
SCIENCE CHINA
Information Sciences

May 2021, Vol. 64 150102:1–150102:15

https://doi.org/10.1007/s11432-020-3163-0

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 info.scichina.com link.springer.com

. RESEARCH PAPER .
Special Focus on Constraints and Optimization in Artificial Intelligence

Learning dynamics of gradient descent optimization
in deep neural networks

Wei WU1*, Xiaoyuan JING1*, Wencai DU2 & Guoliang CHEN3

1School of Computer Science, Wuhan University, Wuhan 430072, China;
2Institute of Data Science, City University of Macau, Macau 999078, China;

3College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China

Received 26 April 2020/Revised 22 August 2020/Accepted 19 November 2020/Published online 8 April 2021

Abstract Stochastic gradient descent (SGD)-based optimizers play a key role in most deep learning models,

yet the learning dynamics of the complex model remain obscure. SGD is the basic tool to optimize model

parameters, and is improved in many derived forms including SGD momentum and Nesterov accelerated

gradient (NAG). However, the learning dynamics of optimizer parameters have seldom been studied. We

propose to understand the model dynamics from the perspective of control theory. We use the status transfer

function to approximate parameter dynamics for different optimizers as the first- or second-order control

system, thus explaining how the parameters theoretically affect the stability and convergence time of deep

learning models, and verify our findings by numerical experiments.

Keywords learning dynamics, deep neural networks, gradient descent, control model, transfer function

Citation Wu W, Jing X Y, Du W C, et al. Learning dynamics of gradient descent optimization in deep neural

networks. Sci China Inf Sci, 2021, 64(5): 150102, https://doi.org/10.1007/s11432-020-3163-0

1 Introduction

Deep neural networks (DNNs) are well applied to solve recognition problems of complex data including
image, voice, text, and video, due to their high-dimensional computing capability. Generally, applying a
DNN model to an engineering issue has three steps: analyzing historical data and initializing a proper
model, training parameters for the model, and applying input data to compare network output to real
values. A serious defect is that the status of a deep learning model with a predefined structure and limited
training may not be dynamically stable to new inputs. The system stability cannot be guaranteed. It may
produce an abnormal output with unexpected errors, which can cause catastrophic damage in application.

The stochastic gradient descent (SGD) method and many SGD improvements aim to quickly and
accurately solve parameter optimization, so as to reduce the error between a model output and a desired
value, i.e., error backpropagation processing. The incomparable ability for spatial feature representation
benefits from the parameters of massive neuron nodes and interconnected weights inside. To obtain an
excellent model parameter distribution is the priority of many optimization methods, while they ignore
the dynamics of how parameters converge.

To avert potential threats to DNNs, we explain the mathematical principles from the control perspec-
tive. Benefiting by introducing the transfer function of the control model, we analyze how to keep a
multiple-parameter-based optimizer working in an effective way.

2 Related work

Gradient descent optimization algorithms are often used in DNN parameter learning. It is an error-based
updating method for all neurons and weights. To handle different problems, DNNs have a variety of
structures regarding connections and weights. Multilayer perception (MLP) is a common feedforward

*Corresponding author (email: wuweiux@163.com, jingxy 2000@126.com)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-3163-0&domain=pdf&date_stamp=2021-4-8
https://doi.org/10.1007/s11432-020-3163-0
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-3163-0
https://doi.org/10.1007/s11432-020-3163-0

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:2

form. The convolutional neural network (CNN) uses a weight-sharing mechanism to process matrix data.
The recurrent neural network (RNN) and long short-term memory (LSTM) indicate good effects in time
series data analysis. The gradient descent learning method is generally the optimization foundation
throughout the training stage.

The gradient descent strategy is used as a black-box optimizer [1], which requires sophisticated training
parameter settings, and the fine-tuning process is long and costly when tackling complex deep networks.

Much work focuses on improving SGD-based algorithms by adding more control variables, while many
depend on expert initialization, which hampers the application of DNNs. Batch gradient descent is
proposed to obtain a global optimum using all training data once for all, but it is usually computationally
expensive, even using high-performance computers equipped with GPUs [2]. A depth-controllable network
and training principles [3] reflect the thinking of balancing system control and computational burden.
To accelerate the training speed, mini-batch gradient descent uses a subset from training instances [4],
benefiting from the separation of training data into small batches; this method often reaches a good
result in a few epochs. To avoid the slow step of SGD on the flat loss surface, the momentum factor [5],
by making a small movement based on the error trend, is combined with the improved gradient to form
a more effective vector to enhance the convergence speed, but requires a preset learning rate number
properly. To weaken the influence of initialization, the Adagrad method [6] can adaptively adjust the
learning rate and can globally affect the gradient descent. However, this factor amplifies the gradient in
the early phase of training, subjecting the system to more vibration or instability, or reducing the gradient
to a very small value in the later phase, leading the training to terminate abnormally. Adadelta [7] cancels
the learning rate factor in Adagrad and improves training in the middle stage when the gradient is not too
big or small, but is vulnerable to local minima. Similar to Adadelta, RMSprop [8], introduced by Hinton,
is another method to accelerate convergence by dividing the learning rate as an exponentially decaying
average of squared gradients. To reduce the drawbacks of big second-order moment in the training stage,
Adam [9] controls the first- and second-order of momentum simultaneously on the basis of RMSProp,
and AMSGrad [10] guarantees the learning rate positive in Adam. In certain cases, the big learning rate
in Adam benefits fast training but may lead weak generalization capability, on the contrast, a fixed small
learning rate in SGD training is time-costly but robust. As a result, the AdaBound [11] links the learning
rate from adaptive method and manual SGD to achieve a balance between generalization capability and
training speed. The animation figure provides an intuitive understanding of the optimization behavior of
some popular algorithms1).

However, the transfer function of a DNN is not easily expressed due to the deep layered structure
and operation in matrix form, which may bring the zero points and pole points of the system into high-
dimensional orders, preventing the status space expression inferring from input data, system parameter
and output from an analytical transfer function matrix. Ref. [12] presented a mathematical description
of an integral form to bridge the gap between the theory and practice of deep learning of all layers.
The classical methods are carried out by transfer function in the time and frequency domains, in which
introducing the Lyapunov stability theory in cybernetics to study status changing pattern remains popu-
lar. For some neural network models with time-varying delay stages, specified Lyapunov functionals are
proposed, and are derived in the form of linear matrix inequalities in [13]. For neutral-type neural net-
works including constant delay parameters, a properly modified Lyapunov functional employing Lipschitz
activation functions is derived in [14].

