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Abstract Cooperative UAV swarms typically adopt coalition-based network structures for executing tasks

more efficiently. Coalition heads in such networks need to do both intra- and inter-coalition communication

and may operate on different channels. While being equipped with multiple transceivers or switching among

channels are alternative methods, this option would result in larger payload or incur delays. Fortunately,

partially overlapping channels (POCs) can be used to forward messages on different channels since commu-

nication can be made on adjacent overlapped channels. This can help realize both intra- and inter-coalition

communication with heads being equipped with only one transceiver and no switching. Therefore, this paper

proposes a POC-based communication method where each coalition selects one of the POCs and UAVs in

the same coalition operate on the same channel. While POCs enable information exchange among coalitions,

they also incur inter-coalition interference and therefore the POC access problem is investigated. Owing

to the coupled relationships among the strategies of coalitions, the problem is a combinatorial optimization

one and an online learning algorithm is proposed. The algorithm is distributed and reduces the computa-

tion complexity to a great extent. Based on the knowledge of the potential game theory, the algorithm is

proved to converge to the optimal solution of each stage asymptotically. Under three representative settings,

simulations are made to verify the effectiveness of the proposed method.
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1 Introduction

Cooperative search is one of the main applications of UAV swarms [1–5]. Working in a unit of coalition
(also called cluster or team) can finish tasks efficiently [6,7] and communication among UAVs is essential
during the execution [8, 9]. In such networks, both intra- and inter-coalition communications require
spectrum resources and the spectrum access for each coalition should be well designed to realize both
interference avoidance and information exchange. However, existing researches about UAV swarms mainly
focused on path planning [10], information merging [11] or coalition formation [12–15], while paid little
attention on communication. Therefore, it is necessary and meaningful to investigate the spectrum access
problem in coalition-based UAV swarms.

Technically, there are several challenges in this problem. First, adjacent coalitions tend to work on
orthogonal channels to avoid inter-coalition interference, while adjacent coalition heads should work
on the same channel to perform information exchange. This can be realized by switching or being
equipped with multiple transceivers. However, switching incurs delays, or even failures, and consumes
non-negligible amount of energy [16–18], while being equipped with multiple transceivers is a burden to
UAVs since they are payload-constraint [19–22]. While some devices, such as multi-protocol transceivers,
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can incorporate multiple channels, the cost of hardware is higher. Therefore, how to find a stable and low-
cost communication method is challenging. Second, while conducting the search task requires multiple
coalitions and multiple stages, the resources, e.g., spectrum and storage, are limited. This makes the
impact of the spectrum access strategy of each coalition in each stage be coupled and therefore the
problem is a complex combinatorial optimization one. How to find the optimal solution of the problem
is challenging. Third, as the network scales up, traditional centralized methods [23,24] may be inefficient
or even unapplicable since the computation complexity increases [25,26]. How to find an efficient method
to solve this problem is challenging.

Fortunately, partially overlapping channels (POCs) have been demonstrated to be suitable for forward-
ing transmissions on different channels, and some signal processing methods and medium access control
(MAC) mechanisms have been proposed to make this feasible [27–29]. Compared with orthogonal chan-
nels, where adjacent channels have enough far frequency separation, adjacent POCs are not separated
far so that signals from overlapping channels can be heard. This relaxes the requirement for multiple
transceivers and switching. Therefore, a POC-based communication method is established and leveraged
in this paper where adjacent coalitions work on overlapping channels and UAVs can do both intra- and
inter-coalition communication with only one transceiver and without switching. In addition, to address
the high computation complexity, we resort to the machine learning methods [30–33] in which users
update repeatedly and individually. A spatial adaptive play (SAP)-based online distributed learning
algorithm is proposed. The algorithm is executed by each individual coalition head, and the computation
complexity is reduced to a great extent. By resorting to the potential game theory, we prove that the
proposed algorithm can achieve the optimum asymptotically in each stage. Simulations are made to
validate the effectiveness of the proposed method.

The contributions of this paper are as follows.

• A POC-based communication method is proposed to realize both intra- and inter-coalition com-
munication in cooperative UAV swarms. The method aims at avoiding inter-coalition interference and
realizing information exchange among coalitions at the same time while requiring only one transceiver
and no channel switching.

• A SAP-based online learning algorithm is proposed. The algorithm is distributed and with low-
complexity. Based on the knowledge of the potential game theory, the algorithm is proved to be able to
converge to the optimal solution in each stage asymptotically.

• Simulation results verify the effectiveness of the proposed method. Three representative trajectories
are given to compare the results under different settings. Compared with the method which requires two
transceivers or channel switching, the proposed method achieves higher efficiency under many conditions.

The rest of the paper is organized as follows. Related work is given in Section 2. The system model
and the problem formulation are given in Section 3. The learning algorithm is proposed and analyzed in
Section 4. Simulation results are given and analyzed in Section 5. Section 6 concludes the paper.

2 Related work

Many researchers realized that UAV swarms working in a unit of coalition perform better compared to
working individually. Some work has been made under the coalition-based structure. Specifically, authors
of [12–15] investigated how to form coalitions in cooperative missions. They designed different coalition
formation algorithms to fulfill the target resource requirements. Authors of [6] proposed an algorithm to
track moving targets using a UAV cluster. Authors of [10] investigated the path planning problem and
proposed an information-theoretic co-evolutionary algorithm. These researches paid little attention on
communication among UAVs, only taking the communication range as a constraint.

