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Abstract Two-dimensional (2D) black arsenic phosphorus (b-AsP), as an alloy of black phosphorus (b-

P) with arsenic, has attracted great attention because of its outstanding electronic and optical properties,

including high carrier mobility, tunable bandgap and in-plane anisotropy. B-AsP has a smaller bandgap

(0.15–0.3 eV) than the b-P bandgap (0.3–2.0 eV), and thus can be used for mid-infrared photodetectors.

In addition, both of them can form various van der Waals (vdW) heterojunctions with other 2D materials

to realize novel functional optoelectronic devices. Here, we compare the basic characteristics of b-AsP and

b-P, including crystal structure, optical properties, band structure, electrical properties and stability, and we

summarize the update progress of b-AsP in photo detection, including representatives of phototransistor and

photodiode devices. In the last part, the future research directions are discussed.
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1 Introduction

Black phosphorus (b-P) was synthesized by phase transition of white phosphorus under high pressure in
1914 [1], and it was reported that the bulk b-P was a kind of semiconductor in 1986, but its quality was
too difficult to control and it hardly attracted people’s interest [2]. Mechanical exfoliation and transfer
technology has developed rapidly since graphene was discovered [3–6], and two-dimensional (2D) b-P
has received widespread attention [7]. In 2014, several groups revealed the properties of monolayer or
few-layer b-P through theoretical calculations and experiments, which shows outstanding properties, such
as tunable bandgap [8], in-plane anisotropy [9] and high carrier mobility [10].

Interestingly, by introducing arsenic into b-P using a high pressure process, a new material named black
arsenic phosphorus (b-AsP) can be synthesized [11], and this bulk material exhibits superconducting
characteristics at a low temperature of about 10 K. In 2015, layered b-AsP was first reported as an
infrared semiconductor with tunable composition and bandgap (0.15–0.3 eV) [12], so it is suitable for
near- and middle-infrared photo detection. At the same time, layered b-AsP can form various van der
Waals (vdW) heterojunctions with other 2D materials, thereby providing a method for fabricating a new
type of high-performance photodetectors [13–16].

Compared with the widely studied b-P, there are fewer studies on b-AsP. In this forward-looking
review, we adopt a strategy to compare b-P and b-AsP from the basic properties to applications in the
photo detection field, aiming to provide some promising directions for the future research on b-AsP. We
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Figure 1 (Color online) Crystal structures of b-P and b-AsP. (a-i) Perspective view of b-P crystal structure. The spacing of

interlayer is 0.53 nm. (a-ii) Top view of monolayer b-P, where x and y correspond to the directions of armchair and zigzag,

respectively. (b-i) Perspective view of b-AsP crystal lattice. (b-ii) Crystal lattice of the monolayer b-AsP in top and side views.

(b-ii) is reproduced with permission from [21].

first introduce the basic properties of b-P and b-AsP, including crystal structure, optical properties, band
structure, electrical properties and stability. Subsequently, we summarize the update of b-P and b-AsP
for photo detection, such as phototransistors and photodiodes. Finally, the future research directions are
discussed.

2 Properties

2.1 Crystal structure

To understand the crystal of b-AsP, the structure of b-P should be considered. In a monolayer b-P,
there are two atomic layers including two kinds of P-P bonds, which are divided into the short bond and
the long bond by length. As for the short bond in the crystal, which is connected by the two nearest
phosphorus atoms in the same atomic layer with a bond length of 0.2224 nm. While the long bond
consists of two nearest phosphorus atoms from top and bottom atomic layer, showing a bond length of
0.2244 nm (Figure 1(a-i)). As shown in Figure 1(a-ii), from the top view, the lattice of b-P shows an
irregular hexagonal structure with two kinds of bond angles. The larger bond angle is consisted of two
short bonds, showing a value of 102.1◦, and the smaller angle is consisted of a short bond and a long
bond, showing a value of 96.3◦ [17, 18]. In addition, the puckered structure of monolayer b-P reduces
the symmetry of the parent isotropic structure, and only one two-fold rotation and one mirror plane are
contained in the lattice structure [19, 20] (Figure 1(a-ii)).

The atomic structure of b-AsP is similar to that of b-P, shown in Figure 1(b-i). This crystal also has
a puckered structure with irregular hexagonal structure. From the top view, the two nearest phosphorus
or arsenic atoms along the armchair direction show a crystal constant of 4.60 Å, while the two nearest
phosphorus or arsenic atoms along the zigzag direction show a crystal constant of 3.51 Å (Figure 1(b-
ii)) [21]. In addition to theoretical calculations, experimental data are more credible. The crystal structure
of b-AsP can be obtained by characterizing the high resolution transmission electron microscope (TEM).
From the high resolution TEM image of the b-AsP flake, the orthorhombic crystal structure is shown
and the crystal constant along different directions can be measured. The crystal constant along armchair
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Figure 2 (Color online) Band structures of b-P and b-AsP. (a-i) Band structures of one-layer, two-layers, three-layers and bulk

phosphorene calculated using density functional theory. (a-ii) The relationship between bandgap and the layer number in theory

and experiment. (b-i) b-AsP’s orbital-resolved band structure obtained from first principles calculations coupled with the function

formalism of non-equilibrium green. (b-ii) Component of arsenic dependent bandgaps of thick b-AsxP1−x flakes (> 30 nm). (b-

iii) Bandgaps of b-AsxP1−x determined by the arsenic component and number of layers, calculated by HSE06 method. (a-i) is

reproduced with permission from [30], (a-ii) from [8], (b-i) from [21], (b-ii) from [12], and (b-iii) from [31].