Transforming coordinates from a standard parameter space to a high-dimensional space enables the
Taylor expansion to be meaningful in singularities, providing the local influence derived from model
parameters. Series work focused on the singularity area, calculates the partial derivative for each new
variables, shows the dynamic variation affected by weights in the hidden layers and output layer [15].
The connection between non-convex optimization for training DNNs and nonlinear partial differential
equations has been established to enhance the robustness of SGD [16].

Dynamics of how model parameters of DNN converged and how system output stabilized is a control
model theoretically. A proportional, integral and derivative (PID) controller approach for stochastic
optimization was proposed to simulate a DNN [2, 17]. By linking the calculation of errors in a feedback
control system and the calculation of gradients in network updating, it revealed the strong connection
between error-based PID control and the gradient decent method, and provided the analytical control
form of a typical SGD. Transforming coordinates from a standard parameter space to a new space, to

1) http://cs231n.github.io/neural-networks-3/.

http://cs231n.github.io/neural-networks-3/

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:3

understand the influence from input data and model variables, some studies focused on the singularity
area [18, 19]; the partial derivative for each new variable shows the dynamic variation near singularities
affected by weights between the hidden layer and output layer. In [20], by studying the geometry induced
by the kernel mapping, a multilayer kernel based on CNNs characterized the corresponding reproducing
kernel Hilbert space (RKHS).

To reveal optimization methods from the perspective of control is a novel way to understand DNN
characteristics, facilitating the analysis of system stability, convergence speed, and track. Thus, we can
design a more compact DNN structure with fewer neurons and connections, which can reduce computing
complexity. The predefined network learning rate and other factors can be initialized in a specified
domain.

Our work contributes to the dynamics learning processing of DNN theoretically, from three aspects:
(1) We propose first- and second-order control models for parameter optimizers for SGD, SGD momen-

tum, and Nesterov accelerated gradient (NAG). The proposed transfer functions benefit the understanding
of deep learning optimization models from a more systemic perspective view.

(2) We analyze how the learning rate, momentum factor, and gain coefficient affect the optimizer
dynamics by using the time response root locus of each control equation, reveal how the model order and
element affect the system characteristics, respectively.

(3) We compare the learning dynamics of optimizers with varying parameters on some popular datasets,
which validate how the system performance is affected by proper parameter combination settings.

3 Gradient descent optimization dynamics

The key to gradient descent is to approach the solution space of deep learning models. Define the mapping
function f(·) from the input x to the desired output y∗ with the model parameter set θ∗. The global
computing model M∗ is obtained as

M∗ : y∗ = f(x; θ∗). (1)

Note that x can be a scalar, vector, or matrix, and y∗ is a scalar or vector, depending on the application.
θ∗ is a parameter set of all neurons, weights, and bias. The learning system M : y = f(x; θ) for the real
system M∗ has a small error δ, i.e., the distance between the algorithm result y and the real y∗ is
computed by

dist{y∗, y} 6 δ. (2)

In different applications, we use the corresponding forms to measure δ, such as mean square error
(MSE), mean absolute error (MAE), Huber loss, and log-likelihood loss.

Our goal is to trainM to replace the unknown real system in limited steps in certain instances. Figure 1
shows the learning from a random initial state M0 to M . The optimized parameter hyperspace is a subset
in the high-dimensional coordinate system formed by nodes, weights, bias, and other variables, where M
and M∗ are approximated by the status space and real status space, respectively. The distance metric
between these two spaces is δ. We show four examples of routes in Figure 1. r1 and r2 converge to M ,
and r3 moves to M∗ in diverse initializations and paths, but the final model status of r1, r2, and r3 is
stable. However, r4 is going in the opposite direction, with an eventual unstable output.

SGD and its improvements are the most popular optimization algorithms for DNN parameter opti-
mization to realize M . We discuss three main branches from the perspective of control system with
transfer functions theories progressively.

Lemma 1. The transfer function from an input signal x to the desired output y is described as a
differential equation (DE):

an
dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ · · ·+ a1

dy(t)

dt
+ a0y(t) = bm

dmx(t)

dtm
+ · · ·+ b1

dx(t)

dt
+ b0x(t). (3)

By using the Laplace transform of x and y,

X(s) =

∫ ∞

0

x(t)e−stdt, Y (s) =

∫ ∞

0

y(t)e−stdt. (4)

Eq. (3) is transformed into

(ans
n + an−1s

n−1 + · · ·+ a1s+ a0)Y (s) = (bmsm + bm−1s
m−1 + · · ·+ b1s+ b0)X(s). (5)

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:4

nodes
weights

...

bias

δ

M *

M

r4

M0

r1

r3

r2

Figure 1 (Color online) Learning from random states to the acceptable parameter space M or M∗. The coordinate system is

formed by a deep learning parameter set including nodes and weights, and r1, r2, r3, r4 are different learning routes.

As a result, the transfer function is obtained as

G(s) =
Y (s)

X(s)
=

bmsm + bm−1s
m−1 + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0
. (6)

The Laplace transform operation is a linear integral operation, which depends entirely on the structure
and parameters of the system. The transfer function provides an analytical tool for dynamics processing,
including stability, convergence and error control for optimizers.

3.1 SGD optimizer

The iteration of SGD from one step to the next is given by

θk+1 = θk − r
∂Lk

∂θk
, (7)

where r is the learning rate, and L is the loss function from the output y to the desired y∗. The expansion
of formula (7) is



























θ2 = θ1 − r∂L1/∂θ1,

θ3 = θ2 − r∂L2/∂θ2,
...

θn = θn−1 − r∂Ln−1/∂θn−1.

