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Abstract Focal distance tabu search modifies a standard tabu search algorithm for binary optimization by

augmenting a periodic diversification step that drives the search away from a current best (or elite) solution

until the objective function deteriorates beyond a specified threshold or until attaining a lower bound on

the distance from the originating solution. The new augmented algorithm combines the threshold and lower

bound approaches by introducing an initial focal distance for the lower bound which is updated when the

diversification step is completed. However, rather than terminating the diversification step at the customary

completion point, focal distance tabu search (TS) retains the focal distance bound through additional search

phases designed to improve the objective function, drawing on a strategy proposed with strategic oscillation.

The algorithm realizes this strategy by partitioning the variables into two sets which are managed together

with an abbreviated tabu search process. An advanced version of the approach drives the search away from a

collection of solutions rather than a single originating solution, introducing the concept of a signature solution

to guide the search. The method can be employed to augment a variety of other metaheuristic algorithms

such as those using threshold procedures, late acceptance hill climbing, iterated local search, breakout local

search, GRASP, and path relinking.
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1 Background

Focal distance tabu search introduces a new diversification component that augments the customary tabu
search (TS) diversification approach of driving the search away from a current solution when progress
slows. A key element of focal distance TS is to provide a modified form of search that maintains the
search for a chosen period at a specified distance that operates as lower limit of separation from its origin.

The algorithm builds on classical TS threshold and strategic oscillation approaches by driving the
solution progressively farther away from a selected solution when successive diversification efforts are
unproductive. Focal distance TS goes farther in two ways, first by maintaining the search for a period
in a new region that is removed from a single origin, and second by a more advanced procedure that
maintains the search in a region that is removed from a collection of origins. By this latter procedure, the
new search region is prevented from cycling back through previous regions as it departs from previous
origins and can search new regions that are diverse relative to each other.

The present paper focuses on binary optimization, but our approach can be modified to apply to
optimization in other settings. The optimization problem of interest may be written as

(P) min xo = f(x) s.t. x ∈ X and x binary, (1)

where the vector x = (x1, . . . , xn) is alternately expressed as x = (xj : j ∈ N) for N = {1, . . . , n}.
We assume that the structure of X permits a neighborhood search for transitioning from one binary

solution x ∈ X to another by rules that identify neighbor solutions. We further suppose these transitions

*Corresponding author (email: fredwglover@yahoo.com, zhipeng.lv@hust.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-3115-5&domain=pdf&date_stamp=2021-4-12
https://doi.org/10.1007/s11432-020-3115-5
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-3115-5
https://doi.org/10.1007/s11432-020-3115-5
https://doi.org/10.1007/s11432-020-3115-5


Glover F, et al. Sci China Inf Sci May 2021 Vol. 64 150101:2

result by “flipping” variables using 1-flips or 2-flips, which respectively consist of changing the value of
one or two binary variables from 0 to 1 or from 1 to 0. Higher order flips are possible but not essential.

An instance of (P) that has attracted considerable attention in recent years is the quadratic uncon-
strained binary optimization problem:

(QUBO) min xo = xQx s.t. x binary, (2)

where Q is an n× n matrix. Examples of the wide range of applications embraced by the QUBO model
are found in the surveys by Lucas [1], Kochenberger et al. [2] and Glover et al. [3]. Our methodology
in this paper is particularly relevant to QUBO problems because of the freedom of choosing variables to
flip for a model whose only constraint is to require that variables are binary. However, there are QUBO
variants that also involve additional constraining relationships [2,4], and our approach can be applied to
them as well.

2 Previous related methods

Classical tabu threshold approaches for diversification typically employ the simple idea of starting from
a high quality (usually a current best) solution for (P) and flipping variables by a chosen strategy until
yielding a solution that satisfies a threshold on the objective function xo.

Control of the solutions by reference to objective function values was proposed in [5] through the notion
of “adaptive thresholding” as an alternative to simulated annealing, extending strategic oscillation (oscil-
lating assignment) from [6] which represents a fundamental component of tabu search. The application
of thresholding to the objective function, without strategic oscillation, was introduced in [7] and later,
by including a rudimentary form of oscillation in [8]. Related ideas were developed in the great deluge
approach of Dueck [9]. A more comprehensive use of strategic oscillation for controlling the objective
function was introduced in the tabu thresholding approach of Glover [10] and the critical event memory
approach of Glover and Kochenberger [11].

Two early variations of tabu search that employ strategies for driving the search away from a current
solution without using objective function thresholds were proposed in [12, 13]. The former approach
flipped variables randomly for a randomly chosen (progressively enlarging) number of iterations utilizing
a frequency memory and hash function ideas from Woodruff and Zemel [14], while the latter approach
instead achieved diversification by selecting best non-tabu moves at each iteration, imposing an arbitrarily
large tabu tenure until no more moves were possible, whereon all tabu restrictions were removed to descend
to a local optimum before repeating.