direction is 3.3 Å and along zigzag direction is 4.7 Å [22], which is agree with the calculation results [21].
The crystal constant of b-P along armchair direction is about 4.4 Å, which is smaller than that of b-AsP,
indicating that the increase of arsenic atoms leads to an increase of the lattice constant. Therefore,
b-AsP has the similar crystal structure as b-P, but a larger lattice constant than b-P [22]. The puckered
honeycomb configuration of b-AsP results in its highly anisotropy electronic [23], thermal [24–26] and
optical properties [12, 27–29].

2.2 Band structure

Figure 2 [8, 12, 21, 30, 31] shows the band structures of b-P and b-AsP. Monolayer and bulk b-P show all
direct bandgaps [8, 32]. With the increase number of layers, the bandgap of b-P reveals a redshift which
decreases from 2.0 eV (monolayer) to 0.3 eV (bulk) (Figure 2(a-i)) [30]. The bandgap as a function of
the thickness is calculated by the GW method, as shown in Figure 2(a-ii). Experimental and theoretical
bandgaps of all materials exhibit some differences, which are ascribed to different conditions [8, 33].

For the band structure of monolayer b-AsP, several theoretical calculations show a direct bandgap
at around 0.92 eV [21, 23, 34]. Sun et al. [23] calculated the bandgap of monolayer b-AsP using first
principles calculations method, which ranges from 0.92 to 0.95 eV owing to the increase of the compo-
nent of phosphorus. Zhou et al. [21] reported similar results from first principles calculations coupled
with the function formalism of non-equilibrium green (Figure 2(b-i)). In thick b-AsxP1−x materials
(>30 nm), the bandgap is decreased with increasing arsenic content (Figure 2(b-ii)) [12]. The bandgap of
b-AsxP1−x is decreased sharply when the arsenic content increases from x = 0 to 0.25 and decreases more
slowly when the arsenic content increases further to x = 0.4 and finally to x = 0.83. At the same time,
the bandgaps of b-AsP with the same composition are also different. Each date point in Figure 2(b-ii)
corresponds to the measurement result from the same b-AsP flakes using different polarization angles or
from b-AsP flakes with the same composition but different thicknesses, resulting in different of bandgap
values. Wu et al. [14] reported a clear p-type band structure of multi-layer b-AsP (10.8 nm) with a
bandgap of 0.25 eV and a work function of 4.4 eV. However, some groups calculated smaller or larger b-
AsP bandgaps than 0.92 eV [26,28]. The relationship between material thickness and bandgaps is shown
in Figure 2(b). As the thickness increases, the bandgaps of these two materials will decrease obviously
(Figure 2(b-iii)). In general, the bandgap monolayer, few-layer, and bulk b-AsP are smaller than that of
b-P [31].
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Figure 3 (Color online) Optical properties of b-P and b-AsP. (a-i) An atomic force microscopy image of a thin b-P flake, shows a

thickness about 7.75 nm. Inset: optical image of this b-P flake. (a-ii) Raman spectrum of b-P using polarized laser excitation along

different directions. (b-i) Raman spectra of b-AsP with different contents of arsenic. (b-ii) Polarized infrared extinction spectra

of the b-As0.83P0.17. Inset: optical image of the characterized flake. (a-i) and (a-ii) are reproduced with permission from [35],

(b-i) from [12], and (b-ii) from [29].

2.3 Optical properties

Three peaks at 365, 440, and 470 cm−1 correspond to the A1
g, B2g, and A2

g vibration modes of b-P,
respectively [35–41]. As shown in Figure 3(a-i), an atomic force microscopy image of a thin b-P flake
shows a thickness of 7.75 nm [35]. An optical image of this b-P is shown in the inset of Figure 3(a-i). The
Raman spectra of this flake obtained at different polarizations is shown in Figure 3(a-ii). The intensity of
the A2g mode decreases obviously with increasing polarization of the excitation laser from 0◦(x) to 90◦(y),
because the main atomic vibration of the A2g mode is in the x direction (armchair). So that the crystal
orientation of monolayer b-P can be identified by polarization-resolved Raman spectroscopy [35]. When
the b-P flake is illuminated by a polarized incident infrared light from the z direction, and the incident
light is polarized along six directions, which ranges from 0◦ to 330◦ with a step of 30◦, all polarized
directions of the infrared spectra show obvious increase at 2400 cm−1, corresponding to a bandgap of
0.3 eV [19].