(8)

We obtain the summation form as

θn = θ1 − r

n−1
∑

i=1

∂Li/∂θi. (9)

Taking the training step nt satisfies

dist (f(x, θt+1)− y) 6 δ. (10)

Initializing the primitive status as θ1 = 0, we have the following approximating form from (7):

f(x; θt) = f

(

x;−r
t−1
∑

i=1

∂Li/∂θi

)

. (11)

The system output converges to yt, and L reflects the qualitative impact of all historical errors on
θ [17]. We initialize an amplifier K0 as the actuator to transfer the input signal to the application, then
we can obtain the transfer function of SGD.

Theorem 1. The gradient descent optimizer is a first-order control system affected by the learning rate
r and proportional coefficient K0, with the open-loop transfer function

Gθsgd(s) = K0 ·
r

s
, K0 > 0, r > 0. (12)

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:5

−0.18 −0.16 −0.14 −0.12 −0.10 −0.08 −0.06 −0.04 −0.02 0 0.02

−8

−6

−4

−2

0

2

4

6

8
×10−3

Real axis (s−1)

(a) (b)

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(1/K0 r, 0.632)

(3/K0 r, 0.95)
(4/K0 r, 0.98)

SGD K0 = 10, r = 0.005
SGD K0 = 10, r = 0.01
SGD K0 = 10, r = 0.05
SGD K0 = 10, r = 0.1
SGD K0 = 10, r = 0.2

Time (s)

Im
ag

in
ar

y
 a

x
is

 (
s−

1
)

A
m

p
li

tu
d
e p1 = −r

.
 K0

Figure 2 (Color online) (a) Step response and (b) root locus of SGD (K0 > 0, r > 0).

Remark 1. The transfer function of SGD is derived from formula (9), where the amplifier K0 is often
acts as the normalization tool to shift intermediate values with limited constraint boundaries, including
the RGB image channel value 0-1 normalization, output classification probability 0-1 normalization. The
learning rate is a fixed value initialized by designers, the s parameter equals

∑n−1
i=1 ∂Li/∂θi, viewed as

integration of error factor e(t) [2].

The closed-loop control system of the gradient descent (GD) model is

ϕ(s) =
Y (s)

X(s)
=

K0 · r
s

1 +K0 · r
s

=
K0r

s+K0r
. (13)

We rewrite ϕ(s) in the time-constant form,

ϕ(s) =
1

Ts+ 1
, T = 1/K0r. (14)

Under the excitation of an unit step signal, the output of the deep learning model is

Y (s) = ϕ(s)X(s) =
1

Ts+ 1
· 1
s
=

1

s
− 1

s+ 1
T

. (15)

Solving it in the time domain with a Laplace transform, we have

y(t) = ℓ−1[Y (s)] =
[

1− e−t/T
]

· 1(t). (16)

This is a stable system without overshoot. The convergence time is determined by the learning rate r
and proportional element K0. The stabilized output is

lim
t→∞

y(t) =
[

1− e−t/T
]

· 1(t) = 1(t). (17)

This first-order system gradually approaches 1. Generally, ts = 3
K0r

is used as the settling time
corresponding to the output with δ 6 5%.

We show an example of the time response and root locus diagram in Figure 2. The input x is simplified
as the step signal, and y is a scalar. In Figure 2(a), the response experiences a long settling time from
initialization to the final stage. Different learning rates change the speed intuitively. A smaller r needs
more time to achieve a stable y. However, if we choose a greater learning rate, then the system may be
fragile because of the big step to the latent optimization zone.

The root locus diagram in Figure 2(b) implies that the system is globally stable under the condition
of the specified zone (−∞,−K0r) on the real axis, with zero in each model located at the left panel of
the imaginary axis, which guarantees system convergence.

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:6

3.2 SGD momentum

Momentum is proposed to speed up the training of SGD, with a classical form [21],







vk+1 = µvk − r
∂Lk

∂θk
,

θk+1 = θk + vk+1.

(18)

Dividing the first formula of (18) by µk+1 [17], we have















































v1
µ1

=
v0
µ0

− r

µ1

∂L0

∂θ0
,

v2
µ2

=
v1
µ1

− r

µ2

∂L1

∂θ1
,

...

vk+1

µk+1
=

vk
µk

− r

µk+1

∂Lk

∂θk
.

(19)

Summarizing (19), a simplified expression is obtained as

vk+1 = −r

k
∑

i=1

µk−i ∂Li

∂θi
. (20)

Similarly, we add up each part of the second equation of (19) to obtain

θk+1 = θ1 + (v2 + v3 + · · ·+ vk+1), (21)

where each vi is expanded as



































v2 = −r ·
(

µ0 ∂L1

∂θ1

)

,

v3 = −r ·
(

µ1 ∂L1

∂θ1
+ µ2 ∂L2

∂θ2

)

,

vk+1 = −r ·
(

µk−1 ∂L1

∂θ1
+ · · ·+ ∂Lk

∂θk

)

.

(22)

We rewrite the final θk+1 as

θk+1 − θ1 = −r ·
(

∂L1

∂θ1
,
∂L2

∂θ2
, . . . ,

∂Lk

∂θk

)















µ0 + µ1 + · · ·+ µk−2 + µk−1

µ0 + µ1 + · · ·+ µk−2

...

µ0















. (23)

In many DNN applications, the momentum optimizer keeps the training tracks more resistant, with
the explanation of it considered the historical gradient impact on moving direction empirically.

Benefiting from the accumulated gradient, a directional variable reflects the partial derivative pro-
cessing [21] of the gradient itself, and the momentum plays the role of an inertial element to adjust the
system.

Theorem 2. The SGD momentum optimizer is a second-order control system, with the transfer function
Gθsgdm(s) = K0r

g(µ)s2+s , formed by the learning rate r, momentum factor µ, and proportional coefficient

K0. The dynamics is determined by the oscillation frequency ωn =
√

K0r
g(µ) and damping coefficient

ξ = 1√
4K0rg(µ)

, where g(µ) > 0.