We propose a different type of tabu diversification based on selecting values for a focal distance as a
lower bound for separation but does not terminate the diversification process once the desired separation
is attained. Instead focal distance tabu search introduces a variable partitioning strategy that divides the
variables into two sets to guide the search by controlling the transitions from one set to the other. Strategic
oscillation is invoked by moving away from a solution to varying levels and launching an improving search
from each level, accompanied by the focal distance partitioning approach. A basic version of the method
operates by expressing the focal distance in terms of separation from a single solution x∗, while a more
advanced version adds a further dimension by driving the solution a chosen distance from a collection X∗

of solutions, and then maintains this distance through the diversification phases that follow. This ability
to simultaneously drive the search away from multiple regions avoids the risk that moving away from
a given region will simply move back to a region previously visited. The variable partitioning strategy
makes the method easy to execute with different options for selecting the focal distance values. We first
sketch the method in overview, and then give a more detailed description.

3 Overview: moving away from a single solution x
∗

Let x# denote a solution produced by starting from a chosen solution x∗ and flipping variables for some
chosen number of steps. The classical threshold condition for terminating the flipping consists of stopping
when the objective value x#

o for x# satisfies x#
o > xoThresh. For diversification purposes the goal is to

select the threshold xoThresh large enough so that x#
o > xoThresh assures the current solution x# is

“far enough” away from x∗ when stopping so that the search will enter a productive new region. But
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it is also important to keep from selecting xoThresh unduly large, which is reinforced by the fact that a
smaller xoThresh value can enable re-optimization starting from x# to be performed more quickly than
re-starting from a solution that is farther away. Consequently, the approach is often employed by first
choosing xoThresh to be a modest value and then increasing the value if the solution process following
diversification brings the current solution back to the vicinity of the original x∗.

Although the basic approach has been used in a variety of tabu search papers, little experimentation
has been devoted to the question of how to choose xoThresh. In most cases the variables to be flipped are
chosen randomly. A contrasting approach is used an early tabu search paper [15] by employing strategic
oscillation to flip variables non-randomly, increasing and decreasing xoThresh in waves. The method
seeks to worsen (increase) xo by the least amount or to improve (decrease) xo by the greatest amount at
each step, subject to tabu conditions to assure the solutions generated will not duplicate previous ones.
However, this approach likewise has not been extensively examined.

The basic structure of focal distance tabu search, restricting attention to driving the current solution
away from a single solution x∗, may be sketched as follows.

The method begins by applying tabu search for a chosen number of iterations to obtain the first solution
x∗.

A value xoThresh is then chosen as in the classical approach. A preliminary focal distance FocalD
is also selected to assure that x# lies sufficiently far from x∗ by requiring ||x# − x∗|| > FocalD, where
||x# − x∗|| is the Hamming distance between x# and x∗ (or equivalently, the number of flips required
to transform x∗ to x#). Relative to a current x#, we write the value ||x# − x∗|| as the current distance
CurrentD. This is useful for generalizations discussed later.

Phase 0. Generate x# to satisfy the two conditions x#
o > xoThresh and CurrentD > FocalD, for

CurrentD = ||x# − x∗||, by a diversification step that flips successive variables at random or probabilisti-
cally starting from x∗ until the indicated conditions are met. The final value of CurrentD then gives the
updated value for FocalD which may be larger than the original value if the xoThresh threshold condition
drives xo farther from x∗

o than the condition CurrentD > FocalD based on the original FocalD value.

Remark 1. A probabilistic choice of variables to flip can be based on keeping track of the number rj of
times xj receives the value 1 in r local optima encountered while obtaining x∗. Then, starting from x∗,
the probability assigned to flipping x∗

j can be determined by the weight rj if x
∗
j = 0 and the weight (r−rj)

if x∗
j = 1, adjusted so that each step flips a variable not previously flipped during the diversification step.

For greater diversification, the weights for flipping x∗
j can be reversed by using the weight rj if x∗

j = 1
and the weight (r − rj) if x∗

j = 0. The probabilities can also be determined by evaluating the change
in xo produced by each successive flip during the diversification, although this is slower. Satisfying the
conditions x#

o > xoThresh and ||x# − x∗|| > FocalD may be more important than using probabilistic
weights, and hence in some cases random flipping may be sufficient.

In contrast to the classical diversification approach, focal distance tabu search does not end the diver-
sification process after applying (some version of) Phase 0, but instead employs additional phases to pro-
gressively improve the solution x# subject to satisfying the separation requirement CurrentD > FocalD.
We briefly sketch an outline of these additional phases and then subsequently describe them in detail.

Phase 1. Introduce a variable partitioning method to give a variant of tabu search designed to quickly
find a local optimum xL such that CurrentD > FocalD.

Remark 2. No consideration is given here to satisfying xL
o > xoThresh. Instead, the search is just

looking for a good solution xL satisfying CurrentD > FocalD, and the smaller the value of xL
o the better.

For this reason, a possible variant of Phase 0 is to eliminate the initial requirement x#
o > xoThresh and

simply seek to satisfy CurrentD > FocalD, before proceeding to improve x# to obtain a solution xL.

