
SCIENCE CHINA
Information Sciences

May 2021, Vol. 64 152102:1–152102:10

https://doi.org/10.1007/s11432-019-2740-1

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. RESEARCH PAPER .

Syntax-guided text generation via graph neural
network

Qipeng GUO1, Xipeng QIU1*, Xiangyang XUE1 & Zheng ZHANG2

1Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science,

Fudan University, Shanghai 200433, China;
2NYU Shanghai and AWS Shanghai AI Lab, Shanghai 200335, China

Received 15 May 2019/Accepted 26 December 2019/Published online 31 March 2021

Abstract Text generation is a fundamental and important task in natural language processing. Most of

the existing models generate text in a sequential manner and have difficulty modeling complex dependency

structures. In this paper, we treat the text generation task as a graph generation problem exploiting both

syntactic and word-ordering relationships. Leveraging the framework of the graph neural network, we propose

the word graph model. During the process, the model builds a sentence incrementally and maintains syntactic

integrity via a syntax-driven, top-down, breadth-first generation process. Experimental results on both

synthetic and real text generation tasks show the efficacy of our approach.

Keywords text generation, deep learning, graph neural network, dependency parsing

Citation Guo Q P, Qiu X P, Xue X Y, et al. Syntax-guided text generation via graph neural network. Sci China

Inf Sci, 2021, 64(5): 152102, https://doi.org/10.1007/s11432-019-2740-1

1 Introduction

Generating coherent text sequences is crucial to a wide range of important natural language processing
applications, such as language modeling [1], machine translation [2], and dialogue generation [3]. Some
of the most popular text generation approaches train an autoregressive recurrent neural network (RNN)
to maximize the conditional probabilities of next tokens based on the ground-truth histories, which are
sequential in nature. Despite these encouraging results, the generated sentences are often unsatisfac-
tory [4–6].

RNN experiences difficulties in remembering and distinguishing rich and often long dependencies em-
bedded in a flattened sequence. This is true even for advanced variants such as LSTM and GRU [7, 8].
For this reason, the generated texts often lack consistency in long-term semantics and are not coherent
syntactically.

The structural dependence relations among words in a sentence are not only sequential but also syntac-
tical and hierarchical. Figure 1 groups word dependence relations into two sets: the first is the sequential
dependence seq-dep relationship that governs word order in a sentence; the second is the syntactical
dependence syn-dep relationship, which implies that, for each word in a sentence, there exists another
word to govern it. Such a relationship is produced by word-based grammar; therefore, sequential models
typically explore only the first relationship.

Taking both types of relationships into account, a sentence can be formulated as a directed cyclic
graph (DCG), in which nodes are the words and edges are the unions of the two relationships. Evidently,
text generation can be formulated as a graph generation problem; however, this perspective raises two
challenges: (1) inference modeling over the graph and (2) making generation process respect the graph
topology.

We address the first challenge by borrowing the idea from recent studies on graph-structured neu-
ral networks [9–12] and propose the word graph model. In this framework, word representations are

*Corresponding author (email: xpqiu@fudan.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2740-1&domain=pdf&date_stamp=2021-3-31
https://doi.org/10.1007/s11432-019-2740-1
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2740-1
https://doi.org/10.1007/s11432-019-2740-1

Guo Q P, et al. Sci China Inf Sci May 2021 Vol. 64 152102:2

PRP$ NN RB VBZ VBG NN

My dog also likes eating sausage

posspossposs

nsubjnsubj

advmodadvmodadvmodadvmod xcompxcompxcompxcompxcomp dobjdobj

Figure 1 (Color online) Word graph of a sentence. In this paper, we consider both syntactical (black arrows) and sequential

(blue arrows) dependencies in the text generation process. As a result, the sentence is modeled as a graph instead of a sequence or

a tree.

propagated along the edges throughout the graph. As messages are aggregated, nodes obtain updated
representations, and such propagation-and-aggregation rounds can be performed whenever the graph
topology is modified during the generation process.

We deal with the second challenge by constructing the word graph incrementally along the dependency
edges in a straightforward top-down breadth-first fashion. Because a dependency tree is inherently
hierarchical, this method leads to partial sentences that are semantically meaningful, and internally
emulates a curriculum learning [13] process.

