• Supplementary File •

Bipartite Consensus Problem on Matrix-valued Weighted Directed Networks

Lulu PAN, Haibin SHAO, Yugeng XI & Dewei LI^{*}

Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai 200240, China

Appendix A An example of matrix-valued weighted directed graph

For instance, the node set and edge set of the positive-negative directed spanning tree \mathcal{T} of \mathcal{G} in Figure A1 are $\mathcal{V} = \{1, 2, \ldots, 10\}$ and $\mathcal{E} = \{(2, 1), (1, 3), (3, 4), (4, 6), (3, 5), (5, 7), (7, 8), (5, 9), (9, 10)\}$, respectively.

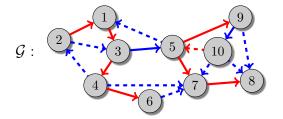


Figure A1 A matrix-valued weighted directed graph \mathcal{G} . The positive definite and the positive semi-definite matrix-valued weights are illustrated by solid lines and dashed lines in blue, respectively; the negative definite and the negative semi-definite matrix-valued weights are illustrated by solid lines and dashed lines in red, respectively.

Appendix B Proof of Theorem 1

The following lemma is important related to the null space of the matrix-valued weighted Laplacian matrix.

Definition 1. Define $\mathcal{R} = \operatorname{range}\{D^*(\mathbf{1} \otimes I_d)\}$ as the bipartite consensus subspace.

Note that the matrix-valued weighted Laplacian L^s has at least d zero eigenvalues. Let $\lambda_1 \leq \cdots \leq \lambda_{dn}$ be the eigenvalues of L^s , then $0 = \lambda_1 = \cdots = \lambda_d \leq \lambda_{d+1} \leq \cdots \leq \lambda_{dn}$.

Lemma 1. A digon sign-symmetric matrix-valued weighted directed network \mathcal{G} is structurally balanced if and only if \mathcal{G}_u is structurally balanced.

Lemma 2. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, A)$ be a directed graph with corresponding undirected mirror graph $\mathcal{G}_u = (\mathcal{V}, \mathcal{E}_u, A_u)$. If \mathcal{G} is digon sign-symmetric and balanced, then $L^s(\mathcal{G}_u) = (L^s(\mathcal{G}) + L^s(\mathcal{G})^T)/2$.

Lemma 3. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, A)$ be a matrix-valued weighted undirected network. If \mathcal{G} is structurally balanced and has a positive-negative spanning tree, then the multi-agent system (2) admits a bipartite consensus solution.

Lemma 4. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, A)$ be a matrix-valued weighted undirected network. Denote the Laplacian matrix of \mathcal{G} as L^s and the algebraic multiplicity of eigenvalue zero of L^s as $\kappa \in \mathbb{N}$. If the edge weight matrix $A_{ij} \in \mathbb{R}^{d \times d}$ $(d \in \mathbb{N})$ is such that $|A_{ij}| \succ 0$ for all $(i, j) \in \mathcal{E}$, then \mathcal{G} is structurally balanced if and only if $\kappa = d$.

We now provide the proof of Theorem 1 as follows.

Proof. (Necessity) Assume the multi-agent system (2) admits a bipartite consensus solution $\tilde{\boldsymbol{x}} = D^*(\mathbf{1} \otimes (\frac{1}{n}(\mathbf{1}^T \otimes I_d)D^*\boldsymbol{x}(0)))$ and $\mathbf{null}(L^s) \neq \mathcal{R}$. Then, there exists an $\boldsymbol{x}' \in \mathbb{R}^{dn}$ such that $L^s \boldsymbol{x}' = 0$ and $\boldsymbol{x}' \notin \mathcal{R}$. Choose $\boldsymbol{x}(0) = \boldsymbol{x}'$ and note that $L^s \boldsymbol{x}' = 0$, then $\boldsymbol{x}(t) = \boldsymbol{x}'$ for all $t \geq 0$. However, the multi-agent system (2) converges to $\tilde{\boldsymbol{x}}$ and $\tilde{\boldsymbol{x}} \in \mathcal{R}$, which establishes a contradiction. Therefore, $\mathbf{null}(L^s) = \mathcal{R}$.