Three major regimes are divided in the Raman spectra of b-AsP according to frequency. The low-
frequency, medium-frequency and high-frequency regimes correspond to 200–300 cm−1, 300–380 cm−1

and 380–500 cm−1, respectively. For b-As0.83P0.17, three peaks at 256, 233, and 224 cm−1are detected
in the low-frequency regime, which are assigned to the A2

g, B2g and A1
g modes, respectively (Figure 3(b-

i)) [12,28]. As the increase of phosphorus content, a gradual redshift of peaks is discovered. In comparison
with b-P, b-AsP exhibits more Raman peaks, which is agreement with the existence of heteroatomic
P-As bond (Figure 3(b-i)) [12]. As shown in Figure 3(b-ii) inset, a 188 nm-thick b-As0.83P0.17 flake
is fabricated using a mechanical exfoliation method. The polarization-resolved extinction spectra of
this flake is measured using an infrared light, and shows an obvious increase at around 1000 cm−1,
corresponding to the bandgap of 0.124 eV [29]. The family of b-AsxP1−x with different arsenic content
(x = 0, 0.25, 0.4, and 0.83) is studied using polarization-resolved infrared absorption systematically [12].
As the increase of x in b-AsxP1−x, the absorption edges of b-AsP shift to shorter wavelengths clearly,
indicating that the bandgap of b-AsxP1−x is decreased with increasing the amount of arsenic.
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Figure 4 (Color online) Electronic properties of b-P and b-AsP. (a-i) Schematic of b-P device structure with eight electrodes

along with different directions. (a-ii) The Ids and the transconductance as a function of angle. (b-i) Schematic of a b-AsP based

field-effect transistor. (b-ii) Transfer curve of a thin b-As0.83P0.17 flake in semilog scale and linear scale (inset). (a-i) and (a-ii)

are reproduced with permission from [9], (b-ii) from [12].

2.4 Electronic properties

In 2014, Liu et al. [9] first reported a field effect transistor based on few-layer b-P. In this device, a
hole mobility of 286 cm2

·V−1
· s−1and an on/off ratio of 104 are achieved. The electrical transport of

this device along different directions is different, showing an anisotropic property (Figures 4(a-i) and
(a-ii)). Almost at the same time, a 10 nm-thick b-P field-effect transistor was fabricated by Li et al. [10],
showing an high hole mobility about 1000 cm2

·V−1
· s−1 and a high on/off ratio in the order of 105.

These studies initiated the research on b-P based nanoelectronic applications [33, 40–58]. To further
improve the performance of b-P based field-effect transistors, devices with different thicknesses, contact
electrodes, dielectric properties, and passivation layers have been fabricated (see details in Table 1 [9,
10, 12, 13, 19, 29, 42, 44, 46, 50, 52, 53, 56, 58–74]). Table 1 shows that transistors with ultrahigh hole
mobility are mainly based on Cr/Au contact [10, 66], and the mobility is further improved by hBN
passivation [68, 70]. For b-P based field-effect transistors, intrinsic ambipolar transfer characteristics
have been widely observed owing to electrostatic modulation under an external electrical field, while
the ambipolar behavior of b-P is always asymmetrical because of much lower electron concentration and
mobility. The most direct way to improve the electron mobility of b-P is by n-type doping with Cs2CO3,
Al, Cu, and other dopants [52–58, 65, 66, 68, 70, 72, 73]. By contact-metal engineering, n-type field-effect
transistors can also be realized. For example, black phosphorus with Al contact and a flake thickness of
13 nm exhibits unipolar to ambipolar transition with an electron mobility of up to 950 cm2

·V−1
· s−1 [71].

Field-effect transistors based on b-AsP typically have on/off ratios lower than 104 owing to their small
bandgaps. As shown in Figure 4(b-i), a field-effect transistor is fabricated using a thin b-As0.83P0.17 flake.
The transfer curve of this device is shown in Figure 4(b-ii) [12]. The device has an ambipolar transport
behavior with an on/off ratio about 1.9 × 103. By increasing the thickness from 11 to 21 nm, the on/off
current ratio of b-AsP is decreased rapidly from 103 to 1.2 [16]. Although theoretical calculation shows
that the mobility of b-AsP is higher than 10000 cm2

·V−1
·s−1 [69], the experimental mobility is in the

range of 80–310 cm2
·V−1

·s−1 [13, 29]. As shown in Table 1, the mobility of b-AsP is much lower than
that of b-P. Therefore, improvement in electrical performance of b-AsP is highly needed.