The contributions of this paper are briefly summarized as follows.
• We regard text generation as a graph generation problem. This new perspective alleviates the long

distance dependency problem that plagues the sequential models.
• We adopt the message-passing neural network framework, propose the word graph model, and learn

the representation of a complex graph produced by a sentence. The proposed algorithm has a time
complexity of O(n2).

• The top-down breadth-first generation order is an importance-first strategy that generates words car-
rying more information. An additional advantage is that the intermediate generated result is a simplified
but still relatively fluent sentence.

• Our preliminary results on two generation tasks demonstrate the promise of this approach.

2 Proposed method

Our approach to sentence generation creates a word graph. In this section, we first explain the concepts
and definitions of constructing such a graph and then describe the text generation process.

2.1 Word graph

Given a text sequence w1:L and its dependency tree T , its word graph is defined as G = (V,E), where
V = {w1, w2, . . . , wL} is the set of words and E describes the relations between the words. For each word
wi, there is an embedding xi. In addition to encoding the usual semantic representation, xi may contain
other useful linguistic features such as its word form, part-of-speech tag, and others.

There are two types of edges: the ones of the first type run along the sequence itself capturing the word
order (blue arrows in Figure 1) and ones of the second type signify hierarchical dependencies Eseq (black
arrows in Figure 1). The subset of the former-type edges Eseq is reminiscent of an n-gram relationship in
sequence learning and can be used to recover the sentence; although one direction suffices, in this study
we maintain both directions.

The latter-type edges capture the syntactic structure of a sentence and play a key role in the graph
generation process, as we will describe shortly.

For any word pair (wi, wj) in w1:L, we denote its edge by the following:

ewiwj
=

1, if j − i = 1,

2, if i− j = 1,

3, if T (i, j) = 1,

0, otherwise,

(1)

where T (wi, wj) = 1 denotes that word wi governs word wj in the dependency tree T . ewiwj
= 0 means

that no edge exists between wi and wj . A question arises when a neighboring edge is also a dependency
edge; rather than dedicating a new edge type, we simply use both edge representations.

Guo Q P, et al. Sci China Inf Sci May 2021 Vol. 64 152102:3

2.2 Message-passing neural network

The message-passing neural network (MPNN) [12] is a type of graph neural network. It is defined through
a message-passing interface, and it has message as well as vertex update functions. The whole MPNN
process comprises iterative message passing and vertex updating.

m
t+1
u =

∑

v∈N(u)

Mt(h
t
u,h

t
v, euv), (2)

h
t+1
u = Ut(h

t
u,m

t+1
u), (3)

where h is the state of the vertex, e is the edge, N(u) represents the neighbors of the node u, Mt is the
message function at step t, and Ut is the vertex update function at step t. Because the MPNN is a very
general framework, we can use it to describe the min-sum or max-product belief propagation method
with specific message and vertex update functions. However, the MPNN often works in a more “dirty”
scenario where the goal of the MPNN is not only inference a given graph but also the estimation of the
graph. For example, we may know the connectivity of the nodes but lack the details; therefore, it would
need to be learned from the data. In addition, training a text generation model from scratch is a problem
involving both estimation and inference, and we want the model can estimate the parameter of a graph
from the data and inference it to sentences in an end-to-end framework.

2.3 Word graph encoding via message-passing

A word graph is represented by the message-passing framework, similar to the existing graph convolutional
network [10]. Each node v ∈ V is represented by a state vector hv ∈ R

d, initialized with xv, and is updated
by aggregating information from its neighbours. To do that, for each edge we compute a message:

mu→v =feuv
(hu,xu; θ

(euv)), ∀(u, v) ∈ E, (4)

where feuv
(·) is a fully-connected neural network. In our implementation, the parameters are shared

between all edges of the same type. Note that, in propagating a message to other nodes, the word feature
xu is always inserted to reinforce coherence.

The state vector hv is then updated in multiple rounds of message propagation. In each round, v
aggregates all the incoming messages from its neighbors N(v) ≡ {u : (u, v) ∈ E}:

hv = fh

(

∑

u∈N(v)

mu→v,hv; θ
h

)

, ∀v ∈ V, (5)

where fh(·) can be a fully-connected or recurrent neural network.