^{*} Corresponding author (email: dwli@sjtu.edu.cn)

(Sufficiency) Consider a Lyapunov function $V(\boldsymbol{\delta}) = \frac{1}{2}\boldsymbol{\delta}^T\boldsymbol{\delta}$, where $\boldsymbol{\delta} = \boldsymbol{x} - \boldsymbol{\tilde{x}}$. Then $V(\boldsymbol{\delta})$ is positive semi-definite and $\dot{\boldsymbol{\delta}} = \dot{\boldsymbol{x}} - L^s \boldsymbol{x} = -L^s \boldsymbol{\delta}$. Therefore,

—•

$$V(\boldsymbol{\delta}) = \boldsymbol{\delta}^{T} \boldsymbol{\delta}$$

= $\boldsymbol{\delta}^{T} \boldsymbol{\dot{x}}$
= $-\boldsymbol{\delta}^{T} L^{s} \boldsymbol{x}$
= $-\boldsymbol{\delta}^{T} L^{s} \boldsymbol{\delta}$
= $-\boldsymbol{\delta}^{T} (\frac{1}{2} (L^{s} + L^{s^{T}})) \boldsymbol{\delta}$
= $-\boldsymbol{\delta}^{T} L_{u} \boldsymbol{\delta}$
 $\leqslant -\lambda_{2} (\mathcal{G}_{u}) \boldsymbol{\delta}^{T} \boldsymbol{\delta}$
 $\leqslant 0.$

Moreover, $\dot{V}(\delta) = 0$ if and only if $\delta = 0$. Thus, the multi-agent system (2) admits a bipartite consensus solution \tilde{x} .

Appendix C Proof of Theorem 2

Proof. Assume \mathcal{G} is structurally balanced and has a positive-negative directed spanning tree, but the multi-agent system (2) can not admit a bipartite consensus solution $\tilde{\boldsymbol{x}} = D^* (\mathbf{1} \otimes (\frac{1}{n} (\mathbf{1}^T \otimes I_d) D^* \boldsymbol{x}(0)))$. According to Theorem 1, it is satisfied that $\mathbf{null}(L^s) \neq \mathcal{R}$ and there exists an $\boldsymbol{x}' \in \mathbb{R}^{dn}$ such that $L^s \boldsymbol{x}' = 0$ and $\boldsymbol{x}' \notin \mathcal{R}$. Then, considering the undirected matrix-valued weighted network \mathcal{G}_u ,

$$\boldsymbol{x}'^{T}L^{s}(\mathcal{G}_{u})\boldsymbol{x}' = \boldsymbol{x}'^{T}(\frac{1}{2}(L^{s} + (L^{s})^{T}))\boldsymbol{x}' = 0.$$

Therefore, $\operatorname{null}(L^s(\mathcal{G}_u)) \neq \mathcal{R}$. However, \mathcal{G} is structurally balanced and has a positive-negative directed spanning tree, then \mathcal{G}_u is structurally balanced and has a positive-negative spanning tree. According to Lemma 3, $\operatorname{null}(L^s(\mathcal{G}_u)) = \mathcal{R}$, which establishes a contradiction. Therefore, $\operatorname{null}(L^s) = \mathcal{R}$ and the multi-agent system (2) admits a bipartite consensus solution.

Appendix D Proof of Theorem 3

Proof. (Necessity) Since $|A_{ij}| \succ 0$ for all $(j, i) \in \mathcal{E}$ and the matrix-valued weighted directed graph \mathcal{G} is strongly connected, then \mathcal{G} has a positive-negative directed spanning tree. If \mathcal{G} is structurally balanced, then according to the Theorem 1, L^s has zero eigenvalue and the null space of L^s satisfies $\operatorname{null}(L^s) = \mathcal{R}$. Consequently, the algebraic multiplicity of zero eigenvalue of L^s equals to d which is the dimension of the matrix-valued weights.

