability matrix P , where the i− th
row and the j− th column elements are pjpi. At this time, it is necessary to perform a binary search by setting the confusion

degree Perp to set a σi for each line of the matrix P .

3)The upper limit value and the lower limit value of σi are set. The tolerance of Perp’s tolerance is set. Then, Each

time the center value of the σi range is taken, the confusion degree Perp is calculated by substituting equations (6), (8),

and (7) until the searched σi satisfied the Perp tolerance condition, and the search is stopped.

Also set pipi = 0, because we are concerned about the similarity between the two. In order to optimize the subsequent

cost function, the conditional probability distribution is replaced with the joint probability distribution. In this case, let

pij = (pjpi + pipj)/2n.

For the low dimensional corresponding points yi and yj of the high dimensional data points xi and xj , we use qij
to represent a similar joint probability. In order to solve the crowding problem of reducing the dimensionality of high-

dimensional data points into low-dimensional space, in a low-dimensional map, a one-degree-of-freedom t-distribution is

used instead of a Gaussian distribution to express the similarity between two points. The joint probability qij is defined as

qij =
(1+ q yi − yj q2)−1∑
k 6=l(1+ q yk − yl q2)−1

, (9)

We model the similarity between the low-dimensional data points yj and yi: The overall goal is to select one of the data

points in Y , and then make its joint probability distribution q approximate to p. Therefore, the Kullback Leibler divergence

is used to measure the probability distribution Q to fit the true distribution P . Objective function C is defined by

C = KL(P q Q) =
∑
i

∑
j

pij log
pij

qij
, (10)

t-SNE uses the gradient descent method to minimize the objective function C. The complete gradient formula after

derivation is defined by
∂C

∂yi
= 4

∑
j

(pij − qij)(yi − yj)(1+ q yi − yj q2)−1, (11)

The gradient ∂C
∂y

is calculated by Equation (11), and the low-dimensional data is updated by

y(t) = y(t−1) + η
∂C

∂y
+ α(t)(y(t−1) − y(t−2)), (12)

Here, η is learning rate, α(t) is momentum, y(t) is the set of low-dimensional data after t times update. The feature data

obtained by inputting the historical fault data into the deep belief network is used as the sample initial solution y(0). In

this way, the initial low-dimensional data is located in a better position, which can accelerate the target value to converge

to a better local extreme value in the process of gradient descent. The target result is the low dimensional data y(T ) after

iterating T times.

Therefore, denoting the mapping from the data space to the feature space that is defined by the DBN’s pre-training

network as f : X −→ Y , this leads to the following definition.

qij =
(1+ q f(xi pW )− f(xj qW ) q2)−1∑
k 6=l(1+ q f(xk pW )− f(xl qW ) q2)−1

, (13)
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The minimization of the cost function C (defined by equation (13) using qij) can be performed using backpropagation,

and the gradient required for fine tuning is given by

∂C

∂W
=

∂C

∂f(xi pW )

∂f(xi pW )

∂W
, (14)

where,
∂f(xipW )
∂W

is calculated using standard backpropagation, ∂C
∂f(xipW )

is calculated as follows:

∂C

∂f(xi pW )
= 4

∑
j

(pij − qij)(f(xi pW )− f(xj pW ))(1+ q f(xi pW )− f(xj pW ) q2)−1, (15)

Therefore, the specific steps for feature extraction based on the parametric t-SNE are:

(1) The fault data is input into deep belief network for pretraining and the model parameters are obtained.

(2) The feature data obtained by inputting the historical fault data into the deep belief network is used as the sample

initial solution y(0) in the t-random neighbor embedding algorithm. Then, the network weight is fine-tuned using t-SNE

backpropagation as to minimize the cost function. Finally, the optimal model parameters for the global deep belief network

are obtained. Meanwhile, the local structure of the original data is preserved in the low-dimensional map.

Appendix A.3 Selection of the optimal parameter value for the parametric t-SNE algo-

rithm

The parametric t-SNE algorithm has only one parameter ”perplexity” that must be pre-specified by the user, but no

guidance was yet given how to choose it. Therefore, a parameter optimization indicator is defined to measure the ”quality”

of the input-output mapping, and automatically select the optimal parameter value based on the indicator. We perform

experimental verification of industrial fault classification under the optimal parameter values and get the best classification

effect.

The perplexity can be interpreted as a smooth measure of the effective number of neighbors, and typical values are

between 5 and 50. The value of perplexity is proportional to the number of nearest neighbors. A large number of nearest

neighbors causes smoothing or eliminating of small-scale structures in the manifold. In contrast, too small neighborhoods

can falsely divide the continuous manifold into disjoint sub-manifolds [3]. Therefore, we need to select the best value of

perplexity according to the indicators defined below, so that the classification model has the best classification accuracy.