2.4 Word graph generation

Our algorithm incrementally inserts words (nodes) into an initially empty graph until completion, at which
point all words are inserted and all edges are formed. This is achieved through a sequence of actions
where each action generates a new word, modifies the graph topology, and updates its representation.

An identical word graph can be built with different traversal orders. We choose the most stable one by
following the dependency edges Edep in top-down and breadth-first order. We also impose a left-to-right
order to generating the children. This procedure ensures a deterministic order when adding edges in the
Edep set. A partially completed sentence finds its sequential order by following an in-order walk of the
tree, forming a dynamic Eseq set that precisely corresponds to those in the target graph at completion.
This process is illustrated in Table 1.

Each step of the text generation process involves three actions: generating a new node, sampling its
word, updating the graph. The process is described in Algorithm 1.

Generating a new node. Assuming the node u is the current operating node, the first action
determines whether to generate its child node according to its representation hu:

p(a|u,G) = softmax(fa(hu)), (6)

where a ∈ {LC,RC, STOP} is the action. LC, RC, STOP denote the actions of adding a child on the
left, on the right, or not adding a child node for the current node, respectively. The choice between left

Guo Q P, et al. Sci China Inf Sci May 2021 Vol. 64 152102:4

Table 1 (Color online) An illustration of our graph generationa)

Action
Step Flatten sequence Graph

Node Word
Surrounding

1 likes likes root likes -

2 dog likes

likes

dog
LC dog likes

3 dog also likes

likes

alsodog

LC also likes, dog

4 dog also likes eating

likes

eatingalsodog
RC eating likes

5 My dog also likes eating

likes

eatingalsodog

My

LC My dog

6 My dog also like seating sausage

likes

eating

sausage

alsodog

My

RC sausage eating

a)“Graph” and “Sequence” illustrate the generated word graph and its flatten word sequence. The node in the black box is the

current operating node, and the node in the red box is the newly generated node. “Action” can be “LC” or “RC” for generating a

left or right child of the operating node, respectively, and “root” or “STOP” is for starting or terminating the process.

and right is dependent on the relative position of the child to the operating node in the sentence. As
mentioned earlier, an in-order walk recovers the order and the dynamic edges Eseq. Some of these edges
may need to be broken as the graph grows.

Sampling a word. Once a node v is generated, we set its initial representation vector hv = 0 because
its word has not been generated yet. Then we update its representation via message passing, calculate
the probability of the word choice, and sample an initial candidate wv:

p(w|hv) = softmax(Whv + b), wv ∼ p(w|hv). (7)

Graph update. After the word wv is sampled, we re-initialize the representation hv = xv and start
updating the rest of the graph. Starting from v, this is done via message-passing in a broadcast manner
using (4) and (5) until all nodes are reached.

Final sentence generation. After the words are added, we perform one more round of message-
passing and pick words with argmax of word choice probability at each node.

3 Training

The process of graph generation involves three kinds of predictions: action and word per step, and all
words at the final step. As such, our loss function is divided into three components:

L =

T
∑

t=1

La(at, ât) +

T
∑

t=1

I(at 6= STOP)Lw(wt, ŵt) +
∑

u∈V

Ltree(wu, ŵu), (8)

Guo Q P, et al. Sci China Inf Sci May 2021 Vol. 64 152102:5

Algorithm 1 Graph-based text generation

1: Initialize operating queue: Q← ∅;
2: Q.append(root); //use special parameters for root

3: while Q is not empty do

4: u← Q.pop(); //pop the node from the queue

5: for i=1 to MAX CHILDREN do

6: Sampling an action ai ∼ p(a|u,G); //Eq. (6)

7: if ai = stop then break; //stop the generation of operating node

8: v ← empty node; //if not break, there is a new node

9: if ai = LC then u.left children.append(v); //left child

10: if ai = RC then u.right children.append(v); //right child

11: Modify the seq-dep edges related to v;

12: MP: N(v)→ v; //update the new node v; Eqs. (4) and (5)

13: Sampling a word wv ∼ p(w|hv); //Eq. (7)

14: MP: v → N(v)→ · · · → G; //global update from v; Eqs. (4) and (5)

15: Q.append(v);

16: end for

17: end while

18: for v ∈ V do //final round, re-sample words for the entire sentence

19: MP: N(v)→ v; //collect messages from its neighbors

20: Pick the word with highest probability wv = argmaxwp(w|hv);

21: end for

where the indicator function I(x) = 1 if x is true and zero otherwise; La(at, ât) and Lw(wt, ŵt) are the
losses per step, Ltree is the loss at the final round. at and wt are the gold action and ground-truth words,
respectively. All of the aforementioned loss functions are cross-entropy losses. In principle, each node
receives two teaching signals: one when it is created and the other in the final round.