(Sufficiency) Note that zero is an eigenvalue of L^s with algebraic multiplicity d. Let $\lambda_1 = \cdots = \lambda_d = 0$. Denote the non-zero vector $\boldsymbol{w} = [\boldsymbol{w}_1^T, \boldsymbol{w}_2^T, \dots, \boldsymbol{w}_n^T,]^T \in \mathbb{R}^{dn}$ as the eigenvector corresponding to the zero eigenvalue of L^s where $\boldsymbol{w}_i \in \mathbb{R}^d$ for all $i \in \underline{n}$. Clearly, $L^s \boldsymbol{w} = \boldsymbol{0}$ and $\boldsymbol{w}^T L^{s^T} = \boldsymbol{0}$. Thus

$$\frac{1}{2}\boldsymbol{w}^{T}(L^{s}+L^{s^{T}})\boldsymbol{w}=\boldsymbol{w}^{T}L^{s}(\mathcal{G}_{u})\boldsymbol{w}=0, \tag{D1}$$

where $L^{s}(\mathcal{G}_{u})$ is the Laplacian matrix of the undirected matrix-valued weighted network \mathcal{G}_{u} corresponding to \mathcal{G} . From D1, we have 0 is an eigenvalue of $L^{s}(\mathcal{G}_{u})$, therefore \mathcal{G}_{u} is structurally balanced, then, we obtain \mathcal{G} is structurally balanced.

A notable corollary of the Theorem 3 is presented below.

Corollary 1. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, A)$ be a matrix-valued weighted strongly connected directed balanced network, let D^* be a matrix-valued gauge transformation such that $D^*AD^* = [|A_{ij}|]$. If the edge weight matrix $A_{ij} \in \mathbb{R}^{d \times d}$ $(d \in \mathbb{N})$ is such that $|A_{ij}| \succ 0$ for all $(j, i) \in \mathcal{E}$. Then for the initial value $\boldsymbol{x}(0)$ satisfying $(\mathbf{1}^T \otimes I_d)D^*\boldsymbol{x}(0) \neq \mathbf{0}$, the multi-agent network (2) admits a bipartite consensus solution if and only if \mathcal{G} is structurally balanced.

Corollary 2. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, A)$ be a matrix-valued weighted strongly connected directed balanced network. If the edge weight matrix $A_{ij} \in \mathbb{R}^{d \times d}$ $(d \in \mathbb{N})$ is such that $|A_{ij}| \succ 0$ for all $(j, i) \in \mathcal{E}$, then \mathcal{G} is structurally imbalanced if and only if all eigenvalues of $L^s(\mathcal{G})$ are positive.

Proof. (Necessity) Assume zero is an eigenvalue of $L^{s}(\mathcal{G})$, then we have zero is an eigenvalue of $L^{s}(\mathcal{G}_{u})$, then we obtain \mathcal{G}_{u} is structurally balanced, thus \mathcal{G} is structurally balanced, which establishes a contradiction. Therefore, all eigenvalues of $L^{s}(\mathcal{G})$ are positive.

(Sufficiency) This is an immediate result of the Theorem 3.

Corollary 3. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, A)$ be a matrix-valued weighted strongly connected directed balanced network and \mathcal{G} is structurally imbalanced. If the edge weight matrix $A_{ij} \in \mathbb{R}^{d \times d}$ $(d \in \mathbb{N})$ is such that $|A_{ij}| \succ 0$ for all $(j, i) \in \mathcal{E}$, then the states of all the agents converge to zero.

Appendix E Simulations

In this section, we provide simulation examples regarding to the matrix-valued weighted directed networks in Figure E1 to demonstrate the theoretical results in this letter. Firstly, we shall examine two examples in which case the positive (semi-)definite and negative (semi-)definite edge weights are allowed, and subsequently examine another two examples where the edges are either positive/negative definite or null.

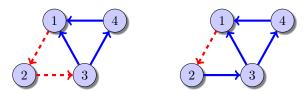


Figure E1 A structurally balanced matrix-valued weighted directed network (left) and a structurally imbalanced matrix-valued weighted directed network (right). The positive definite and the positive semi-definite matrix-valued weights are illustrated by solid lines in blue; the negative definite and the negative semi-definite matrix-valued weights are illustrated by dashed lines in red.

Example 1. Consider the structurally balanced matrix-valued weighted directed network in the left panel in Figure E1. Let

$$A_{21} = -\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$
$$A_{32} = -\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$
$$A_{14} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix},$$
$$A_{13} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix},$$
$$A_{43} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Note that $A_{32} \prec 0$, $A_{21} \prec 0$, $A_{14} \succ 0$, $A_{13} \succeq 0$ and $A_{43} \succ 0$ and the network has a positive-negative directed spanning tree in this case, then the multi-agent network (2) admits a bipartite consensus solution in this example as shown in Figure E2.