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:7

Remark 2. The SGD momentum optimizer is realized by a series connection from SGD to momentum.
Given the inertial element of momentum factor Gm = 1

Ts+1 , hence, the transfer function from SGD can
be improved as

Gθsgdm(s) = Gθsgd(s) ·Gm = K0 ·
r

s
· 1

g(µ)s+ 1
=

K0r

g(µ)s2 + s
, (24)

where g(µ) is a function of µ.
Consequently, the closed-loop transfer function of θ is obtained as

ϕ(s) =
K0r

g(µ)s2 + s+K0r
=

K0r
g(µ)

s2 + 1
g(µ)s+

K0r
g(µ)

. (25)

Therefore, we have the following theorem for the momentum optimizer, by solving














2ξωn =
1

g(µ)
,

ω2
n =

K0r

g(µ)
.

(26)

We have

ωn =

√

K0r

g(µ)
, ξ =

1
√

4K0rg(µ)
, T =

1

ωn
. (27)

As a result, the characteristic equation is described as

s2 +
1

g(µ)
s+

K0r

g(µ)
= 0. (28)

Case 1. Let 0 < ξ < 1, i.e., K0rg(µ) > 0.25. Then the system has a pair of conjugate solutions,

− s1,2 = − 1

2g(µ)
± j

√

4K0rg(µ)− 1

2g(µ)
. (29)

The system is a damped concussion with output:

y(t) = 1− 1
√

1− ξ2
e−ξt/T sin

(

√

1− ξ2
t

T
+ arctan

√

1− ξ2

ξ

)

= 1− 2
√

K0rg(µ)
√

4K0rg(µ) − 1
e−

1
2g(µ)

t sin

(

√

4K0rg(µ)− 1

2K0r
t+ arctan

√

4K0rg(µ)− 1

)

. (30)

The dynamics described by overshoot and settling time are











σ% = exp

(

− π

√

4K0rg(µ) − 1

)

× 100%,

ts ≈ 6g(µ).

(31)

Case 2. Let ξ = 1, i.e., K0rg(µ) = 0.25. Then, the eigenroots of the characteristic equation are

− s1,2 = − 1

2g(µ)
. (32)

The system is a monotonic attenuation process with output:

y(t) = 1−
(

1 +
t

T

)

e−t/T = 1− (1 + 2g(µ)t) e−2g(µ)t. (33)

Case 3. Let ξ > 1, i.e., K0rg(µ) < 0.25. The eigenroots are distributed on the negative real axis as

− s1,2 = − 1

2g(µ)
±
√

1− 4K0rg(µ)

2g(µ)
. (34)

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:8

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

=0.05: (6 ,0.95)

=0.02: (8 ,0.98)

SGD-M, =0.9, K0=100, r =0.001

SGD-M, =0.9, K0=100, r =0.002

SGD-M, =0.9, K0 =100, r=0.00278

SGD-M, =0.9, K0=100, r =0.01

SGD-M, =0.9, K0=100, r =0.1

0.001
0.002
0.00278
0.01
0.1

−1.0 −0.8 −0.6 −0.4 −0.2 0
−8

−6

−4

−2

0

2

4

6

8

0.4

0.0120.0260.0420.0620.090.13

0.2

0.4

0.0120.0260.0420.0620.090.13

0.2

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

SGD-M, =0.9, K0=100, r=
SGD-M, =0.9, K0=100, r=
SGD-M, =0.9, K0=100, r=
SGD-M, =0.9, K0=100, r =
SGD-M, =0.9, K0=100, r =

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

=0.05: (6 ,0.95)

=0.02: (8 ,0.98)

SGD-M, r= 0.05, K0 =100, = 0.01

SGD-M, r= 0.05, K0 =100, = 0.05

SGD-M, r= 0.05, K0 =100, = 0.25

SGD-M, r= 0.05, K
0
=100, = 0.50

SGD-M, r= 0.05, K0 =100, = 0.90

−16 −14 −12 −10 −8 −6 −4 −2 0

−800

−600

−400

−200

0

200

400

600

2e+044e+046e+048e+041e+051.2e+051.4e+05

1

1.6e+05

0.9981111

1

1

0.99811111

1

1

SGD-M, r= 0.05, K
0
=100, = 0.01

SGD-M, r= 0.05, K
0
=100, = 0.05

SGD-M, r= 0.05, K
0
=100, = 0.25

SGD-M, r= 0.05, K
0
=100, = 0.50

SGD-M, r= 0.05, K
0
=100, = 0.90

A
m

p
li

tu
d
e

Time (s)

Im
ag

in
ar

y
 a

x
is

 (
s−

1
)

× 104Real axis (s−1)

Time (s) Real axis (s−1)

µ

µ

µ

µ

µ

µ

µ
µ
µ
µ

A
m

p
li

tu
d
e

Im
ag

in
ar

y
 a

x
is

 (
s−

1
)

(a)

(c)

(b)

(d)

Figure 3 (Color online) (a), (c) Step response and (b), (d) root locus of SGD momentum.

It is also a monotonic attenuation system with long time-costly adjusting period, whose output is
given by

y(t) = 1− −ξ +
√

ξ2 − 1

2
√

ξ2 − 1
exp

(

−
(

ξ +
√

ξ2 − 1
)

t/T
)

− −ξ −
√

ξ2 − 1

2
√

ξ2 − 1
exp

(

−
(

ξ −
√

ξ2 − 1
)

t/T
)

=1−
√

1− 4K0rg(µ) − 1

2
√

1− 4K0rg(µ)
exp

(

−1

2

(

1 +
√

1− 4K0rg(µ)
)

t

)

+

√

1− 4K0rg(µ) + 1

2
√

1− 4K0rg(µ)
exp

(

−1

2

(

1−
√

1− 4K0rg(µ)
)

t

)

. (35)

We show the step response and root locus in Figure 3. Here, we use a simple form of g(µ) = µ. We
draw the settling time line at σ = 0.05, where ts = 6µ in blue color, and σ = 0.02, and ts = 8µ in red
color.

In Figure 3(a), by fixing µ and K0, the optimization dynamics are determined by r only. The critical
line is determined by K0rg(µ) = 0.25, as drawn in yellow, where K0 = 100, r = 0.00278, g(µ) = 0.9.
Considering the limitation of σ = 0.05 and σ = 0.02, only with r = 0.01 and r = 0.1 is the system output
stabilized after the settling time line, while the system with smaller r needs more time to produce an
acceptable output. The difference between the first- and second-order optimizer is that the first-order
system requires more settling time but has no overshoot, while the second-order system converges faster
and is accompanied by some overshoot. Another view of r = 0.01 and r = 0.1 is that a bigger learning
rate may cause the system to experience larger vibrations, which may also lead the system to be applied
improperly.