Remark 3. When x#
o > xoThresh is eliminated in Phase 0, the value of FocalD can be determined

by running preliminary trials using x#
o > xoThresh as the stopping criterion, and then setting FocalD

to the Mean,Max or 0.5(Mean +Max) of the value CurrentD = ||x# − x∗|| obtained from these trials.
Thereafter, the criterion CurrentD > FocalD can replace x#

o > xoThresh. Alternatively, experiments can
also be performed to select FocalD as a specified fraction of n, as described subsequently. However, for
some kinds of problems a Hamming distance measure for CurrentD is inappropriate, and in these cases,
it can be useful to retain x#

o > xoThresh in Phase 0.

Phase 2. Execute the variable partitioning approach of Phase 1 in conjunction with tabu search for
a limited number of iterations, LimIter, and use a special initialization of tabu tenures, to improve the
solution xL from Phase 1 further, again subject to CurrentD > FocalD.
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Phase 3. Take the best solution from Phase 2 as the starting solution for a customary tabu search ap-
proach, beginning with all tabu tenures 0 (no variables are tabu to flip) and disregarding the requirement
CurrentD > FocalD.

The parallel processing step that carries out multiple instances of the sequence Phase 0 → Phase 1 →
Phase 2 → Phase 3 simultaneously is called a Round. A new solution x∗ is identified as the best solution
obtained from the parallel runs of the Round, and in coordination with other updates, including FocalD,
a new Round is launched to repeat the foregoing process.

When x∗ is not improved at the conclusion of a Round (or after a specified number of Rounds), then
xoThresh and FocalD are increased in a focal adjustment step to drive the solution farther from x∗ in
Phase 0, and the series of preceding Rounds are run again. Overall termination occurs when the focal
adjustment step determines that no gains are to be expected from continuing to increase xoThresh and
FocalD.

Details of the algorithm are as follows.

4 Focal distance tabu search for a single solution x
∗

Apply a tabu search algorithm to problem (P) for a chosen number of iterations and let x∗ denote the
best solution found. Then execute the following.

Choose an objective function threshold xoThresh > x∗
o and a preliminary value for the distance FocalD.

The value FocalD will normally be a fraction of n lying in an interval such as [0.1n, 0.25n], though
for greater diversification FocalD may be chosen larger. The objective function threshold xoThresh
may be chosen as a fraction of x∗

o; for example, assuming x∗
o < 0, xoThresh = fraction × x∗

o where
fraction = 0.8, 0.75, etc.

Remark 4. In contrast to the approach of setting xoThresh = fraction× x∗
o for xo = f(x), it may be

appropriate to define the objective as xo = co + f(x) where co is chosen as follows. Let fAvg denote the
average of the f(x) values over a collection of randomly generated solutions, or the average of the f(x)
values over locally optimal solutions starting from a collection of randomly generated solutions. Then co
is chosen so that co + fAvg = 0.5(co + f(x∗)) giving co = f(x∗)− 2fAvg, and hence x∗

o = co + f(x∗) =
2(f(x∗) − fAvg). For example, if fraction = 0.75, then xoThresh = 1.5(f(x∗) − fAvg) and in general
x#
o > xoThresh gives f(x#) > xoThresh− co.

Then execute the following phases in parallel for a chosen number of threads.

Phase 0. The goal of Phase 0 is to perform a diversification step to drive the search from x∗ to a new
solution x# such that

CurrentD > FocalD and x#
o > xoThresh (A)

followed by updating the focal distance relating x# and x∗ by setting FocalD = CurrentD at the conclusion
of Phase 0.

Remark 5. The diversification may be performed as noted earlier by executing a collection of 1-flips
starting with x∗ and continuing until Eq. (A) is satisfied, where no 1-flip is permitted to be reversed.
The 1-flips may be chosen randomly or probabiltistically as described in Remark 1.

Variable partitioning. To execute Phase 0 in a form that sets the stage for subsequent phases of the
algorithm, the variables are partitioned by reference to their index set N = {1, . . . , n} to create the two

subsets N(∗) = {j ∈ N : x#
j = x∗

j} and N(∼ ∗) = {j ∈ N : x#
j 6= x∗

j} = {j ∈ N : x#
j = 1 − x∗

j}. The
partitioning can be established in the execution of Phase 0 by expressing this phase in the following way.

Initialization
Given the current values of FocalD and xoThresh, set x# = x∗ and CurrentD = 0, and set N(∗) = N
and N(∼ ∗) = ∅.
Main routine
While CurrentD < FocalD and x#

o < xoThresh;

Choose j ∈ N(∗) and flip x#
j (which equals x∗

j by the definition of N(∗));

x#
j := 1− x#

j ;
N(∗) := N(∗)\{j} and N(∼ ∗) := N(∼ ∗) ∪ {j};
CurrentD := CurrentD + 1;
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Endwhile

Remark 6. At the conclusion of the main routine, CurrentD > FocalD, where we use the Hamming
distance measure for CurrentD that increases by 1 at each 1-flip of an element j ∈ N(∗). Consequently,
for the final solution xL we have CurrentD = ||xL − x∗||. Later we consider a generalization using a
distance measure where CurrentD can increase by a value different than 1.

To launch subsequent phases, update FocalD = CurrentD, xL = xBest = x#, hence, implicitly,
xL
o = xoBest = x#

o . Note the partitioning of N implies |N(∼ ∗)| = FocalD at the end of Phase 0. In the
first execution of Phase 0 by the focal distance TS method, FocalD will typically be less than 0.5n and
hence the set N(∼ ∗) will normally be somewhat smaller than N(∗).