We use kullback leibler divergence to measure the ”quality” of the input-output map, that is, the degree to which the

high-dimensional structure is represented in the embedded space. Evaluation function D is defined as

D =
∑
i

∑
j

pij log
pij

qij
, (16)

pij and qij are the probability distribution of data in X and Y, respectively. The lower the value of D is, the better high-

dimensional data are represented in the embedded space. Hence, the optimal value for Prep, Prepopt, can be determined

as

Prepopt = arg min
Prep

D (17)

Here, a method to determine Prepopt is to run parameter t-SNE with every possible Prep (Prep ∈ [5, 50]) and select

Prepopt according to Eq.17.

Appendix A.4 Online implementation of fault classification model

The K nearest neighbor algorithm is a classification algorithm. The KNN predicts the type of new samples by calculating

the distance between the new sample data and the nearest neighbor k historical sample data points. In this paper, firstly,

the high-dimensional fault data of industrial process is projected to the optimal classification feature space by using the

parametric t-SNE. Then, in the feature space, the K-nearest neighbor algorithm is used to predict the type of new fault

data online. Specific steps are as follows:

(1)Real-time fault data of industrial process is projected to the optimal classification feature space by using the parametric

t-SNE.

(2) In the feature space, calculate the Euclidean distance between real-time data and each known types of training data.

(3) European distances are Sort in ascending order.

(4) Select the K points with the smallest distance and calculate the frequency of occurrence of the category of the K

points.

(5) Return the category with the highest frequency among the top K points as the prediction category of the real-time

data.

Appendix B Experimental verification and analysis

Appendix B.1 MNIST data set experimental verification

In this paper, the MNIST data set, including 70,000 handwritten-number grayscale images, is selected for experimentation.

Each image consists of 28 × 28 = 784 pixels, and each pixel is represented by a grayscale value. In this experiment,

each picture is transformed into a sample of a row vector in 1 × 784 dimension. The training set includes 30,000 samples
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containing handwritten numbers 1 ∼ 5 and the test set includes 5,000 samples. First, we use the parameter optimization

index proposed in the paper to select the optimal Prep value of 30 for the parametric t-SNE. Figure B1 (a) and (b) show

the visualization of the high-dimensional data of 5,000 test samples which is reduced to the 2-dimension plane using FDA

and parametric t-SNE methods, respectively. Parametric t-SNE shows good clustering and visualization effects compared

with the traditional FDA method. What is the influence of the feature number on the classification performance? Here,

we map the MNIST dataset into different feature spaces in order to answer this question. Figure B2 (a)-(c) shows the

classification recognition rate of test set at different the reduction dimension space with d=2, 10 and 30, respectively. It is

found that the parametric t-SNE always shows better recognition rate in different feature space than FDA method. It has

obvious advantages in the 2-dimensional space, especially. It also is found from Figure B2 (d) that the average recognition

rates of all categories using the two methods are improved with the increase of the feature number. Table B1 gives the

average recognition rates of test data. It is found from Table B1 that the parametric t-SNE can can accurately cluster data

by extracting fewer features. The parametric t-SNE displays better classification because it retains the local structure of

original data and global classification information after the dimension reduction.
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Figure B2 The effect of reduction dimension on classification: (a) d=2, (b) d=10, (c) d=30.

Appendix B.2 TE process fault classification verification

The Tennessee Eastman Process (TEP) is a simulation platform of an actual chemical process which is a benchmark for

testing the effectiveness of fault diagnosis or process control methods. TEP includes five major units: a chemical reactor,
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Table B1 Classification comparison of FDA and parametric t-SNE on MNIST data set

d=2 d=10 d=30

FDA 0.830 0.971 0.972

parametric t-SNE 0.975 0.984 0.984

a condenser, a recycle compressor, a vapor/liquid separator, and a stripper. Figure 5 shows a detailed flow chart of TEP.

This process provides 52 observation variables, consists of 41 process variables and other 11 manipulated variables. TEP

is a typical non-linear, strongly coupled and dynamic system. 21 pre-defined faults are given in TEP including 16 known

faults and 5 unknown faults. The specific fault types are shown in Table B2. Here, Faults 1 to 7 are related to step changes.