The root locus in Figure 3(b) shows the stability of all cases in Figure 4(a), with different zones decided
by eigenroots. The distribution of −s1,2 at the real axis implies that the dynamics of the optimizers with
r = 0.001 and r = 0.002 are cases of monotonic attenuation, while the rest of the models have overshoot
to various degrees. The roots located far away on the imaginary axis have large vibrations.

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:9

μMk

r ∙ g (θk)
 update

μMk

 r ∙ g (θ k+μMk)

 update

Figure 4 (Color online) Updating tracks of classical momentum (left) and Nesterov accelerated gradient (right).

In Figure 3(c), we simulate the momentum optimizer varying from 0.01 to 0.9, with fixed r and K0.
The system vibrates at different magnitudes determined by µ. The overshoot increases dramatically if
the momentum is too big, accompanied by a delayed settling time (see the green curve where µ = 0.9).
However, a small µ may change the model without overshoot, with a reduced convergence speed. All
eigenroot tracks in Figure 3(d) are in the left area of the imaginary axis, indicating that all systems are
stable.

3.3 Nesterov accelerated gradient

The NAG [21] is a way to use the momentum term before the current step, with the form:







vk+1 = µvk − r
∂Lk

∂(θk + µvk)
,

θk+1 = θk + vk+1.

(36)

Let θ̂k = θk + µvk, and rewrite vk+1 in the same way as SGD momentum,

vk+1 = −r

k
∑

i=1

µk−i ∂Li

∂θ̂i
. (37)

Thus, Eq. (33) is transformed to

θk+1 − θ1 = (v2 + v3 + · · ·+ vk+1) = −r























µ0 ∂L1

∂θ̂1

µ1 ∂L1

∂θ̂1
+ µ2 ∂L2

∂θ̂2
...

µk−1 ∂L1

∂θ̂1
+ · · ·+ ∂Lk

∂θ̂k























= −r ·
(

∂L1

∂θ̂1
,
∂L2

∂θ̂2
, . . . ,

∂Lk

∂θ̂k

)















µ0 + µ1 + · · ·+ µk−2 + µk−1

µ0 + µ1 + · · ·+ µk−2

...

µ0















. (38)

One if the major difference between momentum and NAG is the updating logic from the current
position (see Figure 4). Momentum uses both the gradient information and momentum of the current
step, while in NAG, the gradient of momentum is introduced as an extra control factor to rectify the
moving tracks from a previous step based on the second derivative of the gradient, or the first derivative
of the momentum.

Theorem 3. The Nesterov accelerated gradient optimizer is a second-order control system with the

transfer function Gθnag (s) =
K0rg(µ)s+K0αr

g(µ)s2+s , formed by learning rate r, momentum factor µ, proportional

coefficient K0, and advanced control factor α.

Remark 3. According to the series connection from SGD to NAG, the anticipatory control factor is a
classical element described by Gn = α Ts+1

αTs+1 , α < 1, thus, the transfer function of NAG is achieve as

Gθnag (s) = Gθsgd(s) ·Gn = K0 ·
r

s
· αTs+ α

αTs+ 1
. (39)

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:10

To reveal the difference from momentum, rewrite Gθnag (s) as

Gθnag (s) = K0 ·
r

s
· 1

αTs+ 1
· (αTs+ α). (40)

Let

Gθnag(s) = K1 ·
r

s
· 1

g(µ)s+ 1
·
(

g(µ)

α
s+ 1

)

, (41)

where g(µ) = αT , K1 = K0α, α < 1, then

Gθnag (s) =
K0rg(µ)s+K0αr

g(µ)s2 + s
. (42)

The closed-loop transfer function is

ϕ(s) =
g(µ)
α s+ 1

g(µ)
K1r

s2 +
(K1r

g(µ)
α

+1)
K1r

s+ 1

. (43)

We can simplify the function g(µ) = µ and rewrite it in the common form,

φ(s) = φ1(s) + φ2(s),


















φ1(s) =
1

α
K0r

s2 + K0r2α+α
K0rµ

s+ α
µ

,

φ2(s) =
s

α
K1r

s2 + (K1rµ+α)
K1rµ

s+ α
µ

.

(44)

The step response of the system is

y(s) = ϕ1(s)s+ ϕ2(s)s = y1(s) + y2(s). (45)

The output is

y(t) = y1(t) + y2(t),


















y1(t) = 1− 1
√

1− ξ2
e−ξωnt sin

(

√

1− ξ2ωnt+ arctan

√

1− ξ2

ξ

)

,

y2(t) =
τωn

√

1− ξ2
e−ξωnt sin

(
√

1− ξ2ωnt
)

.

(46)

According to Laplace transform theory, we have

y2(t) = rℓ−1[sy1(s)] = r
dy1(t)

dt
+ rℓ−1[y1(0)]. (47)

Since y1(0) = 0, we have

y2(t) = r
dy1(t)

dt
. (48)

We demonstrate the step response of this system in Figure 5. Note that we use l to represent the
distance between the zero and pole.

NAG generally improves the SGD momentum in overshoot and time. In Figure 5(a), the vibration
magnitude is reduced to a relatively small zone compared to Figure 3(a), under the condition that all
parameters remain the same. For example, given µ = 0.9, K0 = 100, and r = 0.1, the peak value of
the amplitude reaches 1.6 in the momentum method; note that this overshoot is about 60% of the step
signal. In NAG, the peak is reduced to 1.35. Furthermore, settling into momentum takes about 10 s, but
takes less than 3 s in NAG.

