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Dear editor,

Discrete Gaussian sampling is a fundamental tool in lat-

tice cryptography which has been used in digital signatures,

identify-based encryption, attribute-based encryption, zero-

knowledge proof, and fully homomorphic cryptosystem. As

a subroutine of lattice-based scheme, a high precision sam-

pling usually leads to a high security level and also brings

large time and space complexity. In order to optimize secu-

rity and efficiency, how to achieve a higher security level with

a lower precision becomes a widely studied open question

[1–4]. A popular method for addressing this question is to

use different metrics other than statistical distance to mea-

sure errors. The proposed metrics include KL-divergence,

Rényi-divergence, and Max-log distance, and these tech-

niques are supposed to achieve 2p security with p
2
precision

or even less [1–3]. However, we note that error bounds are

not universal but depend on specific sampling methods. For

example, if one uses the popular rejection sampling, there

will be large gaps between some existing results and practi-

cal experiments in terms of error bounds. We discuss these

issues by making two novel observations about practical er-

rors. As an application of these observations, we consider

convolution theorem [5, 6] of discrete Gaussian sampling by

using rejection method and reformulate it into a practical

one with much more accurate error bounds. We describe

a rigorous proof of it in Appendixes A–C and demonstrate

that the bounds are tightly matched by our experiments.

Our bounds under the statistical distance (∆SD), relative

difference (∆RE), KL-divergence (∆KL), Rényi-divergence

(∆RDα) and Max-log distance (∆ML) using rejection sam-

pling may have no influence on estimating security level,

but this successful application reveals the proposed obser-

vations are very effective in analyzing practical probabilities.

Moreover, some technical tools including several improved

inequalities for discrete Gaussian measure are developed.

Two propositions. Here we make two novel observations

about practical errors which are the keys to more precisely

determine the dominant term of practical errors in discrete

Gaussian sampling. We first define two bounds for practi-

cal errors: εt = ρ1/t(Z) − 1 and µ = 2−p. Note that for

t > 1, εt = 2
∑+∞
i=1 e−πt2i2 ∈ (2e−πt2 , 2e−πt2

1−e−3πt2
). We will

use εt to control the truncation error with respect to t, and

µ to control float-point errors.

Our first observation indicates that, in general, the sum

of the stored probabilities cannot be close to 1 by the order

of µ2.

Proposition 1. Let P1, . . . , Pn be a finite probability dis-

tribution and P̄1, . . . , P̄n be the corresponding p-bits approx-

imations (i.e., P̄i = Rdp(Pi)). We have |1−
∑n
i=1P̄i| 6 µ.

Moreover, this bound is sharp in the sense that it cannot be

improved to < µ
2
.

We would like to make the following remarks.

(1) There are more cases for which |1 −∑n
i=1 P̄i| >

µ
4
.

However, the probability for |1−
∑n
i=1 P̄i| 6 µ2 is extremely

small.

(2) Let P ′
i = P̄i

∑

n
i=1

P̄i
, then P̄i

1+2−p
6 P ′

i 6
P̄i

1−2−p
.

We observe that in most cases, Rdp(P ′
i ) = P̄i for all i =

1, 2, . . . , n, so normalizing the stored probabilities achieves

nothing in terms of storage. We shall call this anti-intuitive

phenomena the Distribution Precision Paradox.

(3) We also have
∑n
i=1 Rdp(P ′

i ) = 1+O(µ). This can be

seen from the fact that
∣

∣Rdp(P ′
i )− P̄i

∣

∣ 6 2−p+1P̄i.

(4) The proposition naturally leads to a conclusion that

floating-point errors are mostly around O(µ) rather than

O(µ2) for methods such as rejection sampling.

(5) When adding truncation errors into consideration, we

can get a similar result that normalization process will not

efficiently remove the influence of truncation errors on the

sum of probabilities because of the limitation of the storage

space. As a result, in a base sampler of discrete Gaussian

sampling, we always have
∑n
i=1 Rdp(P ′

i ) = 1+O(µ)+O(εt).
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Figure 1 (Color online) Experiments results of practical errors of discrete gaussian convolution. (a) For ∆SD, ∆KL and ∆RD;

(b) for ∆ML and ∆RE.

Our second observation reveals a contrary result for the

case of convolution of two discrete Gaussian variables. We

actually show that during the process of convolution, the

ignored part of truncation error according to the tail bound

lemma proposed in [7] may contribute significantly and be-

come the main term with respect to several metrics.

Let x1, x2 be sampled from Ds independently and be re-

stricted on the truncation ranges S1 = [−ts, ts]. Let a, b

be positive integers with gcd(a, b) = 1 and x = ax1 + bx2.

The probability of x is computed by the convolution, de-

noted by P ′(x). We also restrict the support of x to S =

[−t
√
a2 + b2s, t

√
a2 + b2s]. Setting η =

√
a2+b2

s
, ψ =

min{
√
a2+b2−a

b
,

√
a2+b2−b
a

} and ω = 1 − η
ψt

, we can state

our observation as follows.

Proposition 2. Let P (x) be the probability of x for the

ideal discrete Gaussian distribution D√
a2+b2s

. If st >
√
a2+b2

ψ
, then

∆RE(P
′, P ) 6 ε

ω2ψ2

t .

Moreover, this bound is sharp in the sense that it cannot be

improved to < ε
(
√
2−1)2

t .

We have several remarks.

