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Owing to the lack of variety of interactions in automatic

driving, the interactive cognition and evolution growth

of self-driving vehicles in uncertain and complex environ-

ments have been proposed, making future vehicles interac-

tive wheeled robots.

Indeed, self-driving vehicles, as future vehicles, will

change people’s mode of traffic, transportation, and even

production and life. Currently, studies on automatic vehicles

mainly focus on perception, planning, decision, and control.

However, self-driving vehicles need to communicate with

their surroundings, including people, vehicles, and roads, to

maintain a convenient and efficient operation. Consequently,

interactive intelligence would be vital in future self-driving

vehicles.

Lack of interactive cognition in automatic driving. Cur-

rently, when considering the implementation of self-driving

technology, people are more concerned about how to dis-

play drivers’ skills and techniques on the vehicle computer

platform [1]. However, the rich interactive cognitive abilities

that a driver must possess before being issued a license are

often ignored. For example, if someone waves on the road-

side, it may mean calling for a car; if someone waves while

crossing a road, it may mean to go first; if a driver waves

when two cars meet in opposite directions in a narrow road,

it may mean to go first so as not to block the traffic. All

these interactions are an important reflection of courteous

driving and social civilization. Future vehicles are also ex-

pected to have a strong adaptive ability to immediately deal

with an emergency at an intersection. These perceptual in-

teractions are obtained anytime in mobile life, and future

vehicles will shuttle between different nationalities, regions,

even cultures, to meet the interactive cognition demands of

humans, which may be developed over time.

Composition and infrastructure of self-driving interactive

cognition. Considering physical space, the interaction of a

self-driving vehicle can be divided into inner-vehicle, outer-

vehicle, and remote cloud interactions. First, in inner-

vehicle interaction, passengers, security staff, and other

people can set different travel tasks, enjoy entertainment

services, and share necessary travel information in the ve-

hicle. Passengers can use voice, text, and other media to

interact with the vehicle online using the natural-language-

understanding technology. Second, outer-vehicle inter-

action refers to the interaction behavior of recognizing

and predicting the posture of pedestrians and traffic po-

licemen. Third, remote cloud interaction can be used

for intelligent RoboTaxi services, remote command and dis-

patch, remote intervention requests, and execution of self-

driving tasks. There are many uncertainties when dealing

with emergencies in these perceptual interaction situations,

such as sending real-time information to achieve diversified

human intervention and making more reasonable decisions

with a minimum loss [2]. Such desired ability can be used

to explore the similarities among interaction uncertainties in

various scenarios, such as autonomous parking, fixed-route

logistics, and intercity driving.

According to different cognitive objects, interactive cog-

nition in self-driving vehicles can be divided into vehicle-to-

human, vehicle-to-vehicle, and vehicle-to-environment inter-

actions. The vehicle-to-human interaction refers to the

understanding of changes in the surrounding environment

and human behaviors, and it is necessary to enhance the

accurate and efficient recognition of multiple objects in a

hybrid environment with occlusions [3] (top panel, Figure

1). For example, first, complementary multi-perspective and

high-quality visual data can be obtained through vehicular

sensors. Second, data features are extracted from multi-

view pictures through a multi-stage, multi-branch Convo-

lutional Neural Network (CNN) structure, and then fo-

cused on depth features encoding. Finally, employing a
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Figure 1 Interactive cognition and architectural design in automatic driving.