Maximum likelihood training is known to suffer from the exposure bias problem; therefore, we adopt
schedule sampling [14] to bridge the gap between training (gold input) and inference (predicted input at
test time). Specifically, when computing a message using (4), the input xu picks the ground-truth with
probability ǫ or the model prediction otherwise.

Note that the top-down breadth-first generation order implicitly generates a simple sentence first and
then makes it progressively more complex. In other words, the process implicitly embeds a sort of
curriculum learning [13], and we observe that the model is easier to train than general graphs.

4 Experiments

To evaluate the effectiveness of our approach, we conducted two experiments on unconditional text
generation tasks: one on a synthetic dataset and another on real-world texts. We compared the proposed
method against similarly configured sequential generators based on the recurrent neural network: vanilla
LSTM, SeqGAN, and LeakGAN [15,16]. SeqGAN and LeakGAN sidestep exposure bias by adopting an
adversarial training paradigm, and LeakGAN optimizes further for long sequences. However, our results
show that the GAN approach suffers from mode collapsing.

Implementation: All models had a hidden size of 32 and an embedding size of 128. We used the Adam
optimizer with an initial learning rate of 0.01 and annealed it gradually after a few epochs until it reached
1E− 5; scheduled sampling probability was annealed from 1.0 (fully ground-truth) to 0.5 (half-half).

4.1 Synthetic tree generation

Because it is difficult to measure the quality of a generated text with syntactic structure, we first conducted
a simulated experiment with synthetic data. Following the idea in SeqGAN and LeakGAN, we chose a
randomly initialized LSTM as our oracle. Instead of generating a sequence, we modified the oracle LSTM
to output a linearized tree. To this end, we maintained several counters to determine the legal actions
at each step. The possible actions included an opening and a closing bracket in addition to predicting
(artificial) words and tags. The generation process had to obey some basic rules, such as tags and words
should appear in pairs and all the brackets should be closed at the end. We added a constant negative bias
to the unnormalized output of illegal actions to force the model to choose the legal ones. This mechanism
affected both the generation and evaluation processes. As a result, the illegal action received a fixed
penalty in the evaluation. We made sure that a depth-first walk of a tree is converted appropriately.
We chose the vocabulary size for artificial tags and words to be 50 and 5000, respectively. The oracle
allowed us to fabricate an arbitrary training set and evaluate the likelihood of generated sentences. This

Guo Q P, et al. Sci China Inf Sci May 2021 Vol. 64 152102:6

Table 2 Results on synthetic datasetsa)

Model Len NLL NLL(-) Fail (%) Len NLL NLL(-) Fail (%) Len NLL NLL(-) Fail (%)

Oracle 5/20 3.27 6.21 − 10/40 3.32 6.21 − 15/60 3.34 6.21 −

LSTM 5/20 4.04 6.47 41.7 10/40 4.10 6.49 49.5 15/60 4.14 6.54 72.4

SeqGAN 5/20 4.40† 6.60 59.4 10/40 4.52† 6.64 74.4 15/60 4.67† 6.75 79.7

LeakGAN 5/20 4.81† 6.66 53.0 10/40 4.97† 6.63 62.1 15/60 5.10† 6.74 78.9

Ours 5/20 3.34 6.23 0.7 10/40 3.37 6.23 0.6 15/60 3.39 6.23 0.8

a) “Len” indicates the number of nodes in the tree; the number after the slash is the length of brackets sequence. “NLL” and

“NLL(-)” represent negative log-likelihood, and the latter did not count brackets in “(” and “)”. “Fail” denotes the percentage

of ill-formed generated samples, which have unmatched brackets or do not satisfy the “tag word” pattern. † indicates that the

performance falls after a few iterations during the training and in such a case, we perform an early-stop.