Some researchers made contributions to UAV communication networks [34–37]. However, they mainly
focused on relay [34, 35], trajectory [36] or deployment [37] optimizations, but did not mention the
spectrum access problem and networks were not under the coalition-based structure. Authors of [9,
26] did relevant work. Specifically, in [9], the joint channel and time slot optimization problem was
investigated to satisfy heterogeneous requirements where UAVs could select several channels or slots to
communicate. This required UAVs to be equipped with more than one transceiver. In [26], the intra-
coalition communication was focused on and the spectrum access problem was investigated to alleviate
inter-coalition interference. UAVs may need to switch to different channels if they wanted to communicate
with those in other coalitions. It can be seen that, the above studies did not consider both the internal
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and external communication in coalition-based UAV swarms, which is very important in cooperative
search. Moreover, the switching cost and the payload constraint were not considered which should not
be ignored for UAVs.

Traditional orthogonal channels have enough frequency separations so that signals from different chan-
nels will not be heard. By comparison, the central frequencies of adjacent POCs are not separated far
so that signals from overlapping channels can be heard. Many researchers treated the signal from adja-
cent channels as a harm and made several investigations on the POC access problem to alleviate such
interference [38–46]. However, the benefit that POCs can be used to forward transmissions on adjacent
channels and thus relax the requirement of multiple transceivers and switching was less exploited. This
idea was first mentioned in [27], in which a simple example of a multi-hop scenario was given to show
the feasibility of such transmission. After that, authors of [28, 29] exploited the overlapping character of
adjacent channels and put forward a counter-intuitive approach for efficient broadcast in multi-channel
networks. While the signal processing method and the MAC mechanism proposed in these studies made
communication on POCs realistic, they did not investigate how to access POCs when multiple nodes
want to communicate.

Leveraging POCs to realize both intra- and inter-coalition communication in UAV swarms is a feasible
way when considering both the switching cost and the payload constraint. However, since POCs incur
adjacent-channel interference as well, as was mentioned above, the channel access for each coalition
should be well designed. As far as we are concerned, no similar work has been done before which jointly
considered the forwarding function and the adjacent-channel interference incurrence of POCs.

3 System model and problem formulation

3.1 Scenario description

Consider a UAV swarm is executing a search task where one or more stationary targets exist in a certain
area and UAVs need to find them out. The area is divided into several grid cells, and each target lies
in at most one cell. A total of N UAVs are grouped into H coalitions for execution. Each coalition is a
work unit and is composed of one head and several members. The members are in charge of detecting
the area flying over and each of them is equipped with a surveillance sensor [3]. The trajectory of each
coalition is designed in advance and each UAV is equipped with a navigation sensor for present position.
Let H = {1, . . . , H} denote the set of heads and coalition h denote the coalition led by head h ∈ H. Let
M denote the set of all members and Mh denote the set of members in coalition h. Note that, each
UAV is supposed to belong to one coalition and different coalitions consist exactly different UAVs, i.e.,
⋃H

h=1 Mh = M and Mh1 ∩Mh2 = φ, ∀h1, h2 ∈ H.
In the task, coalition heads are responsible for finding out all the targets. Each head maintains an

individual cognitive map where each grid cell has a probability that a target is present in it [3]. However,
owing to different trajectories and the existence of false alarm and missing detection, the map of each
coalition differs from one another. Therefore, to finish the task faster and better, they tend to work in
a cooperative way. Specifically, each head always maintains the latest measurement of itself. When two
heads come into the communication range, they synchronize their measurements and update their local
cognitive maps. When all targets are found out, i.e., for each target, the existing probability of it exceeds
a threshold in at least one cognitive map, the task terminates. Suppose the whole task will be executed
for T stages and define the set of stages as T = {1, . . . , T}.

An example of the scenario is given in Figure 1, and an illustration of the whole execution process is
given in Figure 2. Specifically, every time when the UAV swarm reaches a new spot, coalition members
detect the current area and coalition heads decide channels for communication. Then the members upload
the messages to their corresponding heads on selected channels. After that, heads will make a fusion [26]
and exchange the fused messages with their adjacent coalition heads. Finally, heads make map updates1).

3.2 Channel model

When utilizing orthogonal channels, communication can only be realized when the transmitter and the
receiver operate on the same channel. Different from that, utilizing POCs allows the transmitter and

1) This paper focuses on the communication problem during the execution process while others, e.g., the dynamics and the

information fusion, are beyond the scope.
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Figure 1 (Color online) Illustration of a search task.
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Figure 2 (Color online) The illustration of executing the task in time domain.

the receiver to operate on different channels if they are overlapped and therefore the switching cost
for multiple communication can be reduced. The feasibility of such communication method has been
validated in [28, 29] and is leveraged in this paper.