Phase 1 (Quick descent to a local optimum satisfying CurrentD > FocalD).

Initialization From Phase 0, adopt the final partitioning of N into N(∗) and N(∼ ∗), as well as the
final assignment FocalD = CurrentD, and let x = x# and Stop = False.
Main routine
While Stop = False

1. Choose a highest evaluation 1-flip of a variable xj , j ∈ N .
If this flip does not improve (decrease) xo, then set Stop = True, set xL = x (and xL

o = xo) and
proceed to Phase 2 with a local D-optimum xL. Otherwise,

2. If j ∈ N(∗) or if CurrentD > FocalD, execute the flip to produce a new solution, again denoted by
x.

(a) If j ∈ N(∗), let CurrentD := CurrentD + 1 and move j from N(∗) to N(∼ ∗), giving N(∗) :=
N(∗)\{j} and N(∼ ∗) := N(∼ ∗) ∪ {j}.

(b) Else if j ∈ N(∼ ∗), let CurrentD := CurrentD − 1 and move j from N(∼ ∗) to N(∗), giving
N(∼ ∗) := N(∼ ∗)\{j} and N(∗) := N(∗) ∪ {j}.

3. Else if CurrentD = FocalD(j ∈ N(∼ ∗)), choose a highest evaluation 1-flip of a variable xj , j ∈ N(∗).

(a) If this 1-flip improves xo then execute the flip to produce a new solution, again denoted by x,
and execute 2(a).

(b) Else (the 1-flip is non-improving) set xoSave = xo, and execute the 1-flip, denoting the new
solution by x, and execute 2(a), resulting in CurrentD > FocalD.
Choose a highest evaluation 1-flip of a variable xj , j ∈ N as in Step 1.

i. If this flip does not yield a value for xo < xoSave, recover the previous x by reversing the
1-flip that produced the new x in 3(b), reverse the update of N(∗) and N(∼ ∗) performed
in 2(a) (under 3(b)) and set xL = x, xL

o = xo = xoSave and Stop = True. Then proceed
to Phase 2 with a local D-optimum xL.

ii. Else (the flip yields an improved value for xo < xoSave): Continue to the next iteration
(to repeat 1).

Endwhile

In anticipation of Phase 2, let xBest = xL (hence xoBest = xL
o ). Note that xBest differs from x∗ as

a result of satisfying ||xL − x∗|| > FocalD.

Remark 7. Phase 1 above can be simplified by terminating upon reaching 3(b) without executing this
step, at the risk of not reaching a local optimum as good as might otherwise be obtained. As indicated
subsequently, the inclusion of 2-flips can also avoid executing 3(b).

Phase 2 (Beginning with a local D-optimum).

Initialization. Let x = xBest and xo = xoBest. Also, for N(∗) and N(∼ ∗) inherited from Phase 1,
assign a 0 initial tabu tenure to all xj for j ∈ N(∗) (hence these variables begin non-tabu), and assign
a tabu tenure SmallTenure to all xj for j ∈ N(∼ ∗). For example, SmallTenure can be chosen from the
interval [0, 0.5CurrentD]. If SmallTenure = 0, then all variables start non-tabu, and Phase 2 is skipped,
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passing directly to Phase 3.
Choose an iteration limit LimIter > SmallTenure. Subsequently, as variables are flipped, they are as-
signed a tabu tenure by customary tabu search rules.
Main routine
Unlike Phase 1, Phase 2 does not terminate upon reaching a local optimum, but rather depends on
LimIter. Nevertheless, Phase 2 is simpler than Phase 1 because tabu restrictions avoid the complications
posed by step 3(b). The organization of Phase 2 continues to assure ||x− x∗|| > FocalD.
For Iter = 1 to LimIter

1. Choose a highest evaluation non-tabu 1-flip of a variable xj , j ∈ N .

2. Execute the flip to produce a new solution, again denoted by x.

(a) If j ∈ N(∗), let CurrentD := CurrentD + 1 and move j from N(∗) to N(∼ ∗), giving N(∗) :=
N(∗)\{j} and N(∼ ∗) := N(∼ ∗) ∪ {j}.

(b) Else if j ∈ N(∼ ∗), let CurrentD := CurrentD − 1 and move j from N(∼ ∗) to N(∗), giving
N(∼ ∗) := N(∼ ∗)\{j} and N(∗) := N(∗) ∪ {j}.

3. If CurrentD < FocalD, choose a highest evaluation non-tabu 1-flip of a variable xj , j ∈ N(∗),
set CurrentD := CurrentD + 1 and move j from N(∗) to N(∼ ∗) giving N(∗) := N(∗)\{j} and
N(∼ ∗) := N(∼ ∗) ∪ {j}. (Now CurrentD > FocalD.)

4. If xo < xoBest, then update xoBest = xo and xBest = x.

Endfor

Remark 8. Both Phases 1 and 2 can be improved by including 2-flip moves. For example, in Step 3 of
Phase 1 where if CurrentD = FocalD and j ∈ N(∼ ∗) in Phase 1, the method can check whether a 2-flip
move, with at least one of the flips coming from N(∗), can improve xo and terminate if no improvement
results. This replacement of Step 3 simplifies Phase 1.

