Name Disambiguation in AMiner:

Jing Zhang*, Jie Tang+

*Information School, Renmin University
+Computer Science Department, Tsinghua University
An Example in AMiner

All the researchers named “Jing Zhang”

Assign papers with author name “Jing Zhang” to right authors
Three Scenarios

Full ND
- Name disambiguation when the system is built from scratch

Continuous ND
- Name disambiguation when persons’ profiles are continuously updated

Error
- Error detection upon existing persons’ profiles
1st Scenario: Full ND

- Stage One: Constructing candidate sets of potential matchings.

Image Reference: Xin Luna Dong and Divesh Srivastava. Big data integration. Tutorial in ICDE’13, VLDB’13
Stage Two: Similarity Matching

- Constructing similarity matrix for each candidate set.

“Jing Zhang”

“Yi Li”

“Xiao Yang”

“Wei Zhang”

Image Reference: Xin Luna Dong and Divesh Srivastava. Big data integration. Tutorial in ICDE’13, VLDB’13
Stage Three: Clustering

- Partitioning each candidate set based on similarity.

Image Reference: Xin Luna Dong and Divesh Srivastava. Big data integration. Tutorial in ICDE'13, VLDB'13
Feature-based Matching

Local features
- Similarity between a paper and its cluster centroid according to papers’ attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_i.title</td>
<td>title of p_i</td>
</tr>
<tr>
<td>p_i.pubvenue</td>
<td>published conference/journal of p_i</td>
</tr>
<tr>
<td>p_i.year</td>
<td>published year of p_i</td>
</tr>
<tr>
<td>p_i.abstract</td>
<td>abstract of p_i</td>
</tr>
<tr>
<td>p_i.authors</td>
<td>authors name set of p_i ${a^{(0)}_i, a^{(1)}_i, ..., a^{(k)}_i}$</td>
</tr>
<tr>
<td>p_i.references</td>
<td>references of p_i</td>
</tr>
</tbody>
</table>

Correlation features
- Similarities between two papers according to their relationships.

<table>
<thead>
<tr>
<th>Relation</th>
<th>Relation Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_1</td>
<td>CoPubVenue</td>
<td>p_i.pubvenue = p_j.pubvenue</td>
</tr>
<tr>
<td>r_2</td>
<td>CoAuthor</td>
<td>$\exists r, s > 0, a^{(r)}_i = a^{(s)}_j$</td>
</tr>
<tr>
<td>r_3</td>
<td>Citation</td>
<td>p_i cites p_j or p_j cites p_i</td>
</tr>
<tr>
<td>r_4</td>
<td>Constraint</td>
<td>feedback supplied by users</td>
</tr>
<tr>
<td>r_5</td>
<td>τ-CoAuthor</td>
<td>τ-extension co-authorship ($\tau > 1$)</td>
</tr>
</tbody>
</table>
Embedding-based Matching

• Calculating similarities between embeddings.

Global embeddings

• Map every paper to a **unified representation space**.
• **Share supervision** across different candidate sets.

Local embeddings

• For each candidate set: build a graph by linking each two similar papers.
• Train a **graph auto-encoder** to learn **separate representation space**.
2nd Scenario: Continuous ND

- Papers come in a streaming fashion (500,000/month).
- Assigning new papers to right persons continuously.
- Stage One: Constructing candidates related to the author of the target paper.

Image Reference: Xin Luna Dong and Divesh Srivastava. Big data integration. Tutorial in ICDE'13, VLDB'13
Stage Two: Similarity Matching

• Matching the target paper and each candidate.
• Assigning the paper to the candidate with the largest matching score.

Image Reference: Xin Luna Dong and Divesh Srivastava. Big data integration. Tutorial in ICDE'13, VLDB'13
Interaction-based matching

- Calculating the similarities between the embeddings of each pairs of tokens in p and c.
- Capturing both the exact and the soft matches.
3rd Scenario: Error Detection

• The accuracy of ND algorithms cannot be 100%.
• An additional error detection function is needed.
• Stage One: Extract patterns that can distinguish the right (normal) and wrong (abnormal) assigned papers.

Image Reference: Xin Luna Dong and Divesh Srivastava. Big data integration. Tutorial in ICDE'13, VLDB'13
Pattern Extraction

• Construct a **multi-relation egonet** for each candidate c.
 • Co-author, co-venue, citation relationships

• For each relation, extract:
 • Number of neighbors of ego c
 • Number of edges in c’s egonet
 • Total weight of c’s egonet
 • Principal eigenvalue of the weighted adjacency matrix of c’s egonet

User Feedbacks

Merge Function:
Merge person profiles

Add function:
Assign new papers to persons

Remove function:
Remove the wrongly assigned papers
Name Disambiguation in AMiner:

Jing Zhang*, Jie Tang+

*Information School, Renmin University
+Computer Science Department, Tsinghua University

Dataset: https://www.aminer.cn/na-data
AMiner: https://www.aminer.cn/