In Figure 5(b), all eigenroots are at the left part of the imaginary axis. Compared to the eigenroots in
Figure 3(b), the eigenroots move to the real axis after hundreds of seconds from 100 to 2000, and then

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:11

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1.0

1.5

=0.05: [6+ln(l
2
z
-2

)] /(K
0
r

2
+1),0.95)

=0.05: [8+ln(l
2
z
-2

)] /(K0r
2
+1),0.98)

NAG, =0.9, K0 =100, r =0.001

NAG, =0.9, K0 =100, r =0.002

NAG, =0.9, K0 =100, r =0.00278

NAG, =0.9, K0 =100, r =0.01

NAG, =0.9, K0 =100, r =0.1

−3000 −2500 −2000 −1500 −1000 −500 0 500

−1000

−500

0

500

1000
0.240.460.640.780.86

0.93

0.97

0.992

500

0.240.460.640.780.86
0.93

0.97

0.992

1e+031.5e+032e+032.5e+03
3e+03

NAG, =0.9, K 0 =100 , r =0.001

NAG, =0.9, K 0 =100 , r =0.002

NAG, =0.9, K 0 =100, r =0.00278

NAG, =0.9, K 0 =100, r =0.01

NAG, =0.9, K 0 =100, r =0.1

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

=0.05: [6+ln(l
2
z
-2

)] /(K0r
2+1),0.95)

=0.02: [8+ln(l
2
z
-2

)] /(K0r
2+1),0.98) NAG, r =0.05, K0=100, =0.01

NAG, r =0.05, K0=100, =0.05

NAG, r =0.05, K0=100, =0.25

NAG, r =0.05, K0=100, =0.50

NAG, r =0.05, K0=100, =0.90

−120 −100 −80 −60 −40 −20 0
−25

−20

−15

−10

−5

0

5

10

15

20

25
0.91 0.40.70.840.9550.978

0.991

0.998

20

0.40.70.840.910.9550.978

0.991

0.998

406080100120

NAG, r =0.05, K0=100, =0.01

NAG, r =0.05, K0=100, =0.05

NAG, r =0.05, K0=100, =0.25

NAG, r =0.05, K0=100, =0.50

NAG, r =0.05, K0=100, =0.90

A
m

p
li

tu
d
e

Time (s)

(a)

Real axis (s−1)

(b)

Im
ag

in
ar

y
 a

x
is

 (
s−

1
)

−−

A
m

p
li

tu
d
e

Time (s)

(c)

Real axis (s−1)

(d)

Im
ag

in
ar

y
 a

x
is

 (
s−

1
)

Figure 5 (Color online) (a), (c) Step response and (b), (d) root locus of NAG.

Table 1 Step-signal response of optimization models SGD, SGD momentum, and NAG

Optimization model Parameters Transfer function Order Overshoot Settling time

SGD K0, r Gθsgd
(s) = K0 · r

s
1 No Long

SGD momentum K0, r, µ Gθsgdm
(s) =

K0r

µs2+s
2 Depend on ξ = 1√

4K0rµ−1
Middle-long

NAG K0, r, µ, α Gθnag (s) =
K0rµs+K0rα

µs2+s
2 Depend on ξ =

µK0rα+1

2
√

µK0rα
Middle-short

enter the monotone period. In Figure 4(b), most eigenroots have the imaginary parts, which means the
system needs more settling time.

In Figure 5(c), the learning rate r and proportional coefficient K0 are fixed, and the system converges
faster than in Figure 3(c). The main reason is that NAG benefits the moving directions of the system
in advance. The increasing overshoots reflect the affections caused by historical NAG. A bigger NAG
reaches the peak in less than 1.5 s (with µ = 0.9, K0 = 100, and r = 0.05), which implies that the
system may not smooth if the approximation target has too many saddle points. Figure 5(d) describes
the vibration period, which decreases more quickly than in Figure 3(d). All eigenroots enter the negative
real axis after 40 s, making the system track more quickly into a diminishing period.

3.4 Signal response of the optimizers

We summarize the system dynamics of SGD, SGD momentum, and NAG in Table 1. Each model is
determined by some predefined parameters. The open transfer functions provide an approximation of
each model in a directive way. SGD is a first-order control system without overshoot, but the settling
time is longer. SGD momentum improves SGD by adding an inertial adjuster, thus changing the system
to a classical second-order system, and the performance depends on the fine-tuning of the parameters.
NAG uses a differentiation element to enhance the momentum method, with a zero pole added to make
an emendation in advance, and the settling time and overshoot both diminish quickly. The improved

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:12

(a)

(c)

(b)

(d)

0 5 10 15 20

Epoch

0

0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

T
ra

in
 l

o
ss

T
ra

in
 a

cc
u
ra

cy

V
al

id
 a

cc
u
ra

cy

SGD K=10, r=0.001

SGD K=10, r=0.05

SGD-M K=10, r=0.001, m=0.5

SGD-M K=10, r=0.001, m=0.9

NAG K=10, r=0.001, m=0.5

NAG K=10, r=0.001, m=0.9

0 5 10 15 20

Epoch

0

V
al

id
 l

o
ss

SGD K=10, r=0.001

SGD K=10, r=0.05

SGD-M K=10, r=0.001, m=0.5

SGD-M K=10, r=0.001, m=0.9

NAG K=10, r=0.001, m=0.5

NAG K=10, r=0.001, m=0.9

0 5 10 15 20

Epoch

30

40

50

60

70

80

90

100

SGD K=10, r=0.001

SGD K=10, r=0.05

SGD-M K=10, r=0.001, m=0.5

SGD-M K=10, r=0.001, m=0.9

NAG K=10, r=0.001, m=0.5

NAG K=10, r=0.001, m=0.9

0 5 10 15 20

Epoch

30

40

50

60

70

80

90

100

SGD K=10, r=0.001

SGD K=10, r=0.05

SGD-M K=10, r=0.001, m=0.5

SGD-M K=10, r=0.001, m=0.9

NAG K=10, r=0.001, m=0.5

NAG K=10, r=0.001, m=0.9

Figure 6 (Color online) Identification results on the MNIST dataset of different optimizers. (a) The training loss, (b) valid loss,

(c) training accuracy, and (d) valid accuracy of SGD, momentum and NAG, respectively.

methods benefit the original SGD, but require sophisticated parameter design techniques.

Remark 4. The stability of a deep learning model is affected by network structure, optimization strategy
and application environment. Generally, a DNN model is formed by many layered neurons/kernels, the
risk of gradient decay and explosion is increasing with intensified layers. In extremes of abnormal inputs,
an improper learning rate will cause system vibration or even unstable.