Table 3 Samples generated on the synthetic task of different modelsa). Our model succeeds in preserving structure integrity most

of the time.

Model Sample

Oracle (TW(TW(TW(TW)(TW)(TW))(TW(TW(TW)(TW)))))

LSTM (TW(TW(TW))(TW)(TW(TW))(TW))(TW(TW)(TW(T

SeqGAN (TW(TW))(TW)(TW(TW))(TW(TW(TW)(TW(TW(TW)

LeakGAN (TW)(TW(TW(TW(TW(TW(TW(TW))(TW))(TW)(TW)

Ours (TW(TW)(TW)(TW(TW(TW(TW)))(TW)(TW(TW))))

a) “T” and “W” represent an arbitrary tag and word, respectively. Symbols that are underlined indicate mistakes.

task required the model to capture both sequential dependencies (tag and word pair, patterns in oracle
LSTM) as well as syntactic dependencies (matched brackets, these could be long dependencies).

We measure the quality of generated texts using the negative log-likelihood (NLL) of the oracle gen-
erator. As shown by the synthetic task results in Table 2, our approach beats the two sequential models
with adversarial training (SeqGAN and LeakGAN1)) and achieves a performance close to that of the
oracle. Because our process models syntactic structure explicitly, it rarely generates ill-formed samples,
whereas the sequential models often do. To eliminate the influence of the explicit syntactic structure in
the evaluation process, we also report an additional score NLL(-) that does not count the symbols “(”
and “)”. And our model still beats the others under this measurement. In addition, varying sentence
length shows that the proposed model is the most robust. Table 3 gives a comparison of the models
from the point of view of a case study. Overall, the results demonstrate that the word graph model can
generate well-formed sentences with hierarchical syntactic structure.

4.2 Real text generation

Results on the synthetic data highlight the need for dealing with structure explicitly. Now, we showcase
the advantages of our model in generating real-world texts. We performed unconditional text generation,
as was done in many previous generation studies [15–17].

We used a large IMDB text corpus [18] to train our model. This dataset is a collection of 350000 movie
reviews and contains various kinds of compound sentences. We selected sentences with a length between
17 and 25 words, set the threshold for high-frequency words at 180, and only selected the sentences with
words above that threshold. Finally, we randomly chose 80000 sentences for training and 3000 for testing,
with the vocabulary size of 4979 and the average sentence length of 19.6 words. We used the Stanford
Parser2) to obtain the dependency tree as the ground-truth labels to train our model. This was done
by first obtaining a constituency tree and then converting it into a dependency tree. We used such a
strongly restricted dataset to stabilize the training process of GAN methods. The maximum likelihood
estimation (MLE) method was used to train the LSTM and our model.

We set the iterations of the message passing procedure to 4. The weight of action loss was 5 to make
the overall action loss (accumulated over all the steps of a sample) comparable to the overall word loss.
Finally, the ratio of schedule sampling was increasing from 0.0 to 0.5 stepping by 0.05 per epoch.

We used the BLEU score [19] to measure the similarity degree between the generated texts and the
test set texts. Specifically, we use the dataset-level BLEU, which means that the reference set is the

1) We use their open-source code for both the synthetic tree and real text generation.

2) https://nlp.stanford.edu/software/.

Guo Q P, et al. Sci China Inf Sci May 2021 Vol. 64 152102:7

Table 4 Results on the IMDB dataseta). The top half gives the results of generation quality. The bottom half shows the novelty

measure by comparing the BLEU score and edit-distance of generated samples against the training set.

LSTM SeqGAN LeakGAN Ours

Test/quality

↑ BLEU-2 0.652 0.683 0.809 0.876

↑ BLEU-3 0.405 0.418 0.554 0.643

↑ BLEU-4 0.304 0.315 0.358 0.415

↑ BLEU-5 0.202 0.221 0.252 0.286

Train/novelty

↓ BLEU-2 0.915 0.997 0.987 0.941

↓ BLEU-3 0.750 0.990 0.949 0.827

↓ BLEU-4 0.545 0.980 0.892 0.613

↓ BLEU-5 0.387 0.971 0.840 0.361

↑ Edit dist 14.88 1.05 6.09 18.40

↑ ED/LEN 71.2% 5.7% 27.4% 70.2%

Human evaluation ↑ 0.494 0.535 0.644 0.552

a) “ED/LEN” means normalized over sentence length. ↑ means higher is better, and ↓ means lower is better. BLEU-N means

the BLEU score average over 1–N grams.