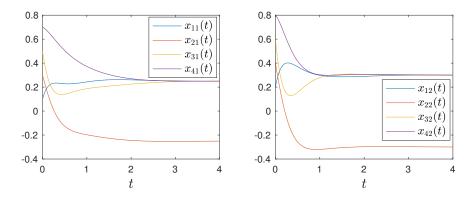


Figure E2 The trajectory of multi-agent system (2) under the structurally balanced matrix-valued weighted directed network in the left panel in Figure E1.

Example 2. Consider the structurally balanced matrix-valued weighted directed network in the left panel in Figure E1. Let

$$A_{21} = -\begin{bmatrix} 2 & 4\\ 4 & 8 \end{bmatrix},$$

$$A_{32} = -\begin{bmatrix} 2 & 4\\ 4 & 8 \end{bmatrix},$$

$$A_{14} = \begin{bmatrix} 1 & 2\\ 2 & 4 \end{bmatrix},$$

$$A_{13} = \begin{bmatrix} 1 & 2\\ 2 & 4 \end{bmatrix},$$

$$A_{43} = \begin{bmatrix} 1 & 2\\ 2 & 4 \end{bmatrix}.$$

Note that $A_{32} \leq 0$, $A_{21} \leq 0$, $A_{14} \geq 0$, $A_{13} \geq 0$ and $A_{43} \geq 0$. Examining the dimension of the null space of the matrix-valued weighted Laplacian matrix

yields that $\dim(\operatorname{null}(L^s)) = 5$, then $\operatorname{null}(L^s) \neq \mathcal{R}$ implying that the multi-agent network (2) cannot achieve a bipartite consensus solution as shown in Figure E3.

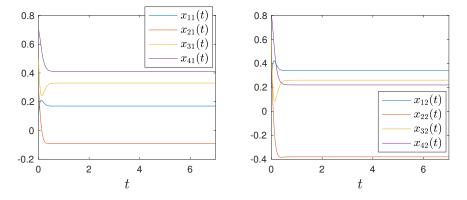


Figure E3 The trajectory of multi-agent system (2) under the structurally balanced matrix-valued weighted directed network in the left panel in Figure E1.

Example 3. Consider the structurally balanced matrix-valued weighted directed network in the left panel in Figure E1. Let

$$A_{21} = -\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix},$$
$$A_{32} = -\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix},$$
$$A_{14} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix},$$
$$A_{13} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$
$$A_{43} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Note that $A_{32} \prec 0$, $A_{21} \prec 0$, $A_{14} \succ 0$, $A_{13} \succ 0$ and $A_{43} \succ 0$ and the multi-agent network (2) admits a bipartite consensus solution as shown in Figure E4.

Example 4. Consider the structurally imbalanced matrix-valued weighted directed network in the right panel in Figure E1. Let

$$A_{21} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix},$$
$$A_{32} = -\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix},$$
$$A_{14} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix},$$
$$A_{13} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

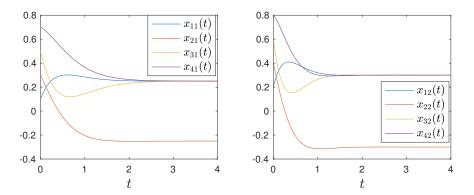


Figure E4 The trajectory of multi-agent system (2) under the structurally balanced matrix-valued weighted directed network in the left panel in Figure E1.

$$A_{43} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}.$$

Note that $A_{32} \prec 0$, $A_{21} \succ 0$, $A_{14} \succ 0$, $A_{13} \succ 0$ and $A_{43} \succ 0$, and the multi-agent network (2) in this case admits a asymptotical stable solution ($\lim_{t\to\infty} x_i(t) = 0$ for all $i \in \mathcal{V}$) as shown in Figure E5.

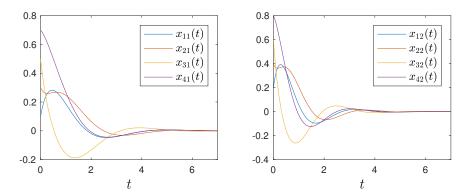


Figure E5 The trajectory of multi-agent system (2) under the structurally imbalanced matrix-valued weighted directed network in the right panel in Figure E1.