Remark 9. As noted in the Initialization of Phase 2, the algorithm can jump directly from Phase 1 to
Phase 3 without executing Phase 2 by setting SmallTenure = 0. Another option is to skip Phase 1 and
go directly from Phase 0 to Phase 2. This can be done by performing the Initialization for Phase 1 after
Phase 0 and setting xL = x. In this case, a reduced tabu search phase that maintains CurrentD > FocalD
can replace the phase of first proceeding to a local optimum xL as done in Phase 1. The sequence from
Phase 0 to Phase 2, potentially skipping over Phase 1 or Phase 2, can be executed several times in
succession for increasing values of xoThresh and FocalD, to identify values of these parameters that lead
to interesting new solution outcomes before continuing to Phase 3. Such an option may be particularly
relevant for the version of focal distance TS applied to a set X∗, described below.

Phase 3 (Beginning from a solution xBest from Phase 1 or Phase 2). Apply a customary
TS approach starting from x = xBest. Begin with all tabu tenures 0 (no variables are tabu to flip) and
disregard the requirement CurrentD > FocalD.

As noted earlier, parallel processing is used to execute a series of Rounds that carry out multiple
instances of the sequence Phase 0 → Phase 1 → Phase 2 → Phase 3 simultaneously. At the conclusion of
each Round, the best solution x∗ from the resulting collection of parallel solution efforts is identified to
repeat the foregoing process, while a focal adjustment step increases the values of xoThresh and FocalD
if x∗ is not improved by the latest Round (or after a specified number of Rounds).

The following summary of the method puts all these considerations together. We refer to the tabu
search approach that launches the method and that is used in Phase 3 as the basic algorithm, and refer
to the form of this method used in Phase 2 as the abbreviated basic algorithm. The algorithm of Phase 1
that uses the variable partitioning with local descent will be called the constrained local improvement
algorithm. The basic algorithm uses an initial stopping criterion that limits the number of iterations it
executes when launching the method, and also uses a Phase 3 stopping criterion that limits the number
of iterations it executes in Phase 3. The complete method has an overall termination criterion, based
on the number of iterations performed that fail to improve the best solution x∗ and a lower limit on the
value of xoThresh and an upper limit on the value of FocalD.

Summary: focal distance tabu search algorithm for a single solution x
∗.
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Initial step: Apply the basic algorithm until satisfying the initial stopping criterion. Identify the initial
best solution x∗ and select beginning xoThresh and FocalD values for Phase 0.
While the overall termination criterion is not satisfied.

Set Improve = True;
While Improve = True (Round Loop);

Carry out a Round consisting of parallel threads initiated by the current x∗ and the current
xoThresh and FocalD values as follows:

Execute the diversification process of Phase 0 and update FocalD;
Execute the constrained local improvement algorithm of Phase 1;
Execute the abbreviated basic algorithm of Phase 2;
Execute the basic algorithm in Phase 3 until satisfying the Phase 3 stopping criterion.

Identify the best solution x∗ obtained over all the threads and the value of FocalD that produced
this x∗. If x∗ is not improved compared to the x∗ that initiated the current Round, then set
Improve = False and terminate the Round Loop. Otherwise continue.

Endwhile
Focal adjustment step
If the overall stopping criterion is not satisfied, increase xoThresh and the value of FocalD inherited
from the Round Loop and continue by beginning from the best solution x∗ previously found.

Endwhile

The basic algorithm in the initial step can also be implemented using multiple threads, in which case
the initial x∗ will be the best solution over all threads. Now we describe the more advanced version
of focal distance TS that seeks new solutions that lie a minimum distance FocalD from more than one
solution x∗. We identify additional options for the single x∗ solution case in discussing the analog of the
preceding algorithm applied to a set of solutions.

5 Focal distance tabu search for a set X
∗ of solutions

Focal distance tabu search applied to a set X∗ of solutions involves several additional concepts that
enable the algorithm to be expressed in a form that resembles the basic focal distance TS applied to a
single solution x∗.

The signature vector xS . In place of the single solution x∗ used in the simpler form of focal distance
tabu search, we begin Phase 0 by creating a signature vector xS for the solutions x ∈ X∗, by setting
xS
j = v, for v = 0 or 1, if the majority of solutions x ∈ X∗ yields xj = v.
To do this, denote the number of solutions inX∗ bym = |X∗|, and consider the subset of solutions inX∗

given by X∗(j : v) = {x ∈ X∗ : xj = v} and represent its cardinality by m(j : v) = |X∗(j : v)|. It follows
thatm(j : 0)+m(j : 1) = m. Let Max(j) = Max(m(j : 0),m(j : 1)) and Min(j) = Min(m(j : 0),m(j : 1)),
which also yields Max(j) +Min(j) = m. Finally, the signature vector xS may be defined by

xS
j = 1 if m(j : 1) > m(j : 0), (3)

xS
j = 0 if m(j : 0) > m(j : 1). (4)

For the case m(j : 1) = m(j : 0), if there exists any xj that satisfies this case, we choose x
S
j randomly to

be 0 or 1, subject to requiring that half (rounding down if necessary) of the j yielding m(j : 1) = m(j : 0)
receive the value 0 and the remainder receive the value 1. Thus, in all cases, we have xS

j = v for
Max(j) = m(j : v).

