Supplementary Information for Interface Engineering of Phototransistor

Ferroelectric-Gated MoS₂

Shuaiqin WU,^{1,2} Xudong WANG,^{1†} Wei JIANG,^{1,2} Luqi TU,^{1,2} Yan CHEN,¹ Jingjing LIU,¹ Tie LIN,^{1†} Hong SHEN,¹ Jun GE,¹ Weida HU,¹ Xiangjian MENG,¹ Jianlu WANG,^{1,3} Junhao CHU,¹

Figures S1 (Color online) Structure and characterization of few-layer MoS_2 and h-BN. (a) Optical microscope image and fluorescent image of the exfoliated monolayer MoS_2 sample. The purple flake is the MoS_2 and blue flake is h-BN. Sale bar, 10 μ m. (b) The height of MoS_2 and h-BN is 1 nm and 10 nm respectively, measured by atomic force microscope (AFM). (c) Photoluminescence spectra observed in MoS_2 and MoS_2 covered with BN. The PL intensity in MoS_2 covered with h-BN is higher than that in MoS_2 .

 MoS_2 is a mature material in the two-dimensional transition metal dichalcogenides. As shown in Figure S 1(a), we prepare a monolayer MoS_2 sample [1]. It is reported to have low photoluminescence quantum yield at room temperature for its considerable defect density [2]. We use h-BN to enhance the photoluminescence of MoS_2 and presumably, h-BN can protect MoS_2 from ambient air and decrease the traps in the MoS_2 surface.

Figure S2 (Color online) Electrical property of MoS2 device. (a) and (b) Transfer characteristic with Vtg ranging from -30 V to 30 V while $V_{sd} = 1$ V. The inset is the optical image of the device. Scale bar, 10 µm. The forward subthreshold swing (SS_{forward}) is 2500 mV/dec, and SS_{reverse} is 427 mV/dec in (a) and belongs to the MoS₂ channel without h-BN and (b) is the MoS₂ channel with h-BN covered with SS forward is 667 mV/dec, and SS_{reverse} is 267 mV/dec. Sale bar, 10 µm.

Figure S3 (Color online) Electric characteristic of MoS_2 device. (a) The I_{sd} - V_{sd} curves were measured before and after P(VDF-TrFE) coating, respectively. The inset is the optical image of the device measured in this work. Sale bar, 10 μ m. (b) Transfer curves of MoS₂ transistor gated by SiO₂ before and after P(VDF-TrFE) coating, respectively.

The p-doping phenomenon is not rare which were observed on WSe_2 , black phosphorus and $MoTe_2$ with P(VDF-TrFE) or P(VDF-TrFE-CFE) as the gate dielectric [2-4]. From Figure S 3(a) and (b), we also observed this phenomenon in the MoS₂ device. According to the previous reports, it is attributed to the negative dipole in P(VDF-TrFE) or P(VDF-TrFE-CFE).

Figure S4 (Color online) Transfer curve of MoS₂ devices with and without h-BN in linear coordinates. Scale bar, 10 µm.

References

1 Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS₂ transistors. Nat Nanotech, 2011, 6: 147-150

2 Amani M, Lien D H, Kiriya D, et al. Near-unity photoluminescence quantum yield in MoS₂. Science, 2015, 350: 1065-1068

3 Yin L, Wang Z X, Wang F, et al. Ferroelectric-induced carrier modulation for ambipolar transition metal dichalcogenide transistors. Appl Phys Lett, 2017, 110: 123106

4 Lee Y T, Kwon H, Kim J S, et al. Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet-based field-effect transistors with P (VDF-TrFE) polymer. ACS Nano, 2015, 9: 10394-10401