Table 5 Samples from different modelsa)

Method Generated samples

LSTM

This is a heart but after the news reporter comes together of survival and lost and do you’d really simply work.

But that and their is a great score just as a good start to entertain because it genuine.

I think it would leave an impression which bad is the exact same formula pretty big .

SeqGAN

† This does not star Kurt Russell, but rather allows him what amounts to an extended cameo.

This does good to make a movie and film relies a stupid sense of credibility for the genre or any movie not going

to it.

This also too hard at all, but is also a scene but I am not sure of anything, humor and I think you shouldn’t go

LeakGAN

† This movie is very creepy and has some good gory scenes that would be rather disturbing .

† The story itself we may have seen a dozen times before but it doesn’t much matter .

† This was a great family film and one of my new favorites from Disney and Pixar .

Ours

I guess I was some good elements for that attempt in the country movie .

It ’s a movie ends up in this franchise and say this is a fan of his girlfriend.

The beauty of the film, in this movie, I was a good man and that I don’t know.

a) † demonstrates a direct copy from training set.

whole test set for each generated sample. In addition, we add an informal measure of novelty by looking
at the BLEU score and edit distance against the training set. There is a similar measurement proposed
in [20]; they use the Jaccard distance, which is weaker than BLEU, and the edit distance for measuring
sentence similarity. Intuitively, “novelty” encourages the model to generate unseen samples and patterns
and punishes repetition. However, “novelty” does not measure the rationality of the unseen patterns.
In this case, a good model should have high “novelty” and “quality” simultaneously. They are different
measures that serve the same purpose: a higher BLEU score or a lower edit distance indicate that the
model is more likely just memorizing and copying text from the training set.

Results. Because this is a pure generation task (i.e., there is no message to decode), the sentences are
typically not meaningful. In general, our texts are more well-formed syntactically. On the other hand,
while the texts produced by SeqGAN and LeakGAN appear to have high quality, usually they are just
slight variations of those in the training set. See Table 5 for fully generated samples, and Table 6 for
step-wise partial sentences produced by our model. More examples can be found in Appendix.

The quantitative results are shown in Table 4, which indicates our approach outperforms all the other
methods. When generating text, it manages to keep both the quality as well as novelty high owing to
a number of factors. Our model employs message passing along the dependency and word order edges,
exploring structures much better than a vanilla LSTM generator. Mode collapsing is a known problem in
models using adversarial training; however, our framework uses maximum likelihood and thus we reduce
the problem of distribution drift with scheduled sampling.

We also provide a human evaluation (last row of Table 4). We sampled 50 unique sentences from
different models and asked 20 people to score it; on average, each sentence was evaluated by 5 different
people. The scores were between 0 and 1, where a higher score indicates the sentence is more realistic.

Guo Q P, et al. Sci China Inf Sci May 2021 Vol. 64 152102:8

Table 6 Step-by-step examplesa). Note how re-sampling helps to correct mistakes (c.f. the correction of “liked” in the first

example).

Step Case 1 Case 2

1 get is

2 I get This is

3 I get racing This is one

4 I get racing because This is a one

5 I get racing because I This is a good one

6 I get racing because I liked This is a good one ,

7 I get racing because I liked . This is a good one , and

8 I get the racing because I liked . This is a good one , and excellent

9 I get the racing because I would liked . This is a good one , and excellent .

10 I get the racing because I would like . This is a good one , and excellent job .

11 This is a good one , and excellent job of .

12 This is a good one , and excellent job of NUM .

13 This is a good one , and excellent job of the NUM .

14 This is a good film , and excellent job of the film .

a) word is the new word at a step and final sentence is the result of re-sampling at the final round.

LeakGAN received the highest score, likely because it was copying from the training set.

