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Abstract The maximum internal spanning tree (MIST) problem is utilized to determine a spanning tree

in a graph G, with the maximum number of possible internal vertices. The incremental maximum internal

spanning tree (IMIST) problem is the incremental version of MIST whose feasible solutions are edge-sequences

e1, e2, . . . , en−1 such that the first k edges form trees for all k ∈ [n − 1]. A solution’s quality is measured

using maxk∈[n−1]
opt(G,k)
|In(Tk)|

with lower being better. Here, opt(G, k) denotes the number of internal vertices

in a tree with k edges in G, which has the largest possible number of internal vertices, and |In(Tk)| is the

number of internal vertices in the tree comprising the solution’s first k edges. We first obtained an IMIST

algorithm with a competitive ratio of 2, followed by a 12/7-competitive algorithm based on an approximation

algorithm for MIST.
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1 Introduction

The aim of the maximum internal spanning tree problem (MIST) is to determine a spanning tree with
the largest possible number of internal vertices in a connected undirected graph G. It is trivial to observe
that MIST is NP-hard because it is essentially a variant of the classic Hamiltonian path problem, which
is NP-hard [1]. Because of its applications to the design of communication networks and water supply
systems [2], MIST has been explored in the fields of parameterized computation and approximation
algorithms. Parameterized computation, a clever method of dealing with NP-hard problems [3–5] has
been extensively researched and applied in multiple fields [6–11]. The parameterized version of MIST is the
k-internal spanning tree (k-IST) problem. Prieto et al. [12] proposed an O(k3) kernel for MIST based on
the relationship between the k-IST and k-vertex cover problems. This result was subsequently improved
to O(k2) in [13] by applying a parameterized computation technique known as crown decompositions.
Fomin et al. [14] achieved a further breakthrough, thus reducing the kernel size for MIST to 3k. Based
on a deeper local search, Li et al. [15] then yielded a kernel of size 2k.

Approaching the problem from an approximation algorithms perspective, Prieto et al. [12] proposed
an MIST algorithm with an approximation ratio of 2. After multiple improvements [15–17], the current
best approximation ratio is 17

13 , achieved by an algorithm proposed by Chen et al. [2]. This algorithm has
an execution time of O(|V |2|E|2), where |E| is the number of edges and |V | is the number of vertices in
the graph. However, quicker algorithms with slightly worse approximation ratio have been founded, e.g.,
Salamon et al. [18] derived a 2-approximate algorithm that runs in linear time, while Knauer et al. [17]
developed a 5

3 -approximate algorithm that runs in O(n2) time, where n is the number of vertices. Finally,
we should report that MIST is APX-hard [16].
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In this study, we examine the incremental version of MIST, which is known as the incremental maximum
internal spanning tree (IMIST) problem. In general, the incremental variants of combinatorial problems
focus on how to expand a small local solution to a complete solution to the whole problem instance via
a sequence of intermediate local solutions [19]. Importantly, the sequence’s quality is measured in terms
of the worst ratio between intermediate and optimal solutions of similar sizes. Incremental problems are
relevant in multiple real-world applications such as when budget limitations only allow a small expansion
of the current local solution at each step. After the initial work by Mettu et al. [20], the incremental
versions of combinatorial problems have been investigated by multiple researchers [20–24]. In the case
of IMIST, the aim is to obtain a tree sequence T1, T2, . . . , Tn−1 in a given graph G, where tree Tk has k
edges and is obtained from tree Tk−1 by adding a single edge. This is equivalent to determining an edge-
sequence e1, e2, . . . , en−1 such that Tk is formed from the first k edges in the sequence. Moreover, IMIST
considers the quality of all trees Tk, and not only the last one Tn−1. An optimal maximum internal k-edge
spanning tree (MI-k-EST) of a graph G is a tree in G with k edges which has the largest possible number
of internal vertices. In particular, if we define the number of internal vertices in an optimal MI-k-EST

by opt(G, k), the competitive ratio of the sequence T1, . . . , Tn−1 is maxk∈[n−1]
opt(G,k)
|In(Tk)| , where |In(Tk)| is

the number of internal vertices in the tree Tk. Here, we want this ratio to be as small as possible.
To our knowledge, there has been no previous published work on IMIST. Our primary contributions

are a simple 2-competitive algorithm and a refined 12
7 -competitive algorithm for IMIST. The key to the

second algorithm is utilizing a local search strategy to adjust the structure of the tree obtained using an
approximation algorithm for MIST.