2.5 Material stability

For the production of new devices from emerging materials, the long-term stability of devices needs to be
first demonstrated [75–77]. However, 2D b-P is unstable in air and reacts with oxygen. The researchers
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Table 1 Electrical performance of b-AsP and b-P based field-effect transistorsa)

Materials Thickness (nm) Contact electrode Dielectric layer Passivation layer Mobility (cm2·V−1·s−1) Ref.

ex b-As0.83P0.17 5–20 Ti-Au SiO2 PMMA h = 307 [13]

ex b-As0.83P0.17 37 Cr-Au hBN-SiO2 hBN h = 79, e = 83 [29]

ex b-As0.83P0.17 15 Ti-Au SiO2 PMMA h = 110 [12]

cal b-AsP 1-layer – – – h = 2100, e = 14380 [59]

ex b-P 5–25 Ti-Au Al2O3 Al2O3 h = 200 [60]

ex b-P 8 Ti-Au SiO2 – h = 100, e = 0.5 [61]

ex b-P 4.5 Ti-Au SiO2 PMMA h = 142 [62]

ex b-P 6–7 Ti-Au hBN – h = 25, e = 0.12 [63]

ex b-P 5–15 Ti-Au SiO2 – h = 52 [44]

ex b-P 20 Ti-Au SiO2 Al2O3 h = 0.96 [64]

– h = 215, e = 1

ex b-P 4.8 Ti-Au SiO2 Cs2CO3 e = 27 [65]

MoO3 h = 200

ex Se doped b-P – Cr-Au SiO2 – h = 561 [66]

ex b-P – Au SiO2 Al2O3 h = 100 [67]

ex b-P 11.3 Ti-Au Al2O3 Al2O3 h = 187 [53]

ex b-P 7 Au SiO2 Al2O3 h = 230 [56]

ex b-P 10 Ti-Au SiO2 – h = 286 [9]

ex b-P 6.5 Cr-Au SiO2 – h = 984 [10]

ex b-P 5 Ti-Pd SiO2 – h = 205 [19]

ex b-P 1.9 Ti SiO2 Al2O3 h = 172, e = 38 [42]

ex b-P 8 Cr-Au hBN-SiO2 hBN h = 1350 [68]

ex b-P – Au hBN-SiO2 – h = 400, e = 83 [46]

ex b-P 43±2 Ti-Au SiO2 MMA-PMMA h = 900 [69]

ex b-P – Cr-Au hBN-SiO2 hBN h = 5200 [70]

ex b-P
13

AL SiO2 Al2O3
e = 950

[71]
3 e = 275

ex Al doped b-P 5 Ti-Au SiO2 Al2O3 e = 1495 [72]

ex Cu doped b-P 10 Ti-Au hBN – e = 690 [73]

ex b-P 18.7
Ni

SiO2 –
h = 170

[74]
Pd h = 186

ex b-P 15 Ti-Au Al2O3 Al2O3 h = 310, e = 89 [50]

ex b-P 13 Ti-Au Al2O3 PMMA h = 233 [52]

cal b-P
1-layer

– – –
h = 26000, e = 1140

[58]
multi-layer h = 6400, e = 1580

a) ex: experimental results; cal: calculated results; h: hole mobility, e: electron mobility; PMMA: polymethyl methacrylate;

MMA: methyl methacrylate.

found that there is a chemisorption process between oxygen and the lone pairs of phosphorus atoms
at the surface of b-P [78–81]. The chemisorption of oxygen leads to the formation of oxygen defects,
which makes the surface of phosphorene hydrophilic and forms a mixture of oxide and phosphoric acid.
At the same time, the oxidation of 2D b-P can be accelerated by photons, and the phosphorus oxide
can further be transformed into aqueous phosphoric acid with the help of water vapor, resulting in the
poor stability of naked b-P devices in air [82]. Although the detailed degradation process of b-AsP
devices has not been reported, their behavior may be similar to that of b-P devices. Up to now, several
surface passivation strategies for b-P and b-AsP have been reported and the stability of devices can
be dramatically improved. It has been shown that b-P encapsulated by aluminum oxide (Al2O3) keeps
long term stable in air [29, 50, 67, 83, 84]. Without encapsulation, bubbles develop quickly on the b-P
surface [60]. Moreover, b-P and b-AsP sandwiched between hBN layers exhibits long term stability in
ambient conditions and even under the irradiation of strong laser [45, 68, 85, 86]. In addition to covering
b-P with hBN or oxide by atomic layer deposition, organic molecules also are a good choice to prevent
degradation and keep long term device stability [13, 16, 55, 69, 87, 88]. There are many encapsulation
methods that have demonstrated long term effectiveness and can be used to device development in the
future. Moreover, different types of defects in b-P can affect the stability in theory [89, 90]. Therefore,
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Table 2 Performance of b-AsP based photodetectorsa)

Material Th (nm) Device structure Wavelength (nm) R (mA/W) EQE (%) Speed (ms) D* (cm2 V−1 s−1) Ref.

b-AsP 25–35 Phototransistor 4600 – 8 0.0124, 0.0089 2.4 × 1010 [27]

3400 190

b-AsP 188 Phototransistor 5000 16 – – – [29]

7700 1.2

b-AsP 5–20 Phototransistor 3662 180 6.1 0.54, 0.52 1.06 × 108 [13]