Communication links among UAVs, i.e., air-to-air (A2A) links, are supposed to be line-of-sight (LOS)
in this paper [19,47]. Without loss of generality, consider a pair of UAVs, x and y, in the network, where
x is the transmitter and y is the receiver. Let pxy denote the received signal strength of y from x. It is
influenced by two factors, the physical distance and the channel distance [48].

To investigate the impact of the physical distance, we first suppose x and y operate on the same channel.
Define the physical distance between x and y as dxy. The path loss model is adopted as Lxy = Θxy+ηLOS,
where ηLOS is an additional attenuation factor for LOS links [47] and Θxy is expressed as

Θxy (dB) = 20log10 (dxy) + 20log10 (fc) + 10log10

[(
4π

c

)2
]

, (1)

where fc is the carrier frequency and c is the speed of light. Accordingly, the channel gain between x
and y is ςx→y = 10−Lxy/10. When the transmission power of x is px, the received signal strength of y is
pxy = px · ςx→y.

However, when the transmitter and the receiver operate on different channels, the channel distance
will also influence the signal strength of the receiver. Suppose the bandwidth of each channel is B and
the frequency separation of adjacent channels is fτ . Define the channel set as A = {1, . . . , A} and the
channel selections of x and y as ax and ay, which correspond to the central frequencies as fx and fy
respectively. Consider an idealized discrete model where the power distribution of the transmitted signal,
the transmit spectrum mask and the receiver filter response have exactly the same form S (f) [48]. In
this way, an overlapping factor which captures the amount of overlap between the transmission on ax
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and the reception on ay can be expressed as

Hxy (ax, ay) =

∫ −∞

−∞ S (f) · S (f − δxy) df
∫ −∞

−∞ S (f) · S (f) df
, (2)

where δxy = |fx − fy| = fτ · |ax − ay|.
It can be seen that, when δxy is large enough, Hxy = 0, signals from ax will not be received on ay

and they are orthogonal channels. Otherwise, if ax 6= ay, they will be overlapped to some extent, i.e.,
POCs, and the receiver working on ay can receive signals from ax if the signal-to-interference-ratio (SINR)
exceeds a threshold pτ .

Considering the comprehensive impact of both the physical distance and the channel distance, the
received signal strength of y from x can be expressed as pxy = px · ςx→y ·Hxy.

3.3 Communication processes

As was mentioned before, the communication process during the mission can be divided into two periods.
The first period (Period I) is the intra-coalition communication where members upload their sensed
messages to the corresponding heads. The second period (Period II) is the inter-coalition communication
where coalition heads exchange messages with neighboring ones. This period will be entered when
coalition heads finish fusing the messages collected in Period I. The communication of the two periods in
detail are given below.

Define the length of Period I as T1. During this period, the uploading in a specific coalition can be
scheduled by the head but the process is executed in all coalitions simultaneously. This means, intra-
coalition interference does not exist but inter-coalition interference may happen because of the not far
apart physical or channel distances of adjacent coalitions.

Define the kth member of coalition h as mh,k, the path loss between mh,k and head h as ςh,k→h and
the uploading power of each member in coalition h is P intra

h . To make the intra-coalition communication
more effective, all members in the same coalition are supposed to operate on the same channel with their
head. Accordingly, the throughput of mh,k to its head h at a specific stage t can be expressed as

R
intra(t)
h,k

(

a
(t)
h ,a

(t)

J
(t)
h

)

= B · log



1 +
P intra
h ςh,k→h

N0 +
∑

g∈J
(t)
h

I
(t)
gh



 , (3)

where B is the bandwidth, N0 is the background noise, I
(t)
gh is the interference resulted from current

neighboring coalition g. Note that, J
(t)
h is the set of current neighbors of coalition h, which is defined

according to the physical distance. Interference coming from non-neighboring coalitions is ignored, which
is a widely used assumption in many existing studies [9, 26, 49]. Since coalition h and g may work on

different channels, mutual interference not only depends on the path loss ς
(t)
g→h, but will also be influenced

by the channel overlapping degree H
(t)
gh . Therefore,

I
(t)
gh

(

a
(t)
h , a(t)g

)

= P intra
g ς

(t)
g→hH

(t)
gh , ∀g ∈ J

(t)
h . (4)

Suppose members in the same coalition are scheduled with equal time. The length of messages member
mh,k uploads is

L
u(t)
h,k

(

a
(t)
h ,a

(t)

J
(t)
h

)

=
T1

|Mh|
· R

intra(t)
h,k (5)

and the length of messages coalition head h collects is

L
c(t)
h

(

a
(t)
h ,a

(t)

J
(t)
h

)

=
∑

k∈Mh

L
u(t)
h,k . (6)

If the fusing ability of head h is depicted by its fusing coefficient λh, it will have a length of

L
1(t)
h

(

a
(t)
h ,a

(t)

J
(t)
h

)

= λh · L
c(t)
h (7)
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messages to exchange in the second period.
During Period II, to make more messages exchanged, each coalition head will have a dedicated time T2

for broadcasting2) and no mutual interference exists. To avoid channel switching cost, suppose the working
channel of each coalition in Period II remains unchanged with Period I. This means the transmitter and
the receiver may work on POCs.

