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Appendix A An example of matrix-valued weighted directed graph

For instance, the node set and edge set of the positive-negative directed spanning tree 7 of G in Figure Al are V =
{1,2,...,10} and & = {(2, 1), (1,3), (3,4), (4, 6), (3,5), (5,7), (7,8), (5,9), (9, 10)}, respectively.

Figure A1 A matrix-valued weighted directed graph G. The positive definite and the positive semi-definite matrix-
valued weights are illustrated by solid lines and dashed lines in blue, respectively; the negative definite and the negative
semi-definite matrix-valued weights are illustrated by solid lines and dashed lines in red, respectively.

Appendix B Proof of Theorem 1
The following lemma is important related to the null space of the matrix-valued weighted Laplacian matrix.
Definition 1. Define R = range{D*(1 ® I4)} as the bipartite consensus subspace.

Note that the matrix-valued weighted Laplacian L® has at least d zero eigenvalues. Let A1 < --- < Ay, be the eigenvalues
of L, then 0 = A1 =+ = XAg < Ag+1 <+ < Adn-
Lemma 1. A digon sign-symmetric matrix-valued weighted directed network G is structurally balanced if and only if G,,
is structurally balanced.
Lemma 2. Let G = (V,&, A) be a directed graph with corresponding undirected mirror graph G, = (V, &y, Ay). If G is
digon sign-symmetric and balanced, then L*(G,) = (L*(G) + L*(G)T)/2.
Lemma 3. Let G = (V, &, A) be a matrix-valued weighted undirected network. If G is structurally balanced and has a
positive-negative spanning tree, then the multi-agent system (2) admits a bipartite consensus solution.
Lemma 4. Let G = (V, &, A) be a matrix-valued weighted undirected network. Denote the Laplacian matrix of G as L®
and the algebraic multiplicity of eigenvalue zero of L® as x € N. If the edge weight matrix A;; € R¥*4 (d € N) is such that
|Aij| > 0 for all (4,5) € £, then G is structurally balanced if and only if £ = d.

We now provide the proof of Theorem 1 as follows.
Proof. (Necessity) Assume the multi-agent system (2) admits a bipartite consensus solution & = D*(1 ® (%(1T ®
I3)D*x(0))) and null(L®) # R. Then, there exists an @’ € R such that L®2’ = 0 and @’ ¢ R. Choose x(0) = &’ and
note that L@’ = 0, then x(t) = ¢’ for all ¢ > 0. However, the multi-agent system (2) converges to & and & € R, which
establishes a contradiction. Therefore, null(L®) = R.
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(Sufficiency) Consider a Lyapunov function V() = %JTJ, where § = @ — &. Then V(§) is positive semi-definite and
0 =& =—L%x = —L%3. Therefore,
V(6) =676
=6"2
=-6TLzx

=-8TL%s

_6T(%(Ls +L5T))5

—6TL,6
—X2(Gy)67T 8
0.

IN N

Moreover, V(8) = 0 if and only if § = 0. Thus, the multi-agent system (2) admits a bipartite consensus solution &.

Appendix C Proof of Theorem 2

Proof.  Assume G is structurally balanced and has a positive-negative directed spanning tree, but the multi-agent system
(2) can not admit a bipartite consensus solution & = D*(1® (%(IT ® I4)D*x(0))). According to Theorem 1, it is satisfied
that null(L®) # R and there exists an @’ € R%" such that L®2’ = 0 and &’ ¢ R. Then, considering the undirected
matrix-valued weighted network G,
1
;l:/TLS (gu)a:/ — :BIT(E(LS + (LS)T))J:, —0.

Therefore, null(L*(Gy)) # R. However, G is structurally balanced and has a positive-negative directed spanning tree, then
Gy is structurally balanced and has a positive-negative spanning tree. According to Lemma 3, null(L*(G,)) = R, which
establishes a contradiction. Therefore, null(L®) = R and the multi-agent system (2) admits a bipartite consensus solution.

Appendix D Proof of Theorem 3

Proof.  (Necessity) Since |A;;| > 0 for all (j,7) € £ and the matrix-valued weighted directed graph G is strongly connected,
then G has a positive-negative directed spanning tree. If G is structurally balanced, then according to the Theorem 1, L® has
zero eigenvalue and the null space of L*® satisfies null(L®) = R. Consequently, the algebraic multiplicity of zero eigenvalue
of L? equals to d which is the dimension of the matrix-valued weights.