2 Preliminaries

Here, we only considered unweighted, undirected graphs without loops or parallel edges. We denote a
graph by G = (V,E), where E and V denote the edge set and vertex set, respectively. E(G) and V (G)
denote the edge set and vertex set of G, respectively. Furthermore, we use NG(u) to denote the set of all
vertices adjacent to a given vertex u in G, i.e., NG(u) = {v ∈ V (G) : {u, v} ∈ E(G)}. If two vertices u
and v are connected via an edge, we call them adjacent. The degree of a vertex u in G is the number of
vertices in NG(u). For a vertex subset U ⊆ V , let G[U ] denote the subgraph induced by U , i.e., the graph
with edge set {{u, v} ∈ E : u, v ∈ U}, and vertex set U . Next, G \U denotes the modified graph created
by removing all the vertices in U from G, i.e., G \ U = G[V \ U ]. Similarly, for a set of edges F ⊆ E,
G[F ] denotes the subgraph induced by F , i.e., the graph with edge set F whose vertex set contains all
the endpoints of edges in F . An independent set (IS) in a graph G is a set of vertices whose induced
subgraph includes no edges. Finally, a star is a complete bipartite graph whose vertices can be divided
into a set containing only one vertex and an IS.

Conventionally, we denote the set {i, i + 1, . . . , j}, where i and j are two positive integers such that
i 6 j, by [i, j]. If i = j, [i, j] = {i}. For simplicity, we write [1, i] as [i].

We utilized the vertex sequence (v1, v2, . . . , vt) to denote a path P in G, where vi ∈ V (G) for all i ∈ [t]
and vi 6= vi+1, and {vi, vi+1} ∈ E(G) for all i ∈ [t− 1]. The path is simple if all the vertices in the path
are different from each other, and all paths we consider in this study are simple. We call the first and
last vertices of P (i.e., v1 and vt) the starting and ending vertices, respectively, and we call these the
endpoints of P . The length of P , denoted by len(P ), is equal to the number of vertices in P minus one,
i.e., t− 1.

We denote the set of edges in the path by E(P ), i.e., E(P ) = {{vj, vj+1} : j ∈ [t− 1]}. A path (v1, . . . ,
vt) is maximal if (NG(v1)∪NG(vt)) ⊆ {v1, . . . , vt}. For an edge {u, v} and a path P = (v1, v2, . . . , vt) such
that u ∈ {v1, vt} and v 6∈ {v1, . . . , vt}, we define (v, P ) to be the path (v, v1, . . . , vt) if v1 = u; otherwise,
(v, vt, vt−1, . . . , v1). We determined that an undirected graph G is connected if any two vertices in V (G)
can be linked via a path. A cycle is a vertex sequence (v1, v2, . . . , vt) such that (v1, v2, . . . , vt) is a path
and v1 and vt are connected via an edge. A tree is a connected graph without cycles. An internal vertex
in a tree is a tree vertex whose degree is at least two. Tree vertices that are not internal are called leaves
of the tree. For a tree T , In(T ) and Le(T ) denote the sets of internal vertices and leaves, respectively.

A k-edge spanning tree of G is a subgraph of G that comprises exactly k edges. For a graph G with n
edges, we call an (n− 1)-edge spanning tree simply a spanning tree. For all k ∈ [n− 1], opt(G, k) denotes
the largest number of internal vertices present in any of the k-edge spanning trees of G, i.e.,

opt(G, k) = max {|In(T )| : T is a k-edge spanning tree in G} .
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Next, we formally define the problem considered in this paper.

Problem 1 (IMIST).

Instance. A connected graph G = (V,E).

Goal. A sequence e1, e2, . . . , en−1 of n− 1 edges in G, where n = |V | such that:

(1) For all k ∈ [n − 1], the first k edges in the sequence induce a tree denoted by Tk, i.e., Tk =
G[{e1, . . . , ek}];

(2) Among all the sequences of n−1 edges that satisfy the first condition, it minimizes the competitive
ratio, defined as follows:

max
k∈[n−1}

{

opt(G, k)

|In(Tk)|

}

.