Define the path loss between head h and its neighbor head g at stage t as ς
(t)
h→g. If the broadcasting

power of head h is P inter
h , the current throughput from h to g can be expressed as

R
inter(t)
h,g

(

a
(t)
h , a(t)g

)

= B · log



1 +
P inter
h ς

(t)
h→gH

(t)
hg

N0



 , ∀g ∈ J
(t)
h , (8)

where B, N0 and Hhg are the same parameters in Period I. In this way, the length of message head g
receives from head h is

L
2(t)
h,g

(

a
(t)
h , a(t)g

)

= T2 ·R
inter(t)
h,g , ∀g ∈ J

(t)
h . (9)

The length of message head h broadcasts depends on the minimum amount of messages received by all
its neighbors. Mathematically,

L
2(t)
h

(

a
(t)
h ,a

(t)

J
(t)
h

)

= min
g∈J

(t)
h

L
2(t)
h,g . (10)

Note that, UAVs in these two periods are supposed to be relatively static since moving around not
only requires much energy but also results in poor communication quality. Moreover, since the two
communication periods are both based on contention-free mechanism, the delay is controlled and the
time constraint of the task can be satisfied.

3.4 Problem formulation

Because of the limited time or low throughput, each coalition member may not be able to empty its

sensed messages in Period I, i.e., L
u(t)
h,k 6 L

s(t)
h,k , ∀h ∈ H, ∀k ∈ Mh, ∀t ∈ T , where L

s(t)
h,k is the length of

messages mh,k sensed in stage t. Note that, considering the limited storage of coalition members, the
messages which cannot be uploaded will be emptied in each stage. In the second period, the coalition

heads may not be able to empty their messages as well, i.e., L
2(t)
h 6 L

1(t)
h , ∀h ∈ H, ∀t ∈ T . Specifically,

if a coalition is isolated from others, i.e., it cannot communicate with any others, it will not make an

exchange, i.e., L
2(t)
h = 0, ∀h ∈ H, ∀t ∈ T . Suppose coalition heads have enough storage and the messages

which cannot be exchanged will be stored. Therefore, in stage t, the length of messages remaining to be
sent by head h is

L
b(t)
h

(

a
(1)
h , . . . , a

(t)
h ,a

(1)

J
(1)
h

, . . . ,a
(t)

J
(t)
h

)

= L
b(t−1)
h − L

2(t−1)
h + L

1(t)
h . (11)

Define the efficiency of the communication process of coalition h in stage t as

η
(t)
h

(

a
(1)
h , . . . , a

(t)
h ,a

(1)

J
(1)
h

, . . . ,a
(t)

J
(t)
h

)

=
L
c(t)
h

∑

k∈Mh
L
s(t)
h,k

+
L
2(t)
h

L
b(t)
h

. (12)

It can be seen that the efficiency consists of two parts, which correspond to Periods I and II respectively.
On the right-hand side of (12), the first item is the ratio between the length of collected messages of the
coalition head and the length of total sensed messages of all members, while the second item is the ratio
between the length of broadcasted messages of the coalition head and the messages it stores. Note that,

larger
L

c(t)
h∑

k∈Mh
L

s(t)
h,k

indicates that more messages are uploaded by coalition members and the uploading

efficiency is higher. Meanwhile, larger
L

2(t)
h

L
b(t)
h

indicates that more backlogged messages are broadcasted

and the exchange efficiency is higher.

2) One or more coalition heads can broadcast simultaneously and many MAC protocols can be utilized, such as time division

multiple access (TDMA) and spatial reused TDMA [50].
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Figure 3 (Color online) An illustration of the proposed algorithm.

Therefore, the problem can be formulated as maximizing the efficiency of all coalitions during the
whole mission by optimizing the POC access. Mathematically,

P : (a∗
1, . . . ,a

∗
H) = argmax

∑

t∈T

∑

h∈H

η
(t)
h = argmax (η1 + η2) , (13)

where a
∗
h = {a

(1)∗
h , . . . , a

(T )∗
h }, ∀h ∈ H, η1 =

∑

t∈T

∑

h∈H
L

c(t)
h∑

k∈Mh
L

s(t)
h,k

and η2 =
∑

t∈T

∑

h∈H
L

2(t)
h

L
b(t)
h

.

It can be seen that P is a combinatorial optimization problem and is therefore NP-hard. Using
traditional optimization methods, e.g., convex optimization [23], to find the optimal solution to the
problem results in huge computation complexity, especially when the number of coalitions or stages is
large. Therefore, it is necessary to find a method with low-complexity.

4 Distributed online learning algorithm

To cope with the huge computation complexity resulted from the coupled relationship of multi-stage and
multi-user, a decoupled method with low-complexity is required. Fortunately, machine learning is an
effective way to solve the combinatorial optimization problem [17, 51] where players update strategies
repeatedly and individually using the history trial and feedback information.

While many learning algorithms, e.g., the best response [30,31], the stochastic learning automata [32],
have been proposed to solve problems in a distributed way, they are not guaranteed to find an optimal
solution. Therefore, motivated by [49], a multi-stage SAP based learning algorithm is proposed. Specifi-
cally, in each stage, the current environment, strategies of the previous stage and the current backlogged
messages will be the input of the learning process and the strategies of the current stage will be the out-
put. For the learning process, during each iteration, one UAV is selected randomly to update its channel
selection probability and then to explore a channel accordingly. The feedback will be given to UAVs
when the explored action works in the environment. The process of the learning algorithm is shown in
Figure 3. Compared with traditional optimization methods which require a centralized computing unit,
the proposed algorithm reduces the computation complexity since the problem is solved in a distributed
way.