The result of flipping a variable xj in the signature vector xS
j from xS

j to 1 − xS
j will cause the new

vector to “move away from” Max(j) different vectors in X∗ and “move toward” Min(j) different vectors
in X∗. Hence the net diversification effect relative to X∗ achieved by this flip will be given by the value
dj identified as

dj = Max(j)−Min(j). (5)

In the simpler situation where we consider a single solution x∗, i.e., X∗ = {x∗}, it is evident that x∗

is also the signature vector xS
j of X∗, and Max(j) −Min(j) = 0, hence dj = m(= 1). In general, for a

set X∗ containing m solutions, the equality dj = m holds for each xj that receives the same value in all
x ∈ X∗. The subset N(j : m) of N that contains all variables xj such that dj = m (hence for which
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xj receives the same value v for all x ∈ X∗) may be viewed as defining the “intersection” of the vectors
x ∈ X∗, where the vectors are treated as sets and the intersection of two sets is defined to be the indexes
of all variables that receive the same values in these sets.

The condition dj = m, which means that flipping xS
j to 1 − xS

j moves away from all solutions in X∗,
may be interpreted as having the effect of moving a unit distance away from the full set X∗. In general,
we define the distance that flipping xS

j to 1− xS
j moves away from X∗ to be

Dj = dj/m. (6)

Recalling that dj measures the difference between the number of solutions in X∗ that a flip “moves
away from” minus the number of solutions in X∗ that a flip “moves toward”, we see that

For Max(j) = m : dj = m (and Dj = m/m = 1), (7)

For Max(j) = m− 1 : dj = m− 2 (and Dj = 1− 2/m), (8)

and in general

For Max(j) = m− h : dj = m− 2h (and Dj = 1− 2h/m). (9)

In short, we redefine the distance CurrentD used in the algorithm applied to a single solution x∗ so that
CurrentD represents the distance that a current solution has moved away from X∗. Then, starting from
CurrentD = 0 for the solution xS , flipping xS

j to 1− xS
j results in

CurrentD := CurrentD +Dj. (10)

Consequently, Phase 0 for X∗ modifies Phase 0 for x∗ simply by initializing x∗ = xS and replacing
CurrentD := CurrentD + 1 in the main routine by CurrentD := CurrentD +Dj.

For Phases 1 to 3, if j ∈ N(∼ ∗), then, just as in the algorithm for a single solution x∗, the flip
corresponds to moving away from X∗ and hence in this case we let CurrentD := CurrentD−Dj.

Note that the diversification in Phase 0 that sets CurrentD := CurrentD + Dj implies that flipping
variables xj with larger Dj values move away from X∗ more quickly (causing CurrentD to achieve a given
value in fewer flips). The quickest departure from X∗ would be to restrict flips to variables with Dj = 1,
corresponding to selecting flips in the “intersection” of the solutions in X∗, which also corresponds to
the situation of moving away from a single solution x∗. Thus, an option in Phase 0 for X∗ is to bias the
choice of xj in favor of variables with larger Dj values (for example, by assigning probabilities based on
the magnitude of Dj).

Again, we refer to the tabu search algorithm that initiates the search (and that is executed in Phase 3
with a different stopping criterion) as the basic algorithm.

Setting the stage for Phase 0 applied to X
∗. Apply the basic algorithm to problem (P) until

satisfying the initial stopping criterion or the Phase 3 stopping criterion (according to the stage executed)
and update the set X∗ to consist of a collection of elite solutions found. Identify the signature solution
x∗ for X∗ and the associated values Dj = dj/m for each j ∈ N .

After the initial execution of the basic algorithm, choose an initial value FocalD as the minimum
distance desired to move away from X∗ and a value xoThresh for the threshold value for moving away
from xS

o of the signature solution where xS
o will be represented by x∗

o upon setting x∗ = xS . Also, select
a value MaxFlip limiting the total number of flips executed in Phase 0.

Phase 0 for X
∗.

Initialization Set x∗ = xS , x# = x∗ and CurrentD = 0. Once again, we define N(∗) = {j ∈ N :

x#
j = x∗

j} and N(∼ ∗) = {j ∈ N : x#
j 6= xj∗} and initialize N(∗) = N and N(∼ ∗) = ∅.

Main routine
While CurrentD < FocalD and x#

o < xoThresh;

Choose j ∈ N(∗) and flip x#
j (= x∗

j );

x#
j := 1− x#

j ;
N(∗) := N(∗)\{j} and N(∼ ∗) := N(∼ ∗) ∪ {j};
CurrentD := CurrentD +Dj ;
NumFlip := NumFlip + 1;
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If (NumFlip = MaxFlip) exit the “While loop”;
Endwhile

To launch subsequent phases, let FocalD = CurrentD, xL = xBest = x# and xL
o = xoBest = x#

o .
Phase 1 For X

∗ (quick descent to a local optimum satisfying CurrentD > FocalD).

