
SCIENCE CHINA
Information Sciences

. Supplementary File .

Key-dependent cube attack on reduced Frit
permutation in Duplex-AE modes

Lingyue QIN1, Xiaoyang DONG1, Keting JIA2* & Rui ZONG1

1Institute for Advanced Study, Tsinghua University, Beijing 100084, China;
2Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

Appendix A

Appendix A.1 Brief description of Frit

Frit is a 384-bit cryptographic permutation proposed by Simon et al., which operates on a state of three limbs a, b, c in

{0, 1}128 updated in 16 rounds. The details are illustrated in Algorithm A1.

Algorithm A1 Frit

Input: a, b, c ∈ {0, 1}128

for each i ∈ [0, 15] do

c← c⊕RCi

a← a⊕ (a <<< 110)⊕ (a <<< 87)

c← c⊕ (a⊙ b)

c← c⊕ (c <<< 118)⊕ (c <<< 88)

b← a⊕ b⊕ c

(a, b, c)← (c, a, b)

end for

return (a, b, c)

.

σc

σaa

b

c

We use Frit to design authenticated encryption by using the duplex authenticated encryption mode as shown in Figure A1.

Our attack target is the initialization phase of Frit-AE, as shown in Figure A2.

FritK||N

P1 C1

Frit

Pt-1 Ct-1

Frit

Pt Ct

Frit

T

FritK||N

P1 C1

Figure A1 Fritβα-AE. Figure A2 Initialization phase of Frit-AE.

Appendix A.2 Key-dependent cube attack

The key-dependent cube attack only involves conditions which only involve secret key bits. In duplex authenticated

encryption mode, such as Ketje, Ascon and Fritβα-AE, the initialization phase produces l-bit output. Each of the output

*Corresponding author (email: ktjia@mail.tsinghua.edu.cn)

Qin L Y, et al. Sci China Inf Sci 2

bits is written as a polynomial fi(k0, ..., kn−1, v0, ..., vm−1), i = 0, 1, ..., l− 1. Choose a common cube CT , e.g (v0, ..., vs−1),

1 6 s 6 m, then fi = T · Pi + Qi, i = 0, 1, ..., l − 1. In our key-dependent cube attack, a common divisor of Pi is found,

which is a polynomial g(k0, ..., kn−1) that only involved some key bits. Then the cube sum of fi over all values of the cube

CT is Pi = g(k0, ..., kn−1) · P ′
i . The Corollary 1 is given.

Corollary 1. Given a series of polynomials fi (i ∈ {0, 1, ..., l − 1}):{0,1}n → {0,1}.
f0(k0, ..., kn−1, v0, ..., vm−1) = T · g(k0, ..., kn−1) · P ′

0 +Q0

f1(k0, ..., kn−1, v0, ..., vm−1) = T · g(k0, ..., kn−1) · P ′
1 +Q1

...

fl−1(k0, ..., kn−1, v0, ..., vm−1) = T · g(k0, ..., kn−1) · P ′
l−1 +Ql−1

(A1)

where none of the monomials in Qi(x) is divisible by T . Then the sums of fi (i ∈ {0, 1, ..., l− 1}) over all values of the cube

(cube sum) are

∑
v′∈CT

f0(k0, ..., kn−1, v
′, vs, ..., vm−1) = g(k0, ..., kn−1) · P ′

0

∑
v′∈CT

f1(k0, ..., kn−1, v
′, vs, ..., vm−1) = g(k0, ..., kn−1) · P ′

1

...∑
v′∈CT

fl−1(k0, ..., kn−1, v
′, vs, ..., vm−1) = g(k0, ..., kn−1) · P ′

l−1

(A2)

where the CT contains all binary vectors of the length s, and other public variables vj , j ∈ {s, s+1, ...,m−1} are constants.

The following Property 1 is easy to get. According to Property 1 and Assumption 1, we obtain the cube tester used in

our attack.

Property 1. If g = 0, cube sums of fi (i ∈ {0, 1, ..., l − 1}) will be all 0 with probability 1.