For an IMIST instance, we call an edge sequence that satisfies the first of the abovementioned conditions
a feasible solution for this instance. Hence, using IMIST, we aim to determine a feasible solution with
the lowest possible competitive ratio. For a given real number r, an r-competitive algorithm for IMIST
is an algorithm that outputs a feasible solution with a competitive ratio of at most r for all connected
graphs G.

3 Simple 2-competitive algorithm

In this section, we present a simple 2-competitive algorithm, which iteratively computes k-edge spanning
trees for all k ∈ [n−1], starting from a tree comprising an arbitrary edge, for IMIST. It then expands this
edge to create a spanning tree by individually adding edges obtained from maximal paths. In particular,
let T1 be a tree comprising an arbitrary edge and assume that we have determined a tree Tk, where k < n.
Then, if there is a maximal path of length ℓ > 1 in G \ V (Tk) whose starting vertex v has a neighbor u
in Tk, we add the edge {u, v} to Tk, individually followed by the other edges on the maximal path, to
construct the subsequent trees Tk+1, Tk+2, . . . , Tk+ℓ. If no such maximal path exists, the vertices not in
Tk form an IS. In that case, we add certain edges between vertices in Tk and vertices that are not in Tk

are used to construct a spanning tree in G. Note that the Algorithm 1 presents a formal description of
the algorithm.

Algorithm 1 Simple 2-competitive algorithm for IMIST

Require: A connected graph G = (V,E).

Ensure: A feasible solution S for G with competitive ratio 2.

1: if G only contains one vertex then

2: Return an empty sequence;

3: end if

4: Let T be a tree comprising an arbitrary edge in E;

5: Use S to maintain the feasible solution and set the only edge in T to be the first edge in S;

6: while |V (T )| < n do

7: if there exists a maximal path P of length at least one in G \ V (T ) whose starting vertex v, has a neighbor u in T then

8: Let P ′ = (u, P );

9: Add all edges in P ′ to T ;

10: Append edges in P ′ one-by-one into S, from the first to the last along the path;

11: else {in this case V \ V (T ) is an IS}

12: for all v ∈ V \ V (T ) do

13: Add an edge {u, v} connecting v and some vertex u ∈ V (T ) to T ;

14: Append {u, v} into S;

15: end for

16: end if

17: end while

18: Return S.

Our primary result concerning this algorithm can be summarized as follows.

Theorem 1. Algorithm 1 is a 2-competitive algorithm for IMIST and can be executed in O(n2) time.

Before proving the abovementioned theorem, let us examine certain properties of the spanning tree
constructed in Algorithm 1. For ease of exposition, let Tk be the tree with k edges constructed using
Algorithm 1 for all k ∈ [n − 1], and let a be the vertex in T1 that is not in the first maximal path P
considered at line 7. Then, we have Lemma 1.

Lemma 1. For all k ∈ [2, n− 1], Le(Tk) \ {a} is an IS in G.



Zhu X B, et al. Sci China Inf Sci May 2021 Vol. 64 152103:4

Proof. Assume there exist two adjacent vertices u and v such that u, v ∈ Le(Tk) \ {a}. Without loss
of generality, assume that u is in Ti but not Ti−1 for certain i (1 < i < k), and that v is in Tj but
not Tj−1 for certain j (i < j 6 k). This indicates that immediately after creating Ti, u has at least one
adjacent vertex, i.e., v, which is not in Ti. Because of lines 7–9, Ti+1 is obtained from Ti by adding an
edge between u and some vertex u′ not in Ti. However, because u is adjacent to certain vertex in Ti−1

(which contains at least one vertex, say a), u cannot be a leaf in Ti+1, let alone in Tk, a contradiction.

Based on Lemma 1, we can derive a relationship between the number of internal vertices in Tn−1 and
that in an optimal maximum internal spanning tree. In the following, for all k ∈ [n−1], let T k

opt be a k-edge
spanning tree in G with the largest possible number of internal vertices. Recall that opt(G, k) denotes
the number of internal vertices in an optimal k-edge spanning tree; therefore, opt(G, k) = |In(T k

opt)|.

Moreover, let A be the set of vertices in Le(Tn−1) \ {a} that are internal vertices in T n−1
opt . This leads us

to Lemma 2.

Lemma 2. The inequality |In(Tn−1)| > |A|+ 1 holds.