Initialization For N(∗), N(∼ ∗), CurrentD, FocalD and x# inherited from Phase 0, let x = x# and
Stop = False.
Main routine
While Stop = False

1. Choose a highest evaluation 1-flip of a variable xj , j ∈ N , by requiring that j satisfies j ∈ N(∗) or
j ∈ N(∼ ∗) and CurrentD−Dj > FocalD.
If this flip does not improve (decrease) xo, then

(a) Set Stop = True, set xL = x (and xL
o = xo) and proceed to Phase 2 with a local D-optimum

xL. Otherwise,

(b) Execute the flip to produce a new solution, again denoted by x.

2. If j ∈ N(∗)

Let CurrentD := CurrentD +Dj and move j from N(∗) to N(∼ ∗), giving N(∗) := N(∗)\{j}
and N(∼ ∗) := N(∼ ∗) ∪ {j}.

Else if j ∈ N(∼ ∗)

Let CurrentD := CurrentD − Dj and move j from N(∼ ∗) to N(∗), giving N(∼ ∗) := N(∼
∗)\{j} and N(∗) := N(∗) ∪ {j}.

Endwhile

2-flip option. If the 1-flip in Step 1 above does not improve xo, then choose a highest evaluation 2-flip
of variables xj and xk, j, k ∈ Nsuch that one of the following conditions holds: (i) j, k ∈ N(∗); (ii) j ∈
N(∗), k ∈ N(∼ ∗) and CurrentD+Dj−Dk > FocalD or (iii) j, k ∈ N(∼ ∗)CurrentD−Dj−Dk > FocalD.
If this 2-flip also does not improve xo then execute Step 1(a) above and otherwise execute Step 2 above
for both j and k.

The 2-flip option can be examined before the 1-flip in Step 1 or they can both be examined simulta-
neously to pick the move that satisfies the “> FocalD” requirement and improves xo the most.

In anticipation of Phase 2, let xBest = xL and xoBest = xL
o .

Phase 2 For X
∗.

Initialization Use the same initialization applied in the case where focal distance tabu search is ap-
plied to a single solution x∗, letting x = xBest, assigning a 0 initial tabu tenure to all xj for j ∈ N(∗),
and assigning a tabu tenure SmallTenure to all xj for j ∈ N(∼ ∗). If SmallTenure = 0, then all variables
start non-tabu, and Phase 2 is skipped, passing directly to Phase 3.
Main routine
For Iter = 1 to LimIter

Choose a highest evaluation non-tabu 1-flip of a variable xj , j ∈ N .
Option A: Require that j satisfies j ∈ N(∗) or j ∈ N(∼ ∗) and CurrentD− dj/m > FocalD.
Execute the flip to produce a new solution, again denoted by x.
If j ∈ N(∗) let CurrentD := CurrentD +Dj and move j from N(∗) to N(∼ ∗), giving

N(∗) := N(∗)\{j} and N(∼ ∗) := N(∼ ∗) ∪ {j}.
Else if j ∈ N(∼ ∗) let CurrentD := CurrentD−Dj and move j from N(∼ ∗) to N(∗), giving

N(∼ ∗) := N(∼ ∗)\{j} and N(∗) := N(∗) ∪ {j}.
If Option A is not applied and j ∈ N(∼ ∗) above then perform the following:
While CurrentD < FocalD

Choose a highest evaluation non-tabu 1-flip of a variable xj , j ∈ N(∗), set
CurrentD := CurrentD +Dj and move j from N(∗) to N(∼ ∗) giving
N(∗) := N(∗)\{j} and N(∼ ∗) := N(∼ ∗) ∪ {j}.
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Endwhile
If xo < xoBest then update xoBest = xo and xBest = x.

Endfor

As in Phase 1, additional variants are possible by including 2-flip moves.
Phase 3 for X

∗. This phase is identical to Phase 3 when X∗ consists of a single solution x∗.
The complete focal distance tabu search algorithm for X∗ may then be summarized as follows, which

differs in only a few (critical) ways from the summary for the single solution x∗. As before, the basic
algorithm uses an initial stopping criterion that limits the number of iterations it executes when launching
the method, and also uses a Phase 3 stopping criterion that limits the number of iterations it executes
in Phase 3. The overall termination criterion for stopping the entire algorithm is based on the number
of iterations performed that fail to improve the best solution x∗ as well as being based on a lower limit
on the value of xoThresh and an upper limit on the value of FocalD.

Summary: focal distance tabu search algorithm for X
∗.

Initial step: Apply the basic algorithm until satisfying the initial stopping criterion. Identify the set
X∗ of elite solutions and its signature solution xS and select beginning xoThresh and FocalD values for
Phase 0.
While the overall termination criterion is not satisfied

Set Improve = True;
While Improve = True (Round Loop)

Carry out a Round consisting of parallel threads initiated by the current xS and the current
xoThresh and FocalD values as follows:

Execute the diversification process of Phase 0 and update FocalD;
Execute the constrained local improvement algorithm of Phase 1;
Execute the abbreviated basic algorithm of Phase 2;
Execute the basic algorithm in Phase 3 until satisfying the Phase 3 stopping criterion.