cyclic neural network to identify dynamic gestures in self-

driving according to the timing relationship, can effectively

improve the recognition efficiency by combining attention

mechanisms [4]. The vehicle-to-vehicle interaction is

employed while driving in shared public space with vari-

ous road users, e.g., overtaking, narrow road meeting, and

double merging (middle panel, Figure 1). A fundamental

challenge is to achieve multi-agent coordination on percep-

tion, task, and motion to ensure safety, stability, comfort,

and energy-saving [5]. The technical challenges and recent

advances in future control methods and models were inves-

tigated in [6]. To adapt the model uncertainty and reduce

potential risks in complex environments, such as all-weather

types, diverse road types and competitive scenarios, Multi-

agent reinforcement learning (MARL) algorithm is an effec-

tive tool, which can be combined with various methods [7],

including risk-aversion [8] and variational Bayesian estima-

tion [9] etc., to overcome the sensitivity of system parame-

ters induced by outliers, and transfer learning to speed up

the learning procedure in new tasks by reusing knowledge

from past tasks [10]. The vehicle-to-environment in-

teraction efficiently uses the sensing information from the

4G/5G intelligent network (bottom panel, Figure 1). To

achieve fast localization and cooperation among future ve-

hicles and guarantee intelligent driving in complex traffic

environments and time-varying driving conditions, V2X sen-

sor coverage would be improved in road networks to quickly

collect more types of traffic information [11]. Self-driving

vehicles should adopt the task-driven and data-centric AI

testing approach [12] and have the cognition ability to drive

intelligently [13], deal with as many kinds of accidental situ-

ations as possible, and become an interactive wheeled robot.

The evolution and growth of future automobiles in in-

teraction. The basic features of human intelligence are to

learn and evolve while interacting with the environment.

Without intelligent interaction and evolution, future vehi-

cles may not work well. With the advent of the intelligent

era, the development of automobiles has made people real-

ize that robot driving can coexist with human driving for

a long time. Thus, it is important to discuss how wheeled

robots can learn and evolve with and beyond humans. The

process can be divided into three stages. In the first stage,

wheeled robots learn from the model drivers to inherit their

excellent driving skills by obtaining prior knowledge with su-

pervised learning methods. The second stage is autonomous

driving under human intervention. In this stage, robots at-

tempt to finish work under human guidance through various

learning methods, such as reinforcement, semi-supervised,

and weekly supervised learning. The knowledge of robots

gets further tested and strengthened. In the last stage,

robots can drive the vehicles autonomously. Furthermore,

robots can learn independently to accumulate experiences

and strengthen or modify existing ones through unsuper-

vised learning. After evolution, the evolved robots acquire

driving skills, a typical situation-handling ability, and con-

ventional accident prevention skill as prior knowledge, which

enhances knowledge sharing and promotion. The evolution-

ary speed of interactive wheeled robots is much faster than

the growth of a model driver in traditional training methods.

These stages reflect the evolution and iterative development
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of interactive cognition in intelligent driving.

Application and demonstration of interactive cognitive

technology. To discuss the necessity of interactive cognition

in self-driving vehicles, we propose a new paradigm of inter-

active cognition, expound the interactive solution in the en-

vironment of “human–vehicle–road–cloud,” and design a ba-

sic framework of interactive cognition. Since 2016, we have

undertaken projects entrusted by Beijing Automotive Group

Co., Ltd. (BAIC) and other enterprises. The aforemen-

tioned theories and methods of interactive cognition have

been successfully employed in various autonomous vehicles,

such as BAIC Foton TOANO electric vans, AUMARK light

truck electric trucks, BAIC new energy LITE electric cars,

and EU260 electric cars. The research findings have fea-

tured in the Tianjin World Intelligent Driving Challenge

(WIDC) for three consecutive sessions (2018–2020) and won

the leading prize (champion) of virtual scene competition for

all the times. RoboTaxi intelligent online vehicle reservation

system was operated in the 3rd World Intelligent Congress

(WIC), which enriched experiences in shared transportation.

The cloud intelligent interactive system for driverless buses

developed by the team was also operated in the 4th WIC.

In conclusion, self-driving vehicles are challenged by re-

alizing not only driving skills and techniques, but also intel-

ligent interactions. Self-driving vehicles would be accepted

by the public when incorporated with adequate interactive

cognitive ability. The closed-loop experiment on vehicle dy-

namics with “the driving brain” provides a new method for

vehicle testing. In the future, automobiles will be interac-

tive, learnable, and evolvable wheeled robots.
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