Proof. By Lemma 1, A is an IS in G. Let w be a vertex in A. Because w is an internal vertex in T n−1
opt ,

it has at least two neighbors in T n−1
opt . Let u and v be any two such neighbors. Because Le(Tn−1) \ {a} is

an IS in G and A ⊆ Le(Tn−1) \ {a}, we have that u and v belong to In(Tn−1) ∪ {a}. Now, we developed
a bipartite graph based on the vertex partition (In(Tn−1), A), and added edges between u ∈ In(Tn−1)
and v ∈ A when u is adjacent to v in T n−1

opt . Because T k
opt is a tree, the bipartite graph is acyclic. Based

on the above discussion, all vertices in A have degree at least two in this bipartite graph, from which it
follows that |In(Tn−1)| > |A|+ 1.

Based on Lemma 2, we can now determine a more interesting result: Algorithm 1 is a 2-approximate
algorithm for the MIST problem.

Lemma 3. Tn−1 is a 2-approximate maximum internal spanning tree in G.

Proof. We have
∣

∣In(T n−1
opt )

∣

∣

|In(Tn−1)|
6

|In(Tn−1)|+ |A|+ 1

|In(Tn−1)|
= 1 +

|A|+ 1

|In(Tn−1)|
6 2.

The integer 1 on the right-hand side of the first inequality is caused by the vertex a. More precisely,
In(T n−1

opt ) includes A, some of the vertices in In(Tn−1), and possibly the vertex a. The last inequality is
because of Lemma 2.

Now, we are ready to obtain the following proof of Theorem 1.

Proof of Theorem 1. Let P ′
1, P

′
2, . . . , P

′
t be the sequence of paths considered at line 8 in Algorithm 1,

and let j be the combined length of the paths. Hence, after the last execution of lines 8 and 9, we obtain
the tree Tj+1. For all k ∈ [2, n − 1], let α(k) ∈ [t] be the integer such that the edge present in Tk but
absent from Tk−1 is from path Pα(k). Because all the paths in the above sequence have length at least
two, we have

α(k) 6 k/2. (1)

Now, we bound the competitive ratios for the Tk. Indeed, the T1 constructed by the algorithm is
optimal. For all k ∈ [2, j + 1], we have

∣

∣In(T k
opt)

∣

∣

|In(Tk)|
6

k − 1

|In(Tk)|
=

k − 1

k − α(k)
6 2.

Here, the last inequality is caused by inequality (1).

Next, we analyzed the competitive ratios of the Tk for (j+1 < k 6 n−1). Note that these are obtained
from the else branch. In particular, Tk is obtained from Tk−1 by adding a leaf vertex adjacent to an
internal vertex in Tk−1. Thus, we have

∣

∣In(T k
opt)

∣

∣

|In(Tk)|
=

∣

∣In(T k
opt)

∣

∣

|In(Tn−1)|
6

∣

∣In(T n−1
opt )

∣

∣

|In(Tn−1)|
6 2.

Here, the last inequality is because of Lemma 3.

If we use an appropriate data structure to store the graphs involved and maintain a list of the degree-1
and isolated vertices in G \ V (T ) with neighbors in V (T ), this algorithm can be executed in O(n2) time.
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4 Refined competitive algorithm

In this section, we design an improved algorithm with a competitive ratio of at most 12
7 . This involves two

primary steps. First, we determine an approximate maximum internal spanning tree in G with certain
useful properties. This tree is the final spanning tree in the desired feasible solution. Currently, the best
approximation algorithm for MIST in terms of the approximation ratio is reported by Chen et al [2], with
an approximation factor of 17

13 and an execution time of O(n2m2). However, a 5
3 -approximate algorithm

with a substantially lower execution time (O(n3)) has been reported by Knauer et al. [17]. Because both
algorithms offer the same competitive ratio (12

7 ) but the latter is more efficient, our algorithm uses the
5
3 -approximate algorithm. After using this algorithm to calculate an approximate tree, the second step
is aimed to order the tree’s edges such that a feasible solution can be constructed. In the following, we
present the exact algorithm and analyze its competitive ratio.

Let T be an r-approximate maximum internal spanning tree. First, we present two reduction rules
that transform T into an r′-approximate maximum internal spanning tree whose leaves induce a subgraph
with at most one edge and where r′ is not larger than r.
Rule 1. If there is an edge {u, v} ∈ E(G) between two leaves v, u ∈ Le(T ) such that, on the unique
path between u and v in T , there is a vertex w of degree at least 3 in T . We first removed an arbitrary
edge that is incident to w and on the unique path, then added the edge between u and v to T .