Faults 8 to 12 are caused by random variables of the process. Fault 13 is a slow offset. Faults 14, 15 and 21 are caused by

valve sticking. Faults 16 to 20 are unknown faults. It is pointed that Faults 1, 2, 6, 7, 8, 12, 13, 14, 17 and 18 are significant

faults, and faults 3, 4, 5, 9, 10, 11, 15, 16, 19, 20 and 21 are minor faults [4]. There are 22 data sets in total including

the normal and different fault operations. The data consists of 22 different simulation run data. The entire operation take

48 hours and the fault is introduced at the 8th hour. The data collection time is 3 minutes. The normal operation data

contains 960 samples, and each of the 21 different fault training data contains 800 samples.
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Figure B3 TE process flow chart.

Table B2 Faults in Tennessee Eastman process

No. Description Type

IDV(0) Normal operation –

IDV(1) A/C feed ratio, B composition constant Step

IDV(2) B composition, A/C ratio constant Step

IDV(3) D feed composition temperature Step

IDV(4) Reactor cooling water temperature Step

IDV(5) Condenser cooling water inlet temperature Step

IDV(6) A feed loss Step

IDV(7) C header pressure loss-reduced availability Step

IDV(8) A, B, C feed composition Random variation

IDV(9) D feed composition temperature Random variation

IDV(10) C feed composition temperature Random variation

IDV(11) Reactor cooling water temperature Random variation

IDV(12) Condenser cooling water inlet temperature Random variation

IDV(13) Reaction kinetics Slow drift

IDV(14) Reactor cooling water valve Sticking

IDV(15) Condenser cooling water valve Sticking

IDV(16) Unknown Unknown

IDV(17) Unknown Unknown

IDV(18) Unknown Unknown

IDV(19) Unknown Unknown

IDV(20) Unknown Unknown

IDV(21) The valve fixed at steady state position Unknown constant position

Here, fault 2, fault 4 and fault 6 are selected in order to evaluate the fault classification performance of the parametric

t-SNE method. These three faults are caused by step changing of different operation condition and fault 4 is a minor fault

which is difficult to be detected. Because the actual data collected from the TEP is limited, the training model needs

enough training data. Therefore, the operation of each type of fault are run 10 times. Then, models are built using 6000

training data points and the 2000 test data points are used to test the performance of the model. We need to select different

optimal parameter Prep to achieve the optimal classification performance for different data sets. Figure B4 (a) shows a

plot of the parameter optimization evaluation function D for Prep ranging from 5 to 60. It can be found that the value of

this function has a minimum value with the change of Prep. When the value of Prep is 35, the value of kullback leibler

divergence is the smallest. In order to verify the effectiveness of the parameter optimization method, figure B4 (b) shows
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the relationship between the fault type recognition rate of test data and the value of Prep. It can be found that the fault

classification performance of the parametric t-SNE is optimal when parameter Prep is selected as 35. Therefore, the Prep

is determined to be 35 under the premise of ensuring a high fault recognition rate.
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Figure B4 (a)Selection and (b)verification of the optimal parameter value for the parameter t-SNE algorithm

To visually show the characteristics of the different fault classification and diagnosis methods, we extracted 2 features

and plot the fault data projection results in Figure B5. The visual effects of the parametric t-SNE on the classification of

three faults are compared with that of FDA and LLEDA methods. The parametric t-SNE has better classification effects

on fault data than FDA and LLEDA, and it has less uncertainty. Table B3 shows the correct recognition rate for three

types of faults based on LLEDA, FDA, and parametric t-SNE methods, respectively. From the data in the table, the

parametric t-SNE has a good accuracy rate for fault classification diagnosis. Moreover, because the t-SNE and LLEDA

methods preserve local geometry and global information in the process of nonlinear industrial data dimensionality reduction,

the FDA linear dimensionality reduction process may not reveal the nonlinear structure contained in the data set. The

fault recognition rate of the t-SNE and LLEDA methods is significantly better than the FDA method. At the same time,

the parametric t-SNE and LLEDA have similar judgment performance. However, it is found from the experimental results

that as the number of features of the fault data increases, the fault recognition rate of the parametric t-SNE will be slightly

better than LLEDA. This is because the actual industrial fault data is uncertain and non-linear. Although the LLEDA

algorithm can also implement nonlinear data classification, its reconstruction weight is a linear Gaussian assumption, which

sometimes has no advantage for non-Gaussian data. However, the parametric t-SNE solves the problem of data distribution

by converting the data distance problem into a probability distribution problem. Therefore,the validity of the parametric

t-SNE for industrial process fault classification diagnosis is verified by experimental data, and the parametric t-SNE has

better clustering effect on the extracted features of fault data than FDA and LLEDA. Moreover, the parametric t-SNE can

better distinguish non-Gaussian nonlinear industrial fault data without more features.