Identify the best solution x∗ obtained over all the threads and the value of FocalD that produced
this x∗. If x∗ is not improved over the x∗ that initiated the current Round, then set Improve = False
and terminate the Round Loop.
Otherwise, identify the set X∗ that was produced by the basic algorithm to obtain this x∗ and
identify its signature solution xS . Then continue the Round Loop.

Endwhile
Focal adjustment step.
If the overall stopping criterion is not satisfied, increase xoThresh and the value of FocalD
inherited from the Round Loop and continue by beginning with the X∗ associated with the
best solution x∗ previously found.

Endwhile

As mentioned earlier, the initial step can apply the basic algorithm in either a single thread or in
multiple threads. If multiple threads are used in this step, then X∗ can be composed by comparing
sets X∗ of elite solutions from the different threads and selecting a subset consisting of the best ones.
Tradeoffs within the execution of parallel threads, either in the Initial Step or afterward, can be considered
by periodically querying the threads to identify superior x∗ solutions produced to the current point, and
re-allocating them to provide new starting solutions for threads that have produced poorer x∗ solutions.

Tradeoffs in speed versus solution quality can be explored by options that jump over Phase 1 or Phase 2
and by not terminating the Round Loop until x∗ has not improved for two or more iterations. Good rules
for the initial stopping criterion and the Phase 3 stopping criterion can be determined by relaxed rules
that allow the basic algorithm to run for a long time, and then observing when the solutions produced
could have been obtained by stopping the algorithm earlier. This also applies to initially picking a large
LimIter value for Phase 2 that can subsequently be reduced. Such experimentation may also discover a
more effective rule for ending Phase 2 than relying on LimIter. There remains a possibility that earlier
stopping points will still yield overall results that are as good, where solutions gradually improve to a
desired level even if they are not as good at some intermediate point. It may additionally be observed
that X∗ may be constructed by reference to clustering, using clustering ideas as proposed by Glover and
Laguna [16] and Samorani et al. [17]. For constructing X∗, the focal distance algorithm can keep track
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of the best solutions x∗ (including in a variant that initially applies the single solution x∗ approach) and
then using clustering to group solutions that are closer together to form new X∗ sets. Another possibility
for exploiting clustering is to extract a “central” x∗ in each cluster and use these points to compose a
new X∗. Then the focal distance process of driving the solution away from this X∗ would drive it away
from all the central x∗ solutions, and so would tend to drive the search into a region different from any
seen before.

As noted in connection with the version of the method applied to a single solution x∗, the sequence
from Phase 0 to Phase 2, potentially skipping over Phase 1 or Phase 2, can be executed several times in
succession for increasing values of xoThresh and FocalD, to identify values of these parameters that lead to
interesting new solution outcomes before continuing to Phase 3. This option may be particularly relevant
in the context of applying focal distance TS to a set X∗, although it may be useful to allow Phase 2
to run for additional iterations in order to determine the merit of particular values of the xoThresh and
FocalD parameters.

Finally, we note as in Remark 3 that for some kinds of problems a measure of CurrentD related to
the Hamming distance can be inappropriate. The updates we use in the X∗ case, which increment and
decrement CurrentD by a value Dj that can differ from the Hamming distance increment Dj = 1, give a
format for handling these problems where the Hamming distance is not suitable. In the general case, the
moves employed may not be simple 1-flips or 2-flips but may involve operations such as insertions and
exchanges of elements as in permutation and scheduling problems.

6 Conclusion

Focal distance tabu search can be applied in numerous ways, by selecting different trigger points for
launching diversification and by choosing different values for the parameters of the algorithm, as well as
by using different tabu search approaches such as those incorporating path relinking. A useful avenue
for empirical research will be to identify what values of FocalD work better in different settings and
what patterns work better for increasing this value each time a diversification step fails to provide an
improvement in Phase 3, including the option of decreasing this value once Phase 3 succeeds in producing
an improved x∗ as well as of increasing the values of xoThresh and FocalD in successive applications of
the Phase 0 to Phase 2 sequence before proceeding to Phase 3. It will also be interesting to discover if the
version based on a single x∗ solution or the version based on set of solutions X∗ works better, depending
on the kind of problem encountered.

It is worth noting that the fundamental strategies in the initial step and in Phases 2 and 3 need not be
restricted to implementation with tabu search, provided an algorithm is used that is capable of searching
beyond a local optimum, though the adaptive memory and strategic oscillation components of tabu search
reinforce several aspects of these steps.

The focal distance TS algorithm, both by reference to a single solution x∗ and a set of solutions X∗, can
be employed in a natural way in conjunction with a variety of metaheuristics that include diversification
processes, including iterated local search as described in [18,19], and the adaptive perturbation procedures
of breakout local search in [20–22]. Another potentially fertile application of the approach can be to
augment the thresholding methods of late acceptance hill climbing in [23] and diversified late acceptance
search in [24]. Joining the focal distance TS approach with GRASP, particularly in the versions of
GRASP that incorporate path relinking as in [25], and with the dynamic diversification strategy in [26],
afford additional opportunities for future research. Finally, focal distance TS can be used for analyzing
and exploiting landscape patterns in combinatorial search as described in [27].
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