MoS2-b-AsP – Photodiode
4290 115.4 3.33

–
4.9 × 109 [13]

2360 216.1 11.36 9.2 × 109

MoS2-b-AsP 66, 59 Photodiode 520 0.3 71 0.009, 0.005 – [16]

InSe-b-AsP 10, 11.5 Photodiode 520 1000 1.5 0.217, 0.089 1 × 1012 [14]

a) Th: thickness. R: responsivity, R = Iph/Pin, where Iph is photocurrent and Pin is incident light power. EQE = hcRλ−1e−1,

where h is the Planck constant, c is the speed of light, and e is the electron charge. D*: detectivity, defined by D∗ = R
√

AB

Sn
,

where A is the active area, B is the electrical bandwidth, and Sn is the noise spectral density. Response speed: rise time is defined

as from 10% to 90% of the photocurrent and fall time is defined as from 90% to 10% of the photocurrent.

defects in b-P plays a key role in the degradation process, which indicates that the stability of b-P can
be enhanced by improving the material quality.

3 Photodetector applications

Photodetectors are widely used in applications of imaging, optical guidance, optical communication,
remote sensing, etc. Various 2D materials such as graphene [91,92], transition metal dichalcogenides [93–
95], b-P and b-AsP have been exploited for photodetectors. High responsivity, fast response speed
and broadband of detection have been the main challenge for 2D materials based photodetectors. The
disadvantage of graphene is that it has no natural bandgap with a low response to light, while transition
metal dichalcogenides are limited by large bandgaps so that they are mainly used for visible light detection.
In contrast, b-P possesses a tunable bandgap at about 0.3–2.0 eV, allowing for photo detection in a large
spectral range from ultraviolet to infrared [20, 38, 43, 44, 56, 61, 62, 67, 84, 92–111]. Interestingly, the b-
AsP’s bandgap is about 0.15–0.3 eV, which is smaller than that of b-P and can be used for mid-infrared
photodetectors [12, 13, 27].

For b-P based photodetectors, various studies on phototransistors, photodiodes, plasmonics [40, 64,
101], and waveguides [104, 109–111] have been reported. However, less studies are reported on b-AsP
based photodetectors, which mainly focus on phototransistors and photodiodes. In this section, we will
introduce phototransistor and photodiode applications of b-P and b-AsP. We compared the structure
and performance of photodetectors of these two materials to find new research directions for b-AsP based
photodetectors.

The performance of photodetectors is commonly characterized by several figures of merit, such as
external quantum efficiency (EQE), responsivity (R), response speed and detectivity (D*). In Table 2 [13,
14, 16, 27, 29], their definitions and computing methods are summarized.

3.1 Phototransistors

When a photoconductor is exposed to light, the photo excited electron and hole can increase its conduc-
tivity. Under an external bias, the photo exited electron and hole will draft to opposite contact electrodes,
and result in the generation of photocurrent. If one type of photo generated carries is trapped and another
one could circulate many times through an external circuit before recombination with trapped ones, the
device can produce a photo gain.

To improve the photosensitivity of photodetectors, two strategies are general used: one is maximizing
their electrical response to light by improving the photo gain effect, another one is to minimize the noise
of electrical output. The carrier density in the semiconductor can be modulated effectively by applying
a gate voltage VG, so that the device can be worked in the depletion regime by switching off the dark
current. Therefore, the photo gain effect and low noise current can be achieved in phototransistors
simultaneously, resulting in a high photosensitivity.

For b-P based phototransistors, a large responsivity of 9×104 A/W in the ultraviolet region has been
reported (Figure 5(a-i)) [62]. With increasing incident light wavelength, the photoresponse of the photo-
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Figure 5 (Color online) Phototransistors based on b-P and b-AsP. (a-i) Device structure of few-layer b-P based phototransistor

operating at UV light. (a-ii) Device structure of the b-P based photodetector for infrared detection. Inset: optical image of the

phototransistor. (a-iii) The responsivity as a function of incident light power at Vds = 100 mV and Vds = 500 mV, respectively. (b-i)

Photo response of a b-AsP based phototransistor operating at 8.05 µm with a power density of 0.17 W·cm−2. Inset: optical image

of this device. (b-ii) Cross-sectional diagram of the phototransistor based on hBN/b-As0.83P0.17/hBN heterostructure. (b-iii) The

photocurrent as a function of Vgs. (a-i) is reproduced with permission from [62], (a-ii) and (a-iii) from [57], (b-i) from [13], and

(b-ii) and (b-iii) from [29].

transistor decreases rapidly, but the response rate is improved. Buscema et al. [61] reported a b-P based
phototransistor with ultrafast photoresponse. A rise time of 1 ms and fall time of 4 ms were achieved at
a wavelength of 940 nm, while the responsivity of the phototransistor is only 4.8 mA/W. The tradeoff
between responsivity and response speed is very common in phototransistors, and this relationship is
usually attributed to the photogating mechanism in 2D phototransistors. Guo et al. [57] first fabricated
a b-P based mid-infrared phototransistor with a 10 nm-thick nanosheet (Figure 5(a-ii)). The device can
detect an infrared light at a wavelength of 3.39 µm. At the same time, this device exhibits high photo gain
with a responsivity of 82 A/W (Figure 5(a-iii)) [57]. Besides the high photosensitivity, the device can be
effectively modulated at a frequency of kilohertz, owing to the fast carrier dynamics of b-P. The detection
range of mid infrared spectrum is technological interest and scientific importance, which involves many
important applications, including optical radar, free space communication, remote sensing and molecular
fingerprint imaging.