5 Discussion

One drawback of adopting the message passing paradigm is the computational overhead. Because multiple
passes are needed, the computation overhead is O(N2), N being the length of a sentence. When the outer
loop inserts a new node, the inner loop processes the propagation. In addition, the trees within a mini-
batch are usually unaligned in their structures, and thus we have to process one tree at a time and
aggregate gradients over a mini-batch of trees before updating.

We applied a number of optimizations. For example, we maintain a flag to avoid redundant updates
when the representations of a node’s neighbors have not changed. Because the graphs are often sparse,
this optimization brings significant computational saving. we also tried stopping updates for nodes that
are too far away or are leaves. Without these optimizations, training was almost 10 times slower than
that for a similarly configured LSTM; however, with this optimization it is five times slower, which is
still very significant. Making the training process more efficient is one of our future research directions.

6 Related work

Although deep neural networks have made great progress in text generation, most of them employ sequen-
tial models performing auto-regression directly on the text sequence. For example, Ref. [21] linearized
parsing trees to bracket expression form and used an attention-enhanced sequence-to-sequence model
to parse a sentence. Although this method can generate a tree-structured text with slight modifica-
tions, the linearization process only exacerbates the long-standing challenge of dealing with long-distance
dependencies in sequential models.

While structures for sentence representation have been explored in studies such as Tree-LSTM [22],
text generation models attempting to explicitly incorporate syntactic structures have started to appear
only recently. In contrast, we adopt the MPNN framework and explicitly treat text generation as a graph
generation problem. Some of the other related studies are as follows.

Ref. [23] used a transition-based method to generate phrase-structure trees. A parser works from the
bottom-up, consuming the sentence while building the hierarchy. This mechanism can be converted to a
generative model, by replacing the SHIFT operator with an action that generates a word. We observe
two difficulties here. One is that the bottom-up parsing actions can have difficulties dealing with partially
complete texts; second, the depth-first nature ignores the opportunity to have global planning with future
contexts.

Ref. [24] used a doubly recurrent neural network model comprised of separate width and depth re-
currences to generate tree structured sentence directly. Same as [21], they used an encoder-decoder

Guo Q P, et al. Sci China Inf Sci May 2021 Vol. 64 152102:9

framework to generate a tree structure from a given sentence.

Ref. [25] also proposed a sequence-to-tree approach, which transformed trees into equivalent ternary
trees, and then, used a tree-structured search to generate the text in the form of dependency trees.

The graph neural network [26] and its more recent variant, the message passing neural network, have
been applied to a variety of graph problems [9–12, 27, 28]. To the best of our knowledge, our method is
the first to directly adopt MPNN for text generation.

7 Conclusion

Text generation has been considered as a sequential problem for a long time. The conventional approach
is to decompose a sentence into a series of words via chain rule and generate the words in that order.
This is an effective strategy, but it only covers a part of word relationships and ignores the structure of
language. In this paper, we introduced a graph-based text generation approach that considers the syntac-
tic dependency relationships between words. Experimental results on synthetic and real text generation
tasks show that our approach outperforms the sequential methods.

Acknowledgements This work was supported by National Key Research and Development Program of China (Grant No.

2018YFC0831103), Shanghai Municipal Science and Technology Major Project (Grant No. 2018SHZDZX01), and Zhejiang Lab.

References

1 Sordoni A, Galley M, Auli M, et al. A neural network approach to context-sensitive generation of conversational responses.

In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (HLT-NAACL), Denver, 2015. 196–205

2 Bahdanau D, Cho K H, Bengio Y. Neural machine translation by jointly learning to align and translate. In: Proceedings of

the 5th International Conference on Learning Representations, 2015

3 Serban I V, Sordoni A, Bengio Y, et al. Building end-to-end dialogue systems using generative hierarchical neural network

models. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016. 3776–3784

4 Ranzato M A, Chopra S, Auli M, et al. Sequence level training with recurrent neural networks. In: Proceedings of the 4th

International Conference on Learning Representations, 2016

5 Wiseman S, Rush A M. Sequence-to-sequence learning as beam-search optimization. In: Proceedings of the Conference on

Empirical Methods in Natural Language Processing, Austin, 2016. 1296–1306

6 Bowman S R, Vilnis L, Vinyals O, et al. Generating sentences from a continuous space. In: Proceedings of the SIGNLL

Conference on Computational Natural Language Learning, Berlin, 2016. 10–21

7 Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9: 1735–1780

8 Chung J Y, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling. In:

Proceedings of the Advances in Neural Information Processing Systems Deep Learning Workshop, 2014