4.1 Algorithm description

The proposed algorithm will be executed by coalition heads in each stage since the environment changes.
During the initialization, each coalition head selects one of the POCs randomly for the first stage while
adheres to the current channel for the rest of the stages. During the updating process, in each iteration,
one coalition head will be selected for updating while others’ strategies remain unchanged. The selected
head h (updater) considers both its own and the neighboring coalitions’ efficiency. This is motivated by the
local altruistic model proposed in [49] and it has been shown that this model performs better than those
only considering individual benefit. The updater refreshes the channel selection probability according to
(14), where pah (k) is the probability that it will select channel a, ∀a ∈ A. In the kth iteration, β is the
learning parameter, a−h is the strategy set of all the other players except h and uh = ηh +

∑

n∈Jh
ηn is

the utility it obtains if it chooses channel a while others maintain their strategies. Note that, the learning
parameter β plays an important role in this update rule, which is the tradeoff between exploration and
exploitation. Specifically, smaller β implies that each action has a similar probability and the updater
is willing to explore. An extreme case is when β = 0, all actions have the same probability 1

|A| and the
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updater chooses an action randomly. Meanwhile, larger β ensures the action which can bring in higher
utility has higher probability and the updater tends to choose the best response action. Therefore, it
is advisable that β is small at the beginning and turns larger as the algorithm iterates [52]. The whole
process is described in Algorithm 1.

Algorithm 1 Multi-stage SAP-based learning algorithm

At the beginning of stage t, 1 6 t 6 T , UAVs move to the pre-defined position. The initialization and the updating process will

be executed in every stage. Define the final strategy of stage t (1 6 t 6 T − 1), as a
t = {at

1, . . . , a
t
H}.

Initialization: Set iteration k = 0. The coalition heads obtain the knowledge of the current environment. Coalition head

h, ∀h ∈ H, sets the channel selection probability as pa
h (0) = 1

|A|
, ∀a ∈ A. If it is the first stage, i.e., t = 1, it selects a channel

ah(0) randomly. Otherwise, it maintains its current channel, i.e., ah (0) = at−1
h

.

Updating:

Loop k = 1, 2, . . . ,Kmax (the maximum iteration step).

1. One coalition head h is selected randomly to update while others’ strategies remain unchanged, i.e., a−h (k) = a−h (k − 1).

2. The updater h refreshes the selection probability according to the following rule:

p
a
h (k) =

exp {β · uh [a,a−h (k)]}
∑

a∈A exp {β · uh [a,a−h (k)]}
. (14)

3. The updater h selects a channel according to the probability and broadcasts to its adjacent coalition heads.

End loop

4.2 Algorithm analysis

Whether the proposed algorithm can converge to the optimum should be analyzed. Game theory is a
powerful and widely-applied mathematical tool to formulate problems when strategies of multi-users are
coupled [32, 53]. Therefore, we resort to it to make analysis of the algorithm.

Owing to the coupled relationship of players and stages, the POC access problem is formulated into
several stage-based game models. Specifically, in stage t, the game is denoted as

G (t) =
{

H,A, {Jh (i)}∀h∈H,16i6t, {ah (i)}∀h∈H,16i6t, {uh (t)}∀h∈H

}

, (15)

where H is the set of players (coalition heads), A is the set of POCs, Jh (i) and ah (i) are the set of
neighbors and the channel selection of player h in stage i, uh (t) is the utility of player h in the present
stage. Note that, for each player, it will not only aim at maximizing its own efficiency, but will also
consider its neighboring players’. Therefore, the utility function of player h in stage t is designed as

uh (t) = η
(t)
h +

∑

n∈Jh(t)

η(t)n . (16)

Since the current utility not only depends on the current strategy and neighbors but will also be affected
by the strategies executed in the former stages and former neighbors, the game is expressed as

G (t) : max
ah(t)∈A

uh

(
ah (t) ,aJh(t) (t)

∣
∣
x (t)

)
, ∀h ∈ H, (17)

where

x (t) =







ah (1) , . . . , ah (t− 1)
︸ ︷︷ ︸

history strategies

, aJh(1) (1) , . . . ,aJh(t) (t)
︸ ︷︷ ︸

history strategies of neighbors







is the set of history strategies.

Definition 1. A game is an exact potential game (EPG) if the following equation holds [54]:

uh (ah,a−h)− uh (ah,a−h) = φ (ah,a−h)− φ (ah,a−h), ∀h ∈ H, ah, ah ∈ A, ah 6= ah, (18)

where φ is its exact potential function.