Compared with phototransistors based on b-P, a distinguishing feature of b-AsP based phototransistors
is their photoresponse at longer wavelengths. The optical image of a typical b-AsP based phototransistor
is shown in Figure 5(b-i) (bottom inset). A significant photo response under a mid-infrared light at the
wavelength of 8.05 µm is shown in Figure 5(b-i) (upper inset). Furthermore, the phototransistor shows
a high response speed with a rise time of 0.54 ms and a delay time of 0.52 ms. As the increasing of bias
voltage, the photocurrent (IP = Ilight − Idark) increases linearly at Vgs = 0 V (Figure 5(b-i)) [13]. Yuan
et al. [29] have fabricated a b-As0.83P0.17 photodetector sandwiched between layers of hBN (Figure 5(b-
ii)). With the increasing of wavelength of incident light from 3.4 to 7.7 µm, the peak responsivity of
phototransistor decreases from 190 to 1.2 mA/W at room temperature (Figure 5(b-iii)). Owing to the
protection with hBN, the b-As0.83P0.17 photodetector reaches excellent air stability. In addition, the
photo response of b-AsP can be maximized by adjusting the thickness of the material, and the dark
current can also be minimized leading to a large detectivity. Amani et al. [27] reported a peak detectivity
of 2.4 × 1010 cm·Hz1/2·W−1 for phototransistors of 36 nm-thick b-AsP (91% As) at room temperature.
Compared with commercial mid-infrared detectors, the peak detectivity of the b-AsP (91% As) based
phototransistor is improved by one order of magnitude [27]. In summary, the broad photoresponse in the
mid-infrared region arising from the intrinsic bandgap, together with the improvement of stability in air
condition, makes b-AsP a promising material for photodetector application in the mid-infrared range.



Han R Y, et al. Sci China Inf Sci April 2021 Vol. 64 140402:9

3.2 Photodiodes

In photodiodes, space charge region is formed at the p-n junction or Schottky junction between metal
and semiconductors, resulting in build-in field. Under the light, photo generated carriers are driven by
the built-in potential, moving to opposite electrodes.

Figure 6(a-i) shows an electrically tunable diode based on a vdW p-n heterojunction, fabricating by
a p-type b-P and a n-type monolayer MoS2 flake. The back gate voltage can modulate the current-
rectifying characteristics of the device [96]. With the decreasing of back gate voltage, the rectification
ratio (the ratio of the forward to reverse current) increases obviously. In the device, a peak rectification
ratio of 105 can be obtained at Vgs = −30 V through applying a bias voltage from −2 V to 2 V. Under
a 633 nm laser with different incident power, the current of the photodiode increases obviously as shown
in Figure 6(a-ii). A peak responsivity of 418 mA/W and external quantum efficiency of 0.3% at a bias of
−2 V, can be abstracted from the I-V curves of the p-n diode [96]. Furthermore, a few-layer MoS2/b-P
heterojunction based photodiode is fabricated to detect near-infrared at room temperature, achieving a
peak detectivity of 2.13 × 109 cm·Hz1/2·W−1 at λ = 1550 nm [99]. By using a b-P vertical p-n junction,
Yuan et al. [97] designed a polarization-sensitive broadband photodetector. In order to collect the photo
generated hot carrier in an isotropic manner, the metal electrodes acting as the photocurrent collector
are designed as ring shape; therefore the possibility of the photocurrent arising from geometric edge
effect at the metal-b-P edge can be excluded [97]. Within the ring shape electrode, the photocurrent
excited by 90◦ polarization light is far less than that by 0◦ light polarization, indicating that the intrinsic
polarization dependent photo response arises from the b-P itself [97]. Photodetectors based on in-plane
b-P p-n homojunctions have also been reported, which are defined by local electrostatic gating or chemical
doping methods and exhibit an enhanced photo response [63, 105]. In addition, high-quality InSe/b-P
vertical PN heterojunction has been reported. The heterojunction has an atomic-level flat interface and
a perfect crystal lattice. The ballistic avalanche phenomenon is observed, and five orders of magnitude
current jumps occur in this device. This device can be used as mid infrared photodetector, showing very
high photon amplification (more than 10000) and lower noise performance than the theoretical limit of
traditional avalanche photodetectors [57].