(Sufficiency) Note that zero is an eigenvalue of L° with algebraic multiplicity d. Let Ay = --- = Ay = 0. Denote
the non-zero vector w = [w'{,wg, .. ,'w,q;,}T € R as the eigenvector corresponding to the zero eigenvalue of L® where

w; € RY for all i € n. Clearly, Lw = 0 and wT L = 0. Thus
1
Ssw (L + L )w = wT L* (Gu)w = 0, (D1)

where L°(G,) is the Laplacian matrix of the undirected matrix-valued weighted network G, corresponding to G. From D1,
we have 0 is an eigenvalue of L®(G, ), therefore G, is structurally balanced, then, we obtain G is structurally balanced.

A notable corollary of the Theorem 3 is presented below.

Corollary 1. Let G = (V,&, A) be a matrix-valued weighted strongly connected directed balanced network, let D* be
a matrix-valued gauge transformation such that D* AD* = [|A;;|]. If the edge weight matrix A;; € R¢¥¢ (d € N) is such
that |A;;| = 0 for all (j,i) € £. Then for the initial value x(0) satisfying (17 ® I;) D*x(0) # 0, the multi-agent network (2)
admits a bipartite consensus solution if and only if G is structurally balanced.

Corollary 2. Let G = (V,€&, A) be a matrix-valued weighted strongly connected directed balanced network. If the edge
weight matrix 4;; € R¥*? (d € N) is such that |4;;] = 0 for all (j,4) € &, then G is structurally imbalanced if and only if
all eigenvalues of L*(G) are positive.
Proof.  (Necessity) Assume zero is an eigenvalue of L*(G), then we have zero is an eigenvalue of L*(G, ), then we obtain
G, is structurally balanced, thus G is structurally balanced, which establishes a contradiction. Therefore, all eigenvalues of
L#(G) are positive.

(Sufficiency) This is an immediate result of the Theorem 3.
Corollary 3. Let G = (V,&, A) be a matrix-valued weighted strongly connected directed balanced network and G is
structurally imbalanced. If the edge weight matrix A;; € RX? (d € N) is such that |A;;| = 0 for all (j,4) € &, then the
states of all the agents converge to zero.

Appendix E Simulations

In this section, we provide simulation examples regarding to the matrix-valued weighted directed networks in Figure E1 to
demonstrate the theoretical results in this letter. Firstly, we shall examine two examples in which case the positive (semi-
)definite and negative (semi-)definite edge weights are allowed, and subsequently examine another two examples where the
edges are either positive/negative definite or null.
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Figure E1 A structurally balanced matrix-valued weighted directed network (left) and a structurally imbalanced matrix-
valued weighted directed network (right). The positive definite and the positive semi-definite matrix-valued weights are

illustrated by solid lines in blue; the negative definite and the negative semi-definite matrix-valued weights are illustrated
by dashed lines in red.

Example 1. Consider the structurally balanced matrix-valued weighted directed network in the left panel in Figure E1.

Let
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Note that Az <0, A2; <0, Ajg4 = 0, A13 > 0 and Ay3 > 0 and the network has a positive-negative directed spanning tree
in this case, then the multi-agent network (2) admits a bipartite consensus solution in this example as shown in Figure E2.
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Figure E2 The trajectory of multi-agent system (2) under the structurally balanced matrix-valued weighted directed
network in the left panel in Figure E1.

Example 2. Consider the structurally balanced matrix-valued weighted directed network in the left panel in Figure E1.

Let
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Note that Az <0, A21 <0, A14 = 0, A13 > 0 and A43 > 0. Examining the dimension of the null space of the matrix-valued
weighted Laplacian matrix
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4800 -2 -4 -2 —4
24240 0 0 0
Le_|48480 0 0 0 (ED)
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0048 4 8 0 0O
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yields that dim(null(L®)) = 5, then null(L®) # R implying that the multi-agent network (2) cannot achieve a bipartite
consensus solution as shown in Figure E3.
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Figure E3 The trajectory of multi-agent system (2) under the structurally balanced matrix-valued weighted directed
network in the left panel in Figure E1.

Example 3. Consider the structurally balanced matrix-valued weighted directed network in the left panel in Figure E1.

Let
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Note that Aza < 0, A21 <0, A14 > 0, A13 > 0 and A3 > 0 and the multi-agent network (2) admits a bipartite consensus
solution as shown in Figure E4.

Example 4.  Consider the structurally imbalanced matrix-valued weighted directed network in the right panel in Figure
El. Let
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Figure E4 The trajectory of multi-agent system (2) under the structurally balanced matrix-valued weighted directed
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Note that Azs < 0, A21 > 0, A14 > 0, A13 > 0 and A4z > 0, and the multi-agent network (2) in this case admits a
asymptotical stable solution (lim ;—cox;(t) = O for all ¢ € V) as shown in Figure E5.

network in the left panel in Figure E1.
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Figure E5 The trajectory of multi-agent system (2) under the structurally imbalanced matrix-valued weighted directed
network in the right panel in Figure E1.
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