Lemma 1. For any stage t, the proposed game G (t) is an exact potential game.
Proof. To prove G (t) be an EPG, a potential function satisfying (18) should be found out. Design the
potential function as

φ (t) =
∑

h∈H

ηh (t). (19)
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For simplicity of expression, the utility function of player h is written as uh [ah,aJh
|x], where t is

omitted. When any player h changes its strategy from ah to ah in stage t, the deviations of its utility
function and the potential function are

∆uh =

[

ηh (ah,aJh
) +

∑

n∈Jh

ηn (an,aJn
)

]

−

[

ηh (ah,aJh
) +

∑

n∈Jh

ηn (an,aJn
)

]

, (20)

∆φ =



ηh (āh,aJh
) +

∑

n∈Jh

ηn (an,aJn
) +

∑

n∈{H/Jh}

ηn (an,aJn
)





−



ηh (ah,aJh
) +

∑

n∈Jh

ηn (an,aJn
) +

∑

n∈{H/Jh}

ηn (an,aJn
)





=

[

ηh (āh,aJh
) +

∑

n∈Jh

ηn (an,aJn
)

]

−

[

ηh (ah,aJh
) +

∑

n∈Jh

ηn (an,aJn
)

]

. (21)

It can be seen that, ∆uh = ∆φ, ∀h ∈ H. This completes the proof.

Theorem 1. When the learning parameter β is sufficiently large, the algorithm will converge to the
optimal solution in each stage asymptotically.
Proof. The proof of this theorem follows the idea of [49]. Based on the knowledge of the discrete
Markov process, it can be deduced that, in an exact potential game, the stable probability that any

strategy profile a can be converged to is µ (a) = exp{βφ(a)}∑
a
′∈A βφ(a′) , where φ is the potential function of the

game.
In a specific stage, suppose a total of K strategy profiles can maximize the potential function and

define the set of them as a∗ = {a∗
1, . . . ,a

∗
K}. When β is sufficiently large, the following inequality holds:

exp {βφ (ak
∗)} ≫ exp {βφ (a)} , ∀ak

∗ ⊆ a
∗, ∀a ⊆ {A/a∗} . (22)

Accordingly, limβ→∞

∑K
k=1 µ (a∗

k) = 1. This means, the aggregate probability over all optimal strategy
profiles will approach one asymptotically.

Meanwhile, since the potential function is consistent with the optimization object of each state, the
algorithm can asymptotically reach the optimal solution as well. This completes the proof.

Some discussion about the proposed algorithm are given below.
• The algorithm is online which will be executed by coalition heads at each stage. This means the

channel access solution does not need to be pre-planned before the search mission starts. Therefore, the
UAV swarm can perform better when encounter varying environment or emergencies since they can make
dynamic and adaptive strategies.

• The algorithm is distributed and is efficient in large-scale networks. Since the algorithm is executed
by each coalition head, the computation complexity is reduced to a great extent compared with traditional
optimization method. Specifically, the computation complexity of the proposed algorithm is obtained as
follows. The updater selection process has a complexity of O (C1), where C1 is a small constant. The
updating process involves A addition and A division operations and has a complexity of A ·O (C2), where
A is the number of channels and C2 is a small constant. Accordingly, the total complexity of the proposed
algorithm is T = Kmax · (O (C1) +A · O (C2)), where Kmax is the number of iterations. It can be seen
that the complexity scales with the channel amount instead of the number of coalitions.

• In most cases, the learning parameter β increases with the number of iterations. This helps the
updater explore new strategies in the early period and exploit the best strategy in the later period.
Such updating rule makes the algorithm not be trapped in local optimal solutions and achieve the global
optimum asymptotically.

• Although the algorithm is executed for optimization in each individual stage, it can be seen from
Figure 3 that the input of the learning process is relative with the strategies in the previous stage, which
means that the coupled relationship among stages is considered. In addition, it is proved in Theorem 1
that the algorithm converges to the optimum asymptotically in each stage. Therefore, it can be expected
that the algorithm can achieve a nice result of problem P.
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Figure 4 (Color online) An illustration of the proposed three trajectories. (a) Carpet; (b) Troop; (c) Ring.

5 Simulation results and discussion

This section gives and discusses the simulation results. The basic simulation parameters are as follows.
The mission area is a 12000 m × 12000 m square. The amount of POCs is 6, the bandwidth of each
channel is 22 MHz and the separation of adjacent channels is 5 MHz. The transmission power of coalition
members and heads are 20 dBm and 24.77 dBm respectively. The SNR threshold is pτ = −4 dB. When
the physical distance of two coalition heads is less than 4.1953×103 m, they are defined as neighbors. The
speed of light is c = 3× 108 m/s. The carrier frequency is fc = 2.4× 109 Hz. The additional attenuation
factor is ηLOS = 5 dB. The background noise is N0 = −90 dBm. Each coalition has eight members and
the length of messages sensed by each member is 1024× 103 bit. The fusing ability of all coalition heads
is configured as one. Most parameters are referred to [47].

5.1 Scenario settings

To investigate the universality and the effectiveness of the proposed method, three representative settings
are constructed for the given area, as is shown in Figure 4. The first one is named as Carpet, where the
number of coalitions and stages are 12 and 5, respectively. Except the first and the last grid cells, each
grid cell will be detected by at least two different coalitions. The second one is named as Troop, where
the number of coalitions and stages are 8 and 4 respectively. Each coalition moves straightly and each
grid cell is detected by the same two coalitions. The third one is named as Ring, where the number of
coalitions and stages are 4 and 8 respectively. Each two coalitions are in charge of half the area and the
trajectory of each coalition forms a ring.