As for b-AsP-based vdW photodetectors, an attractive research direction is to build mid-infrared
photodiodes. Long et al. [13] fabricated photodiodes using p-type b-AsP and n-type MoS2. A vdW p-n
junction can be formed using b-AsP and MoS2, and the current under forward bias is higher than that
under reverse bias more than two orders of magnitude. In the 3 to 5 µm range, the detectivity of this device
is consistently larger than 4.9 × 109 cm·Hz1/2·W−1 with a peak value about 9.2 × 109 cm·Hz1/2·W−1

(Figure 6(b-i)) [13].

With the proper band alignment design of b-AsP-based heterojunctions, high-performance photodiodes
can be realized. Wu et al. [14] designed a vertically stacked vdW heterojunction tunneling device of b-
AsP and indium selenide (Figure 6(b-ii), inset), showing an unusual ultralow forward current below
picoampere. Moreover, a record high reverse rectification ratio more than 107 is achieved in this device
(Figure 6(b-ii)). The vdW heterojunction tunneling device functions as a sensitive photodiode in the
visible wavelength range, as a result, an ultrahigh light on/off ratio about 1 × 107 is achieved. At the
same time, the device exhibits a high detectivity of over 1 × 1012 cm·Hz1/2·W−1 and a comparable
responsivity of about 1 A/W [14]. Wu et al. [16] also designed a sensitive photodiode based on b-AsP/
MoS2 vdW heterojunction, in which the narrow gap b-AsP was utilized as an effective carrier selective
contact with a unilateral depletion region band design. From the atomic force microscope image of
this device, the thicknesses of b-AsP and MoS2 are measured to be 59 and 66 nm, respectively. The
heterojunction shows high sensitive at visible wavelength, but is not sensitive at infrared wavelength,
because the photo response of this device mainly comes from MoS2 flake [16]. To reveal the mechanism of
this device, energy band diagram of b-AsP/MoS2 heterojunction is drawn. When the device is illuminated
under a 520-nm light, the photo carriers in the device mainly are generated in the thick MoS2 channel.
Because a large unilateral depletion region is formed in the MoS2 side, the photo generated electrons
in MoS2 can draft to the b-AsP side freely and be collected by the drain electrode, while the photo
generated holes will draft from the MoS2 side to the source electrode [16]. This device achieves a record
high response speed for photovoltaic detectors based on 2D vdW heterostructures, with a rise time of 9
µs and a fall time of 5 µs. This ultrafast response speed results from that the interface trapping effect is
reduced significantly in the unilateral depletion region, and the photo generated electrons could recombine
with the holes in the accumulation region rapidly [16].
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Figure 6 (Color online) Photodiodes based on b-P and b-AsP. (a-i) Schematic of the monolayer MoS2/b-AsP photodiode. (a-ii)

Ids-Vds curves of the p-n photodiode based on monolayer MoS2/b-AsP under the incident light with various powers. Inset: the

detailed reverse region at bias from −1 V to 0 V. (b-i) The detectivity as a function of wavelength at Vds = 0 V. Compared with

the detectivity of commercial thermistor bolometer [106] and PbSe mid-infrared detectors, the MoS2/b-AsP photodiode shows

great advantages. (b-ii) Ids-Vds curve of the InSe/b-AsP diode at Vgs = 10 V. Inset: schematic of the device. (a-i) and (a-ii) are

reproduced with permission from [96], (b-i) from [13], and (b-iii) from [14].

4 Perspectives

First, the highest reported mobility of b-P is about 5200 cm2
·V−1

·s−1, which approaches its theoretical
value. However, the highest mobility reported for b-AsP to date is only 307 cm2

·V−1
·s−1, which is much

lower than the theoretically calculated value of 10000 cm2
·V−1

·s−1. As shown in Table 1, the mobility of
b-P can be improved through proper contact electrodes, passivation layers and doping methods, which
provides some directions for the improvement of the electronic properties of b-AsP. In addition, electronic
anisotropy is another interesting property of b-AsP. The lattice periodicities are different along with
different crystallographic directions, which results in anisotropy in crystal lattice. Generally, anisotropy
in 2D materials is more pronounced owing to their atomic thickness. Electronic anisotropy is important
for future multifunctional directional photodetectors based on b-AsP. Beyond that, according to the
existing work in theory, there are still some properties and models to be verified for b-AsP, including the
optical and transport bandgaps of monolayer material, the crystal structures with different components,
and the key factors limiting the hole and electron mobility.