(1) Our following experiments show that our bound is

sharp and ∆RE(P
′, P ) 6 ε

(
√
2−1)2

t is false. However, the

inequality ∆ML(P
′, P ) 6 O(εt) (∆RE(P

′, P ) 6 O(εt)) was

assumed previously [1].

(2) It is also interesting to note if st <

√
a2+b2

ψ
,

∆RE(P
′, P ) can be close to 1.

(3) Because practical distribution usually has a bounded

support, the analysis about max-like metrics is discussed ac-

cording to the support of practical distribution unless specif-

ically otherwise, says S = [−t
√
a2 + b2s, t

√
a2 + b2s] in this

case.

Refinement of practical convolution theorem. We will use

the two observations to consider practical issues of convolu-

tion of discrete Gaussian samplings using rejection sampling,

which mainly devotes to a derivation of convolution theorem

with more accurate bounds.

Recall that for a real number t > 1, we use εt =

ρ1/t(Z) − 1 to control the truncation error with respect to

t. For positive integers a, b and real number s1, η, ψ and ω

are defined as above.

Now, we state our version of convolution theorem.

Theorem 1. Let a > b ∈ Z be nonzero integers with

gcd(a, b) = 1 and s ∈ R
2 with s1 = s2 >

√
a2 + b2ηε(Z)

(the discussion can be extended to the case of s1 6= s2). Let

xi ∈ [−tsi, tsi] be independent samples from DZ,si , respec-

tively, with floating-point error µi 6 µ for i = 1, 2. Let D̃Z,s

be the distribution of x = ax1 + bx2 ∈ S = [−ts, ts] where

s =
√

a2s21 + b2s22. Then

∆SD(D̃Z,s,DZ,s) 6 C1εt + µ+ ε,

∆RE(D̃Z,s, DZ,s) 6 C3ε
ω2ψ2

t + 2µ + 2ε,

∆ML(D̃Z,s,DZ,s) 6 C3ε
ω2ψ2

t + 2µ + 2ε,

∆KL(D̃Z,s‖DZ,s) 6 (2C1 + C4)εt + 2µ + 2ε2,

∆RDα (D̃Z,s‖DZ,s) 6 1 + (2C1 + C4)εt+2µ+
α

2
ε2,

where C1 =
1− 1

2
e
−

2πt
s1

s1
+

1
2
e

−2πt
s1 , C3 =

2

(1−e−π(2ωψηt+η2))(1+e−2πη2 (1+e−4πη2 ))
, and C4 =

1− 1
2
e
−

2πt
s

s
+

1
2
e

−2πt
s .

Experiment results. We describe two experiments about

the practical errors of convolution discrete Gaussian sam-

pling to validate our results. The first experiment is to ex-

hibit the influences of convolution errors, truncation errors

and floating-point errors, respectively. More specifically, we

choose s1 = s2 and compute the probability distributions

for x1 ← DZ,s1 and x2 ← DZ,s2 under different precisions

where x1 ∈ [−ts1, ts1], x2 ∈ [−ts2, ts2]. Then we compute

the probability distribution of the variable x̃ = ax1 + bx2,

denoted as D̃
Z,s=

√

a2s21+b
2s22

, and compare it with a pre-

computed and much more accurate probability distribution

for x ← D
Z,s=

√

a2s21+b
2s22

to get a result of output errors.

And it is clear that the approach fits well with the practical

situations such as rejection sampling.

The detailed parameters are selected as s1 = s2 =

19.53
√
2π, a = 11, b = 1, s =

√

a2s21 + b2s22, x1 ∈
[−ts1, ts1], x2 ∈ [−ts2, ts2], t varying from 3 to 8 and the

precision varying from 53 to 200. For the contrast probabil-

ity distribution, the precision is selected as 500 and t = 10.

These parameters are chosen according to the instantiation

in [2].

According to Theorem 1, errors under ∆SD, ∆RD and

∆KL are combinations of truncation errors, floating-point

errors and convolution errors. The parameters of our experi-

ments are chosen with fixed s, separated t = 3, 5, 7 and vary-

ing precisions. It is interesting to find that practical errors

will eventually stay unchanged with large enough precisions,

where the practical error is mainly influenced by truncation

errors and convolution errors. It can be seen that the results

shown in Figure 1(a) are consist with that in Theorem 1.

As for ∆RE and ∆ML, we select following parameters

to conduct experiments: s1 = s2 = 34, a = 4, b = 3,
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s =
√

a2s21 + b2s22, x1 ∈ [−ts1, ts1], x2 ∈ [−ts2, ts2], with

t varying from 3 to 8 and precisions varying from 53 to 200.

For the contrast probability distribution, the precision is se-

lected as 500 and t = 10 which make truncation errors and

floating-point errors as small as possible. These parameters

are chosen according to the instantiation in [1].

The results about errors under ∆ML and ∆RE can be

found in Figure 1(b). What is interesting is that as

C3ε
ω2ψ2

t ≫ max(2µ, 2ε), our estimation indicates that the

practical errors may not change when the precisions varies

from 53 to 200 which seems to be well supported by the

experiment.

Conclusion. We make two critical observations about

practical errors and take the practical error estimation for

convolution theorem with respect to discrete Gaussian sam-

pling (using rejection method) as an example to show how

to use these observations to more precisely determine the

dominate term of practical errors. Extensive experiments

have been conducted and the results highly agree with our

derived bound. Our result shows that error estimations of

a convolution theorem under KL-divergence, Max-log dis-

tance and Rényi-divergence depend on the use of sampling

methods; in particular, finer error bounds do not hold when

using rejection sampling.
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