Because of the different number of coalitions and trajectories, the density of the three networks varies.
Specifically, the Carpet has the largest density where each coalition has an average of 2.75 adjacent
coalitions in each stage while the Ring has the smallest density where each coalition has at most one
adjacent coalition in each stage. This has an impact on the degree of mutual interference in Period I
and the number of backlogged after Period II. It can be seen from the results presented later that the
proposed method achieves higher efficiency in many cases under the three settings and we believe that it
can be applied in other networks as well.

5.2 Convergence performance

The convergence performance of the proposed algorithm is validated first. The learning parameter is set as
β = 1.2× i, where i is the iteration time. We make simulations under the three settings when T1 = 0.25 s
and T2 = 0.35 s and the results are the average of 100 independent simulations. To demonstrate the
effectiveness of the proposed algorithm, we make a comparison with the best response (BR) algorithm. In
BR, the updater in each iteration selects the optimal strategy which maximizes its current utility. Such
a greedy rule makes the algorithm simple and has been widely used [30, 31].

It can be seen from Figure 5 that the algorithm can always converge and the result is better than that
obtained by the BR algorithm in the Carpet and the Troop settings. This is because BR may be trapped
in the suboptimum while SAP can reach the optimum with high probability. In the Ring setting, the two
algorithms converge to almost the same result. This is because, the number of coalitions is small in this
situation and the optimal solution is easy to be found out.
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Figure 5 (Color online) The convergence behavior between SAP and BR under three settings. (a) Carpet; (b) Troop; (c) Ring

Then the effectiveness of the proposed method will be discussed. To avoid inter-coalition interference
in Period I, it is better for adjacent coalitions using orthogonal channels. On the other hand, to make
more messages transmitted during Period II, all coalitions tend to work on the same channel. Such a
transmission method is named as orthogonal first and same later (OFSL) in this section. It can be seen
that, this method requires UAVs to be equipped with two transceivers or to switch from time to time.
Specifically, if each UAV has only one transceiver, it needs to switch twice during a specific stage. By
comparison, when leveraging to POCs, each UAV only needs to switch at most once when entering a new
stage. We make comparisons with OFSL under different settings and each result is an average of 100
simulations.

5.3 Influence of transmission power

The influence of the transmission power for inter-coalition communication is analyzed in this subsection.
The result of the Carpet setting is given in Figure 6 for representative. It can be seen that, the overall
efficiency rises with larger pinter. This is because when pintra is fixed, the amount of collected messages
by coalition heads in Period I is the same. When pinter turns larger, more messages in the storage can be
broadcasted in Period II, which results in higher utility. It can also be seen that, when pinter = 23.01 dBm,
the converged overall efficiency in different stages shows a dropping trend which is not obvious in the
other two cases. This may be because of the following two reasons. First, when pinter is not large enough,
coalition heads may need to work on adjacent channels, or even the same channel, to make message
exchange. If their converged channel selection strategies are not satisfied, i.e., the SINR of the receiver
cannot exceed the demodulation threshold, the exchange will be failed which makes η2 = 0. Secondly,
more storage will be backlogged with lower inter-coalition transmission power. This will make the overall
efficiency decline continuously when the task execution goes on. However, although larger pinter brings
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Figure 6 (Color online) The convergence behavior in Carpet

with different intra-coalition transmission powers.

Figure 7 (Color online) The convergence behavior in Carpet

with different fusion abilities.

in higher overall efficiency, the cost of energy should also be considered when choosing the transmission
power of UAVs.

5.4 Influence of fusion ability

The influence of the fusion ability of coalition heads is analyzed in this subsection. The result of the
Carpet setting is given in Figure 7 for representative. It can be seen that, when the heads have better
fusion ability, i.e., lower fusing coefficient η, the overall efficiency will be higher. The result can be easily
explained since the higher fusion ability, the fewer messages required to be exchanged. This eases the
burden of coalition heads in Period II and can result in higher η2. However, it should be noted that
better fusion ability has a higher demand for the equipment. Therefore, there is a tradeoff between the
overall efficiency and the hardware cost when producing UAVs.

5.5 Influence of uploading time

The influence of the uploading time in Period I, i.e., T1, is analyzed in this subsection and the simulation
results of the tree trajectories are given in Figure 8. We first analyze the results of the Carpet trajectory.
It can be seen from Figure 8(a) that, when T2 is fixed and T1 turns larger, with the OFSL method,
the overall efficiency increases first, drops later, then has a slight rising trend and stays unchanged
finally. This is because at first, when T1 turns larger, coalition members can upload more information,
all of which can be broadcasted by coalition heads, bringing in higher η1 and the same η2. After that,
although more information can still be uploaded with larger T1, coalition heads cannot broadcast them
all, resulting in heavier storage and lower η2. Then, the amount of uploaded information approaches the
maximum, making η1 rise more slowly and the backlogged storage can be broadcasted gradually. Finally,
all information can be uploaded, ensuring η1 = 1, and the backlogged storage remains unchanged. By
comparison, the rising trend of the proposed method has longer duration than OFSL. This is because
POCs result in inter-coalition interference. Under the same T1, the amount of uploaded messages in
Period I will be fewer than those when utilizing orthogonal channels. Therefore, the storage can still be
emptied by coalition heads in Period II even with larger T1. After reaching a threshold, the uploaded
messages will be backlogged and the overall efficiency decreases.