4 Experiments

We use the above optimization models to verify how the parameters in each model affect the system
performance on two popular datasets. The MNIST dataset of handwritten digits has a training set of
60000 examples, and a testing set of 10000 examples [22]2). The CIFAR-10 dataset contains 60000 32×32
RGB images, which are divided into 10 classes, respectively3).

We compare the recognition results on the MNIST dataset in Figure 6, and report the numerical results
of some key levels in Table 2.

The SGD optimization with a small learning rate (r = 0.001) in the training stage greatly delays the
system response because the settling time ts is affected by 1

K0r
. Note that we use the batch gradient

descent method to accelerate the training, thus we can learn the relationship between ts and K0r, rather
than obtaining a precise definition. The training is improved with the r increased of the rest settings. In
SGD momentum case, the validation loss reduces faster than SGD during training, and the best validation
accuracy achieved finally is 98.22%.

The importance of the momentum factor is implied by comparing SGD momentum and NAG, by
fixing r and K0, the training loss is downsized when the momentum factor is enhanced. The model has
a training accuracy of 94.99% after four epochs, which reflects the adjusting function of the first-order
inertial element. The validation result is also improved from Figure 6(b) and (d), as it is more accurate
with less time cost. The dynamics of NAG with all parameter settings remaining in momentum. The

2) https://www.graviti.cn/open-datasets/MNIST.

3) http://www.cs.toronto.edu/∼kriz/cifar.html.

https://www.graviti.cn/open-datasets/MNIST
http://www.cs.toronto.edu/~kriz/cifar.html

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:13

Table 2 Key performance index of SGD, SGD momentum and NAG on the MNIST dataset at given accuracy levels

Train accuracy Index
SGD SGD momentum NAG

K0 = 10, r = 0.05 K0 = 10, r = 0.05, µ = 0.9 K0 = 10, r = 0.05, µ = 0.9

> 95%

Epoch 8 5 3

Time (s) 127.321 51.554 21.339

Train loss 0.164 0.162 0.115

Valid loss 0.157 0.145 0.103

Train accuracy (%) 95.39 95.43 96.69

Valid accuracy (%) 95.61 95.75 96.94

> 98%

Epoch 19 11 5

Time (s) 278.489 111.552 36.887

Train loss 0.072 0.075 0.058

Valid loss 0.085 0.087 0.069

Train accuracy (%) 98.09 98.01 98.29

Valid accuracy (%) 97.46 97.41 97.74

(a)

(c)

(b)

(d)

T
ra

in
 l

o
ss

T
ra

in
 a

cc
u
ra

cy

V
al

id
 a

cc
u
ra

cy
V

al
id

 l
o
ss

0 5 10 15 20 25 30

Epoch

0.4

0.6

0.8

1.0

1.2

1.4

1.6

SGD K=100, r=0.01

SGD-M K=100, r=0.001, m=0.3

NAG K=100, r=0.001, m=0.3, =0.5

0 5 10 15 20 25 30

Epoch

0.6

0.8

1.0

1.2

1.4

SGD K=100, r=0.01

SGD-M K=100, r=0.001, m=0.3

NAG K=100, r=0.001, m=0.3, =0.5

0 5 10 15 20 25 30

Epoch

40

50

60

70

80

90

SGD K=100, r=0.01

SGD-M K=100, r=0.001, m=0.3

NAG K=100, r=0.001, m=0.3, =0.5

0 5 10 15 20 25 30

Epoch

50

60

70

80

90

SGD K=100, r=0.01

SGD-M K=100, r=0.001, m=0.3

NAG K=100, r=0.001, m=0.3, =0.5

Figure 7 (Color online) Identification results on the CIFAR-10 dataset of different optimizers. (a) The training loss, (b) valid

loss, (c) training accuracy, and (d) valid accuracy of SGD, SGD momentum and NAG, respectively.

training loss is reduced by 29.8% than SGD, and 29.01% in Momentum. Taking the case of µ = 0.9 as
an example, the training accuracy approaches 100% (99.96%, actually) after 20 epochs, with the first
landmark, 96.69% at the second epoch. For the MNIST dataset, the learning speed is increased with
bigger learning rate and momentum.

The performance on the CIFAR dataset is shown in Figure 7, accompanied by two comparative training
stages listed in Table 3. To reduce the negative effect from manual interventions, we introduce the
Hyperband [23] as hyper-parameter optimization tool for our idea, based on the grid searching suggestions,
we select r = 0.01 as the representative case in SGD optimizers, r = 0.001, m = 0.3 in SGD-M and
r = 0.001, m = 0.3 in NAG.

Note that the CIFAR dataset has more color channels and feathers, the training requires more time
for computation. The SGD method with bigger learning rate (r = 0.01) indicates better accuracy than
(r = 0.001). The momentum factor (m = 0.3) improves the learning speed a lot under the same hyper-

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:14

Table 3 Key performance index of SGD, SGD momentum and NAG on the CIFAR dataset at given accuracy levels

Train accuracy Index
SGD SGD momentum NAG

K0 = 100, r = 0.001 K0 = 100, r = 0.001, µ = 0.5 K0 = 100, r = 0.001, µ = 0.5, α = 0.5

> 70%

Epoch 38 9 8

Time (s) 3713.554 1949.627 2274.326

Train loss 1.199 1.079 1.286

Valid loss 1.258 1.574 1.547

Train accuracy (%) 70.28 70.71 70.73

Valid accuracy (%) 69.01 65.01 54.76

> 80%

Epoch 78 35 16

Time (s) 6578.489 7784.554 4479.583

Train loss 0.931 1.219 1.194

Valid loss 0.924 1.034 1.364

Train accuracy (%) 80.04 80.03 80.93

Valid accuracy (%) 80.74 79.55 60.38

parameter settings in SGD (K = 100, r = 0.01), and has been further improved in NAG under the same
conditions.

An interesting phenomenon is, by fixing the hyper-parameters (K = 100, r = 0.006, m = 0.5), the
momentum way experiences some fluctuations in training and validation. This is caused by the production
Krµ = 0.30 > 0.25, acts as a second-order model. Moreover, the unstable vibrations is downsized in
NAG because of system coordinating by an extra zero introduced.