Indeed, each application of Rule 1 increases the number of internal vertices by at least one, indicating
that it can be used at most n−3 times. An important consequence of exhaustively applying this reduction
rule is that the leaves of the resulting tree are almost an IS. This leads us to Lemma 4.

Lemma 4. Let T ′ be the tree obtained from T by exhaustively applying Rule 1. Then, T ′ is an r′-
approximate maximum internal spanning tree where r′ 6 r and the subgraph induced by the leaves of T ′

contains at most one edge.

Proof. The lemma’s first claim is clearly straightforward because each application of Rule 1 increases
the number of internal vertices by at least one. This just leaves the second claim, which we show via
proof by contradiction. Assume that there are two edges {u, v} ∈ E(G) and {x, y} ∈ E(G) such that
u, v, x, y ∈ Le(T ′) are leaves in T ′ and {u, v} 6= {x, y}. If we add these two edges to T ′, it creates two
cycles, C1 and C2. Observe that C1 ∪C2 contains a vertex of degree at least three in T ′. In fact, if all the
vertices in C1 and C2 are of degree two, the two cycles must be disjoint, contradicting the fact that T ′ is
a tree. However, if C1 or C2 includes a vertex with degree at least three, we can apply Rule 1, which is
a contradiction.

Now, we will introduce a second reduction rule. A leaf-path of a tree is a path where one of the
endpoints is a leaf and all the vertices on the path have degree 2 in the tree. Here, we assume that Rule 1
cannot applied to T .

Rule 2. If P1 = (u, v) and P2 = (x, y) are two maximal leaf-paths in T , where u and x are leaves in T
and {u, y} ∈ E(G), we first remove the edge incident to y that is on the unique path between u and y
in T , and then add the edge {u, y} to T .

Each application of Rule 2 increases the number of internal vertices by one; hence it can be used at
most n − 3 times. Algorithm 2 provides a formal description of our second IMIST algorithm, and our
main result is presented in Theorem 2.

Algorithm 2 Refined algorithm for the IMIST problem

Require: A connected graph G = (V,E).

Ensure: A feasible solution S of G.

1: Determine a 5

3
-approximate maximum internal spanning tree T of G;

2: Set S to be an empty sequence;

3: Exhaustively apply Rules 1 and 2 to T and only apply Rule 2 when Rule 1 is not applicable;

4: Determine a longest path P in T ;

5: Individually add the edges in P to S such that the edges in S form a tree after each addition;

6: Let T ′ := P ;

7: while
∣

∣V (T ′)
∣

∣ < n do

8: Determined a longest path P in T \ V (T ′);

9: Let u be the endpoint of P that has a neighbor v in T ′;

10: Let P ′ = (v, P );

11: Add the edges in P ′ to T ′;

12: Individually append the edges in P ′ to S, from first to last;

13: end while

14: Return S.
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Theorem 2. Algorithm 2 is a 12
7 -competitive algorithm for the IMIST problem and can be executed

in O(n3) time.

Proof. In Algorithm 2, let P1 be the longest path considered at line 4; moreover, P2, P3, . . . , Pt be the
sequence of paths defined at line 10 in the order of definition. Here, we assume that P1 has length at least
three because otherwise the given graph is a star, indicating that an optimal solution can be determined
in polynomial time. Let µ be the integer such that all paths P1, . . . , Pµ have lengths of at least three
and all the other paths have lengths of at most two. Moreover, for all k ∈ [n − 1], Tk denotes the tree
formed by the first k edges in the returned solution, and we define the integer α(k) such that Tk contains
certain (or all) edges on Pα(k) but none of the edges on Pα(k)+1. In particular, Tk contains all the edges
on P1, P2, . . . , Pα(k)−1; some (or all) of the edges on Pα(k); and none of the edges on any other path. For
ease of exposition, for all i ∈ [t], let len(P6i) denote the combined length of the paths P1, P2, . . . , Pi, i.e.,

len(P6i) =

i
∑

j=1

len(Pj).

In the following, we demonstrate that, for all k ∈ [n− 1], the number of internal vertices in Tk is at least
7/12 times that in an optimal k-edge spanning tree.