The results of the Troop trajectory have a similar trend with that of the Carpet trajectory. However,
since the network topology in this situation is relatively sparser, mutual interference will be less severe in
Period I when working on POCs. Therefore, under the same T1, more messages can be uploaded and the
backlog appears faster. This explains why the turning point of the red curve comes earlier in Figure 8(b)
comparing with Figure 8(a).

The Ring trajectory shows different results with the other two. This is because the network is quite
sparse in this situation, where each coalition has at most one adjacent coalition in each stage. Therefore,
the amount of uploaded messages in Period I can be large even with small T1. This brings in a rela-
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Figure 8 (Color online) The comparison between the proposed method and OFSL with T2 = 0.35 s under three trajectories.

(a) Carpet; (b) Troop; (c) Ring.

tively stable relationship with the amount of broadcasted messages in Period II and makes the curves in
Figure 8(c) not up and down.

5.6 Influence of exchange time

The influence of the exchange time in Period II, i.e., T2, is analyzed in this subsection and the simulation
results of the tree trajectories are given in Figure 9. We first analyze the results of the Carpet trajectory.
It can be seen from Figure 9(a) that, when T1 is fixed and T2 turns larger, the overall efficiency obtained
by the OFSL method increases first and stays unchanged. This is because η1 remains unchanged in this
setting and more storage can be transmitted in Period II with longer T2, resulting in larger η2. However,
when T2 is large enough (T2 > 0.36 s) for emptying all the storage, η2 remains unchanged as well. On
the other hand, the proposed method brings in a continuous rising overall efficiency. This is because the
threshold has not been reached and more messages are transmitted with longer T2, resulting in larger η2.

The results of the other two trajectories are similar. Besides, it is notable that, in the Ring trajectory,
the overall efficiency obtained by the proposed method approaches the result obtained by the OFSL
method. This is because the sparse distribution results in little mutual interference. While ensuring
enough uploaded messages in Period I, the coalitions may tend to work on the same channel for obtaining
higher efficiency in Period II which produces a similar result of the OFSL strategy.

The discussion of the simulation results is given below:

• The proposed method can be applied in all the three representative settings. Since the settings
have diverse densities, stages and trajectories, it is expected that the method can be applicable in other
scenarios as well.



Yao K L, et al. Sci China Inf Sci April 2021 Vol. 64 140305:14

0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44
70

75

80

85

90

95

100

105

O
v
er

al
l 

ef
fi

ci
en

cy

 

 

0.30 0.32 0.34 0.36 0.38 0.40 0.42
43

44

45

46

47

48

49

50

51

52

53

54

O
v
er

al
l 

ef
fi

ci
en

cy

 

 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
23

25

27

29

31

33

35

37

39

O
v
er

al
l 

ef
fi

ci
en

cy

 

 

T2 (s)

(a)

T2 (s)

(c)

T2 (s)

(b)

Proposed method (one transceiver)
OFSL (two transceivers or switching)

Proposed method (one transceiver)
OFSL (two transceivers or switching)

Proposed method (one transceiver)
OFSL (two transceivers or switching)

Figure 9 (Color online) The comparison between the proposed method and OFSL with T1 = 0.2 s under three trajectories.
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• By analyzing the numerical results presented in Figures 8 and 9, it is found that, in the best case,
the proposed method can achieve 111.7% (Figure 8(a), T1 = 0.27 s) and 118.2% (Figure 9(a), T2 = 0.27 s)
of the overall efficiency obtained by the OFSL method respectively. This means the method can be quite
promising when the time parameter is designed properly.

• By comparison, in the worst case, the proposed method achieves 88.3% (Figure 8(a), T1 = 0.19 s)
and 87.9% (Figure 9(a), T2 = 0.36 s) of the overall efficiency obtained by the OFSL method. However,
it should be noted that the OFSL method requires two transceivers or channel switching, which is at the
cost of hardware design and equipment.

6 Conclusion

This paper investigated the spectrum access problem in a coalition-based cooperative searching UAV
swarm. To make both intra- and inter-coalition communication, UAVs may need to switch on different
channels or to be equipped with multiple transceivers which will result in delays or hardware cost. Lever-
aging POCs can address this issue since they can forward messages on different channels. Therefore,
a POC-based communication method was proposed in this paper. Because of the coupled relationship
among the strategies of each coalition in each stage, the POC access problem is a combinatorial opti-
mization one and an online learning algorithm was proposed to solve it. Specifically, the algorithm is
distributed which will be executed by each coalition head in each stage and therefore can reduce the
computation complexity. By resorting to the potential game theory, the algorithm was proved to con-
verge to the optimum asymptotically in each stage. To validate the effectiveness of the proposed method,
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three representative settings were given and many simulations were made. According to the results, the
proposed method can be applied in all the three settings and it is expected that it will be applicable in
other scenarios as well.
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