Table B3 The correct recognition of faults 2, 4, and 6 by different methods

Number of features Recognition rate FDA LLEDA parametric t-SNE

2

Fault 2 0.965 1 1

Fault 4 1 1 1

Fault 6 1 1 1

3

Fault 2 0.965 1 1

Fault 4 1 1 1

Fault 6 1 1 1

4

Fault 2 0.965 0.993 1

Fault 4 1 1 1

Fault 6 1 1 1

5

Fault 2 0.963 0.990 1

Fault 4 1 1 1

Fault 6 1 1 1

Appendix B.3 Penicillin Fermentation Process classification verification

Penicillin is a widely used antibiotic in humans, and its fermentation process is a complex nonlinear batch process. Therefore,

the research on the monitoring of this process has great practical significance. The penicillin fermentation reaction process is

characterized by continuity, nonlinearity and uncertainty. Figure 8 shows the basic flow chart of the process. In this paper,

we use the simulation platform Pensim 2.0 software of penicillin fermentation process to carry out simulation experiments.

Pensim 2.0 was developed in 1998−2002 by the Institute of Process Modeling, Monitoring and Control, led by Prof. Cinar,

by the Illinois Institute of Technology. This simulation platform is specially designed for the penicillin fermentation process,

which can realize a series of simulations of penicillin fermentation process. Relevant research has shown the practicability



Ruixue Jia, et al. Sci China Inf Sci 8

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

first feature direction
(a)

se
co
nd
 f
ea
tu
re
 d
ir
ec
ti
on

FDA method （test）

 

 

fault2

fault4

fault6

-5 -4 -3 -2 -1 0 1 2 3 4
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

first feature direction
(b)

se
co
nd
 f
ea
tu
re
 d
ir
ec
ti
on

LLEDA method （test）

 

 

fault2

fault4

fault6

-60 -50 -40 -30 -20 -10 0 10 20 30 40
-24

-23

-22

-21

-20

-19

-18

-17

first feature direction
(c)

se
co
nd
 f
ea
tu
re
 d
ir
ec
ti
on

parameter t-SNE method (test)

 

 

fault2

fault4

fault6

Figure B5 Classification visualization of 1000 failure data for fault 2,4,6: (a) FDA; (b) LLEDA; (c) parametric t-SNE.

and effectiveness of the simulation platform. Therefore, Pensim 2.0 has become an effective way for many scholars to study

the diagnosis and monitoring of intermittent process faults [5].
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Figure B6 Flow diagram of the penicillin fermentation process.

In this paper, we use the simulation platform Pensim 2.0 of the penicillin fermentation process to collect data. Because

the variables such as substrate concentration and microbial concentration cannot be measured in real time, the data of some

variables is defective. Here, 9 variables are selected to built model of the fault classification (as shown in Table B4). Three

types of simulated faults (as shown in Table B5) are chosen to verify parametric t-SNE method. Firstly, the 30 batches

of data obtained by Pensim 2.0 simulation are used as the training data set, the reaction time is 400 hours, the sampling

time is 0.5 hours, including 10 batches of fault data of air flow drop, 10 batches of fault data of stirring power drop and
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10 batches of fault data of bottom materials feed rate drops. Each batch of fault data is obtained by changing the size of

the fault. Here, we establish a fault classification model of the proposed method by using each type of 4000 fault data as

a training sample, and then project the test fault data into the two-dimensional map through the model to visualize. In

order to get the optimal fault classification model, we use the parameter optimization index proposed in the paper to select

the optimal confusion value of 35.

Table B4 Variables used in the monitoring of the benchmark model

No. Variable

1 Agitator power

2 Aeration rate

3 Substrate feed rate

4 Substrate feed concentration

5 Cold water flow rate

6 CO2 concentration

7 Medium volume

8 PH

9 Fermenter temperature

Table B5 penicillin fermentation process fault types

Fault number Fault type Simulation time (h)

1 Base flow rate down 400

2 Agitator power down 400

3 Air flow down 400

Here, the FDA and LLEDA methods are selected for comparison. Figure B7 shows the classification results for each

method. Table B6 shows the fault type recognition rates for different methods. Obviously, we can find that the parametric

t-SNE has a better classification effect, and it has less uncertainty. From table B6, the parametric t-SNE has a higher

accuracy. Therefore, we found that the parametric t-SNE method has better fault classification ability, and the parametric

t-SNE can better distinguish non-Gaussian nonlinear industrial fault data with only a small number of features.

Table B6 The correct recognition of faults 1, 2, and 3 by different methods

Number of features Recognition rate FDA LLEDA parametric t-SNE

d=2

Fault 1 0.965 0.952 1

Fault 2 0.940 1 1

Fault 3 0.913 1 1
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Figure B7 Visualization of 1000 failure data from the fault 1,2,3 using (a) FDA; (b) LLEDA; (c) parametric t-SNE.
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