9 Henaff M, Burna J, LeCun Y. Deep convolutional networks on graph-structured data. 2015. ArXiv:1506.05163

10 Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th Interna-

tional Conference on Learning Representations, Toulon, 2017

11 Battaglia P W, Pascanu R, Lai M, et al. Interaction networks for learning about objects, relations and physics. In: Proceedings

of the Thirtieth Conference on Neural Information Processing Systems, 2016. 4502–4510

12 Gilmer J, Schoenholz S S, Riley P F, et al. Neural message passing for quantum chemistry. In: Proceedings of the 34th

International Conference on Machine Learning, Sydney, 2017. 1263–1272

13 Bengio Y, Louradour J, Collobert R, et al. Curriculum learning. In: Proceedings of the 26th International Conference on

Machine Learning, Montreal, 2009. 41–48

14 Bengio S, Vinyals O, Jaitly N, et al. Scheduled sampling for sequence prediction with recurrent neural networks. In: Proceed-

ings of the 29th Conference on Neural Information Processing Systems, Montréal, 2015. 1171–1179

15 Yu L T, Zhang W N, Wang J, et al. SeqGAN: sequence generative adversarial nets with policy gradient. In: Proceedings of

the 31st AAAI Conference on Artificial Intelligence, 2017. 2852–2858

16 Guo J X, Lu S D, Cai H, et al. Long text generation via adversarial training with leaked information. In: Proceedings of the

32nd AAAI Conference on Artificial Intelligence, 2018. 5141–5148

17 Fedus W, Goodfellow I J, Dai A M. MaskGAN: better text generation via filling in the . In: Proceedings of the 6th

International Conference on Learning Representations, Vancouver, 2018

18 Diao Q M, Qiu M H, Wu C Y, et al. Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). In:

Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014. 193–202

https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1506.05163

Guo Q P, et al. Sci China Inf Sci May 2021 Vol. 64 152102:10

19 Papineni K, Roukos S, Ward T, et al. BLEU: a method for automatic evaluation of machine translation. In: Proceedings of

the 40th Annual Meeting on Association for Computational Linguistics, 2002. 311–318

20 Wang K, Wan X J. SentiGAN: generating sentimental texts via mixture adversarial networks. In: Proceedings of the 27th

International Joint Conference on Artificial Intelligence (IJCAI-18), 2018. 4446–4452

21 Vinyals O, Kaiser L, Koo T, et al. Grammar as a foreign language. In: Proceedings of the Neural Information Processing

Systems, 2015. 2773–2781

22 Tai K S, Socher R, Manning C D. Improved semantic representations from tree-structured long short-term memory networks.

In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint

Conference on Natural Language Processing, Beijing, 2015. 1556–1566

23 Dyer C, Kuncoro A, Ballesteros M, et al. Recurrent neural network grammars. In: Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, 2016.

199–209

24 Alvarez-Melis D, Jaakkola T S. Tree-structured decoding with doubly-recurrent neural networks. In: Proceedings of the

International Conference on Learning Representations, 2017

25 Zhou G B, Luo P, Cao R Y, et al. Tree-structured neural machine for linguistics-aware sentence generation. In: Proceedings

of 32nd AAAI Conference on Artificial Intelligence, 2018. 5722–5729

26 Scarselli F, Gori M, Ah Chung Tsoi M, et al. The graph neural network model. IEEE Trans Neural Netw, 2009, 20: 61–80

27 Wu S Z, Zhang D D, Yang N, et al. Sequence-to-dependency neural machine translation. In: Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics, 2017. 698–707

28 Li Y J, Tarlow D, Brockschmidt M, et al. Gated Graph Sequence Neural Networks. In: Proceedings of the 4th International

Conference on Learning Representations, San Juan, 2016

https://doi.org/10.1109/TNN.2008.2005605

	Introduction
	Proposed method
	Word graph
	Message-passing neural network
	Word graph encoding via message-passing
	Word graph generation

	Training
	Experiments
	Synthetic tree generation
	Real text generation

	Discussion
	Related work
	Conclusion