First, for k ∈ [len(P1)], the competitive ratio of Tk is one because all Tk are paths.
Second, we consider the case where k ∈ [len(P1)+ 1, len(P6µ)]. Because all the paths P1, . . . , Pα(k) are

of length at least three, we can immediately obtain α(k) 6 k/3, from which it follows that

∣

∣In(T k
opt)

∣

∣

|In(Tk)|
6

k − 1

k − α(k)
6

k − 1

k − k/3
< 1.5.

Third, we consider the case where k > len(P6µ). Let τ > µ be the integer such that P1, P2, . . . , Pτ are
all of length at least two, whereas Pτ+1, . . . , Pt are all of length one. Observe that, after the algorithm
defines path Pτ , it only adds leaf vertices to the tree. Thus, when k > len(P6τ ), we have In(Tk) =
In(Tn−1). Moreover, for all k ∈ [n − 1], we have

∣

∣In(T k
opt)

∣

∣ 6
∣

∣In(T n−1
opt )

∣

∣; consequently, in this case, the
competitive ratio of Tk is bounded by

∣

∣In(T n−1
opt )

∣

∣

|In(Tn−1)|
6

5

3
.

Tn−1 is obtained from a 5
3 -approximate maximum internal spanning tree by exhaustively applying Rules 1

and 2. Using Lemma 4, Tn−1 is a 5
3 -approximate maximum internal spanning tree, so the above inequality

holds.
Thus, only the case where len(P6µ) < k 6 len(Pτ ) needs to be considered. In general, Algorithm 2

can be divided into three phases. The first phase adds paths of length at least three (corresponding to
P1, . . . , Pµ), while the second phase adds paths of length two (corresponding to Pµ+1, . . . , Pτ ). Then, the
final phase adds paths of length one (corresponding to Pτ+1, . . . , Pt) where each path has a leaf of Tn−1

as an endpoint. Let Z and X denote the sets of internal vertices and leaves, respectively, for the first
phase, i.e., the internal vertices and leaves in the tree Tlen(P6µ). Similarly, let B = {Pµ+1, . . . , Pτ} be the
set of paths in the second phase. Below, the leaf-vertex of a path P in B is the vertex on P that is a leaf
in Tn−1. Let D represent the leaves added during the final phase, and let ζ = |Z|, χ = |X |, β = |B|, and
δ = |D|.

Let T k
opt be an optimal maximum internal spanning tree in G and let Z ′ and X ′ be the sets of its

internal vertices that are in Z and X , respectively. Moreover, let B′ be the set of paths in B whose
middle (internal) and leaf vertices are internal vertices of T k

opt. Then, denote the remainder of the

internal vertices in T k
opt by D′. Note that D′ ⊆ B ∪D. Let ζ′ = |Z ′|, χ′ = |X ′|, β′ = |B′|, and δ′ = |D′|.

Moreover, let β∗ be the number of middle vertices in the paths Pµ+1, . . . , Pα(k) that are internal vertices
in Tk. Thus, Tk has ζ + β∗ internal vertices. Clearly, we have that ζ′ 6 ζ, χ′ 6 χ, β′ 6 β, and β∗ 6 β.
Similar to the proof of Lemma 2, we have the following claim.
Claim 1. The inequality ζ > χ′ + β′ + δ′ + 1 holds.
Proof of Claim 1. To confirm this claim, we construct an auxiliary bipartite graph G′, based on the
vertex partition (Z,X ′ ∪D′ ∪R), where Z, X ′, and D′ are as defined above and R comprises one vertex
cP for each path P ∈ B′. Then, we create edges between vertices in Z and vertices in X ′∪D′ if and only
if they are adjacent in T k

opt. Moreover, we create edges between vertices in v ∈ Z and vertices cP ∈ R if
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the middle or leaf vertex of P is adjacent to v in T k
opt. First, observe that the bipartite graph must be

acyclic. Now, we demonstrate that all vertices in X ′ ∪ D′ ∪ R have at least two neighbors in Z in the
bipartite graph G′. As all vertices v ∈ X ′ ∪D′ are internal vertices in T k

opt, v has at least two neighbors,

u and w, in T k
opt. Both u and w must be in Z, since we could otherwise apply Rule 1 or Rule 2, thus

contradicting the fact that the tree has been exhaustively reduced by them. For all vertices cP in R, let v
and v′ be the middle and leaf vertices, respectively, of a path P in B′. As these are both internal vertices
in T k

opt, they have a total of at least three neighbors in T k
opt. Furthermore, these neighbors must be in Z,

since we could apply otherwise Rule 1 or Rule 2. In summary, all vertices in X ′ ∪D′ ∪ R have at least
two neighbors in G′ and G′ is acyclic. This directly indicates that ζ > χ′ + β′ + δ′ + 1, completing the
proof of the claim.