Table 2 compares the dynamics of three optimizers on the MNIST dataset. Often, the training accuracy
at the 95% and 98% levels is regarded as the key points. The settling time of SGD is much longer than
those of SGD momentum and NAG. SGD obtains 95.39% training accuracy in eight epochs, while SGD
momentum and NAG reach this level in five and three epochs, respectively. In summary, NAG is more
adaptive than SGD momentum and SGD. Similar trends are easily to be read in Table 3, consider the
training requires more effort, we select the accuracy level by 70% and 80%, though some fluctuations
exist, the NAG and Momentum method performs better than SGD under the same conditions.

5 Conclusion

DNNs obtain promising results from the given input to the desired target, and benefit from the fine-tuned
parameters. In this paper, the transfer function is applied to approximate three SGD-based optimizers.
Basically, the SGD optimizer is a traditional first-order system, and it needs more time than a momentum
optimizer or NAG optimizer to reach stability. The momentum optimizer changes SGD by adding one
inertial element, transforming the system to a second-order system. Furthermore, the NAG optimizer
puts one more zero on the second-order system of Momentum way. Both revisions move the eigenroots
of the optimizers moving toward the left panel of root locus coordinates. As a result, while applying
these optimizers into real problems, trying to examine it as a control model provides us with a systemic
scenery. How to simulate and simplify those optimizers is our next move.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos. 61933013, U1736211),

Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA22030301), Natural Science Foundation of

Guangdong Province (Grant No. 2019A1515011076), and Key Project of Natural Science Foundation of Hubei Province (Grant

No. 2018CFA024).

References

1 Ruder S. An overview of gradient descent optimization algorithms. 2016. ArXiv:1609.04747

2 An W P, Wang H Q, Sun Q Y, et al. A PID controller approach for stochastic optimization of deep networks. In: Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition, 2018. 8522–8531

3 Kim D, Kim J, Kwon J, et al. Depth-controllable very deep super-resolution network. In: Proceedings of International Joint

Conference on Neural Networks, 2019. 1–8

4 Hinton G, Srivastava N, Swersky K. Overview of mini-batch gradient descent. 2012. http://www.cs.toronto.edu/∼tijmen/

csc321/slides/lecture slides lec6.pdf

5 Qian N. On the momentum term in gradient descent learning algorithms. Neural Netw, 1999, 12: 145–151

6 Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn

Res, 2011, 12: 2121–2159

7 Zeiler M D. Adadelta: an adaptive learning rate method. 2012. ArXiv:1212.5701

https://arxiv.org/abs/1609.04747
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://doi.org/10.1016/S0893-6080(98)00116-6
https://arxiv.org/abs/1212.5701

Wu W, et al. Sci China Inf Sci May 2021 Vol. 64 150102:15

8 Dauphin Y N, de Vries H, Bengio Y. Equilibrated adaptive learning rates for nonconvex optimization. In: Proceedings of

Conference and Workshop on Neural Information Processing Systems, 2015

9 Kingma D, Ba J. Adam: a method for stochastic optimization. In: Proceedings of International Conference on Learning

Representations, 2015. 1–15

10 Reddi S J, Kale S, Kumar S. On the convergence of ADAM and beyond. In: Proceedings of International Conference on

Learning Representations, 2018. 1–23

11 Luo L C, Xiong Y H, Liu Y, et al. Adaptive gradient methods with dynamic bound of learning rate. In: Proceedings of

International Conference on Learning Representations, 2019. 1–19

12 Saxe A M, McClelland J L, Ganguli S. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks.

2013. ArXiv:1312.6120

13 Lee T H, Trinh H M, Park J H. Stability analysis of neural networks with time-varying delay by constructing novel Lyapunov

functionals. IEEE Trans Neural Netw Learn Syst, 2018, 29: 4238–4247

14 Faydasicok O, Arik S. A novel criterion for global asymptotic stability of neutral type neural networks with discrete time

delays. In: Proceedings of International Conference on Neural Information Processing, 2018. 353–360

15 Vidal R, Bruna J, Giryes R, et al. Mathematics of deep learning. 2017. ArXiv:1712.04741

16 Chaudhari P, Oberman A, Osher S, et al. Deep relaxation: partial differential equations for optimizing deep neural networks.

Res Math Sci, 2018, 5: 30

17 Wang H Q, Luo Y, An W P, et al. PID controller-based stochastic optimization acceleration for deep neural networks. IEEE

Trans Neural Netw Learn Syst, 2020, 31: 5079–5091

18 Cousseau F, Ozeki T, Amari S. Dynamics of learning in multilayer perceptrons near singularities. IEEE Trans Neural Netw,

2008, 19: 1313–1328

19 Amari S, Park H, Ozeki T. Singularities affect dynamics of learning in neuromanifolds. Neural Comput, 2006, 18: 1007–1065

20 Bietti A, Mairal J. Group invariance, stability to deformations, and complexity of deep convolutional representations. J Mach

Learn Res, 2019, 20: 876–924

21 Sutskever I, Martens J, Dahl G, et al. On the importance of initialization and momentum in deep learning. In: Proceedings

of International Conference on Machine Learning, 2013. 1139–1147

22 Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition. Proc IEEE, 1998, 86: 2278–2324

23 Li L S, Jamieson K, DeSalvo G, et al. Hyperband: a novel bandit-based approach to hyperparameter optimization. J Mach

Learn Res, 2018, 18: 1–52

https://arxiv.org/abs/1312.6120
https://doi.org/10.1109/TNNLS.2017.2760979
https://arxiv.org/abs/1712.04741
https://doi.org/10.1007/s40687-018-0148-y
https://doi.org/10.1109/TNNLS.2019.2963066
https://doi.org/10.1109/TNN.2008.2000391
https://doi.org/10.1162/neco.2006.18.5.1007
https://doi.org/10.1109/5.726791

	Introduction
	Related work
	Gradient descent optimization dynamics
	SGD optimizer
	SGD momentum
	Nesterov accelerated gradient
	Signal response of the optimizers

	Experiments
	Conclusion