Second, as shown in Table 2, b-AsP based mid-infrared photodetectors show great advantages with
respect to other 2D materials because of its small bandgap. However, detectivity and responsivity of b-
AsP based mid-infrared photodetectors are lower than 1 × 1010 cm·Hz1/2·W−1 and 1 A/W, respectively,
indicating a weak photo detection ability. To improve the photo detection ability of b-AsP, enhancing
the photogating effect of the photodetectors presents a valuable research direction. Several methods such
as designing waveguide or nanoplasmonics, p-type or n-type doping, or metal-doping, have been applied
to enhance the photodetector performance of b-P (Table 3 [54,56,61–66,84,96–98,101,102,104,105,107–
109, 111]) and may also be applicable to b-AsP. To achieve high-performance infrared photodetectors,
the thickness of b-AsP needs to be optimized, because it influences the optoelectronic properties of
the photodetectors (Table 2). In addition, flexible mid-infrared photodetectors are one of the most
important research directions in the field of wearable devices in the future, and they have great potential
in the human health sector for pulse detection, blood oxygen detection, and body temperature detection.
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Table 3 Performance of b-P based photodetectorsa)

Material Th (nm) Device structure Wavelength (nm) R (mA/W) EQE (%) Speed (ms) D* (cm2 V−1 s−1) Ref.

b-P 8 Phototransistor 640 4.8 – 1, 4 – [61]

b-P 4.5 Phototransistor UV 9×107 – 1, 4 3×1013 [62]

p-n b-P 10 Phototransistor 1550 5×103 390 0.035, 0.04 – [105]

b-P 12 Phototransistor 3390 8.2×104 – – – [107]

b-P-CS2CO3
4.8 Phototransistor 405

1.88 576
– – [65]

b-P-MoO3 2.56 784

Se doped b-P – Phototransistor 635 1.53×104 2993 – – [66]

b-P – Phototransistor 1550 6 – 0.1, 0.3 – [84]

WSe2-BP-MoS2 – Phototransistor
532 6.32×103

–
– 1.25×1011

[102]
1550 1.12×103 – – 2.1×1010

b-P 10 Phototransistor 830 5.3×104 – – – [54]

b-P 7 Phototransistor 830 18.7 – – – [56]

b-P <10 Photodiode 650 3.5 – 2 – [104]

b-P-MoS2 22, 12 Photodiode
1550 153.4 20 0.015 3.1×1011

[98]
532 2.23×104 1000 – 2.13×109

p-n b-P – Photodiode 940 – 0.1 – – [63]

b-P-MoS2 11, 0.9 Photodiode 633 418 0.3 – – [96]

p-n b-P 30 Photodiode 1200 0.35 – – – [97]

b-P-InSe – Photodiode 455 11.7 3.2 24, 32 – [108]

b-P 135 Plasmonics 1550 12 – – – [101]

b-P 20 Plasmonics 1550 1×104 – – – [64]

b-P 40 Waveguide 3825 1.13×104 – – – [109]

b-P 36.8 Waveguide 2000 306.7 – – – [111]

b-P
23

Waveguide
3700 2×103

– – – [107]
40 3700 2.3×104

b-P
11

Waveguide 1570–1580
135

–
–

– [104]
100 675 3×10−7

a) p-n: p-n junction. Th: thickness. R: responsivity. EQE: external quantum efficiency. D*: detectivity.

Flexible photodetectors based on b-AsP have not been studied to date and require further investigation.

Third, the distinctive band structure of b-AsP provides many opportunities for further band structure
engineering. In combination with other 2D materials, the 2D heterostructure devices can be designed.
2D heterojunctions, such as b-AsP/MoS2 or b-AsP/InSe, have been fabricated with excellent rectification
effect and photodetector performance. Besides 2D structures, 3D/b-AsP, 1D/b-AsP, and even 0D/b-AsP
heterostructures are future research focuses for the development of novel devices beyond photodetectors.

Finally, in addition to fabricating novel devices and improving the performance of existing devices,
there are still challenges to realize their practical applications. One of the major challenges is that
the few-layer b-P and b-AsP are unstable in atmosphere. The performance of devices will be degraded
because of the undesired reaction of b-P (or b-AsP) with water and oxygen. Passivation of the surface
of b-P and b-AsP by depositing Al2O3 thin films or encapsulating hBN layer has been proven to be
the effective way to protect the material. Another strategy to keep the quality of materials and device
performance is to decorate the surface with organic molecules. But, these methods still cannot prevent
the degradation of b-P and b-AsP absolutely over a long period of time. It is still necessary to explore
more effective and convenient passivation strategies. Another one challenge is to grow large area 2D b-P
and b-AsP. Mechanical exfoliation method has been widely used to fabricate 2D b-P and b-AsP samples,
however, the samples just can be used to demonstrate proof-of-concept device because of their small size.
To realize practical electronic or optoelectronic systems, it is essential to grow large area b-P and b-AsP,
which still is a huge challenge. Chemical vapor deposition (CVD) method has been demonstrated to grow
high quality 2D materials with large area. Maybe it is a promising direction to fabricate large area 2D
b-P and b-AsP in the future.
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5 Summary

In this review, we summarized the properties of 2D b-P and b-AsP and the recent progress on their
applications as photodetectors. The distinguished properties of 2D b-AsP, including high carrier mobility
and proper bandgap make it a good tradeoff between transition metal dichalcogenides and graphene,
as well as a promising material for high performance electronic and optoelectronic devices. Although
some achievements have been made, many challenges and opportunities remain to further improve the
photodetector performance.
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