Furthermore, we have the following claim.
Claim 2. The inequality ζ′ + χ′ + 2β′ + δ′ < 3

2ζ + 2β∗ holds.
Proof of Claim 2. First, recall that Tk and T k

opt have k+1 vertices and that ζ′ +χ′ +2β′ + δ′ is a lower

bound on the number of internal vertices in T k
opt. Thus, we have

k + 1 > ζ′ + χ′ + 2β′ + δ + 2. (2)

The last integer 2 is because all trees with at least two vertices have at least two leaves. However, Tk

can have at most ζ + χ+ 2β∗ vertices, i.e.,

k + 1 6 ζ + χ+ 2β∗. (3)

Moreover, because all paths P1, . . . , Pµ have length at least three, we have

χ 6
1

2
ζ + 1. (4)

Combining (2)–(4) yields

ζ′ + χ′ + 2β′ + δ′ 6
3

2
ζ + 2β∗. (5)

This completes the proof of Claim 2.
Now, we analyze the competitive ratio of Tk, which we denote by r. First, we have

r =

∣

∣In(T k
opt)

∣

∣

|In(Tk)|
6

ζ′ + χ′ + 2β′ + δ′

ζ + β∗
. (6)

By Claim 1 and inequality (6), the competitive ratio is bounded by

r 6
2ζ + β′

ζ + β∗
6

3ζ

ζ + β∗
. (7)

Furthermore, by Claim 2 and inequality (6), we have

r 6
1.5ζ + 2β∗

ζ + β∗
= 2−

ζ

2(ζ + β∗)
. (8)

We now proceed by handling the following two cases.

• Case: 0 6 β∗ 6
3
4ζ. Here, the bound in (8) gives us

r 6 2−
ζ

2(ζ + 3
4ζ)

=
12

7
.

• Case: β∗ >
3
4ζ. Here, the bound in (7) gives us

r 6
3ζ

ζ + 3
4ζ

=
12

7
.

Moreover, the algorithm can be implemented in O(n3) time. First, we need O(n3) time to determine a
5
3 -approximate maximum internal spanning tree in G [17]. Second, Rules 1 and 2 can be applied a total
of at most n− 3 times, and each application requires at most O(n2) time. Finally, the while loop can be
implemented in O(n3) time by maintaining a list of all the unique paths between pairs of vertices in the
tree T , ordered from longest to shortest.
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5 Conclusion

In this paper, we have presented two local-search-based approximation algorithms for the incremental
version of the MIST problem. One is a simple 2-competitive algorithm, while the other is a 12/7-
competitive algorithm based on an approximation algorithm for the MIST problem. To our knowledge,
few previous studies have used local search to solve incremental problems. Because local search is a
useful algorithm design approach, we believe that incremental variants of classical problems, such as
incremental maximum leaf nodes spanning tree (MLNST), incremental k-hop spanning tree (KHST),
and other relevant problems, could be explored in this manner.

The MLNST problem requires us to determine a spanning tree with the largest possible number of
leaf nodes in G. Although this is clearly just the dual problem of MIST, it may be very hard to design
algorithms to solve the incremental version of this problem with low ratios. To solve incremental MLNST,
we would be required to determine as many leaf nodes as possible at each step. However, devising an
algorithm to achieve this by connecting components with many leaf nodes is challenging, because we do
not know the optimal order. However, it may be easier to prove a lower bound on incremental MLNST
for the same reason. The aim of the KHST problem is to determine a minimum weighted rooted spanning
tree with diameter at most k. A previously presented method for dealing with the incremental k-MST
problem [21] cannot be applied to incremental KHST because it cannot guarantee that the tree’s diameter
will be no larger than k. However, it may be straightforward to solve incremental KHST when k = 2.
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