Assumption 1. If g = 1, cube sums of fi (i ∈ {0, 1, ..., l − 1}) will be determined by P ′
i (i ∈ {0, 1, ..., l − 1}), the cube

sums of fi (i ∈ {0, 1, ..., l − 1}) all equal to 0 with probability about 2−l if fi (i ∈ {0, 1, ..., l − 1}) is a random oracle.

Appendix A.3 Attacks on Fritba-AE

We give a 3-round initial structure of Fritba-AE by keeping the limb b0 to constants 0 and setting σ−1
c σ−1

a (v) to limb c0 as

Figure A3. We generate the constraints set CF of {xi} to guarantee there are no quadratic terms in a3, c3 as Algorithm

A2.

.

σc

σa

.

σc

σaK

.

σc

σa

0

v

()
a
Ks v

1()
a
vs

-

3a

3b

3c
1 1()
c a

vs s
- -

1(() ())
a c a a

K v vs s s s
-

+ (
a

1(1(1

Figure A3 3-round initial structure of Fritba-AE.

Algorithm A2 Generating constraints on v to linearize a3, c3

Input: Variables set v = {vi} (i ∈ [0, 127])

Output: A set CF of constraints

CF = ∅
Exp = σaσc(σa(K)⊙ v)⊙ v + σc(v)⊙ v

for each i ∈ [0, 127] do

for each j ∈ [i+ 1, 127] do

if gi,j(K)vivj ∈ Exp and gi,j(K) ̸= 0 then

CF ← CF ∪ {xi + xj 6 1}
end if

end for

end for

return CF

Qin L Y, et al. Sci China Inf Sci 3

Then our problem is modeled into a binary linear programming problem:

Maximize

127∑
i=0

xi,

s.t. AX 6 b, X = {xi|xi ∈ {0, 1}, 0 6 i 6 127},

where the AX 6 b describe the constraints set CF . Using the Gurobi Optimizer [1] to solve the problem, we get the first

two optimum solutions and the corresponding index sets of v are listed in Table A1. Every variable vi in each set does not

multiply with each other in the same set. In the following we use the Index0 to introduce the basic idea of our attack. (The

Index0 can be replaced with Index1 to get different bit conditions of K.)

Table A1 Index sets of independent variables

Set Num Values

Index0 29 0, 1, 7, 8, 15, 16, 23, 30, 31, 38, 39, 45, 46, 53, 60, 61,

68, 69, 75, 76, 83, 91, 98, 99, 105, 106, 113, 114, 121

Index1 28 0, 1, 2, 9, 16, 23, 24, 25, 31, 32, 39, 46, 54, 55, 61, 62,

69, 84, 85, 91, 92, 98, 99, 107, 114, 115, 121, 122

The procedure to attack r + 3-round Fritba-AE is concluded as follows.

1. First set the cube’s dimension d = Fr+1 + 1. Adding vj(j /∈ Index0) to the cube variables set, we can choose one

quadratic term gi,j(K)vivj(i ∈ Index0) from c3 and add vi to the cube variables set. The other d− 2 cube variables

are choosing from Index0, which are not multiplied with vj . That is, we obtain a d-dimension cube to recover one

bit condition gi,j(K).

2. Assign the other variables of v to constants 0 except for the cube variables and calculate the cube sum of the whole

128 bits output after r+3-round Frit. If all the 128 cube sums are 0, we take the gi,j(K) as 0, otherwise gi,j(K) = 1.

3. The time complexity of recovering 1 bit condition of K is 2d. By changing the value of j and relative quadratic term

gi,j(K)vivj , we can generate different cube variables to recover different gi,j(K). We can get 128 linearly independent

bit conditions and solve the set of equations to recover the 128-bit key. We introduce the details to choose different

bit conditions and corresponding cube variables in Algorithm A3. The time complexity is 2d×27 = 27+d. (The time

to solving the linear system can be omitted.)

Algorithm A3 Generating bit conditions and corresponding cube variables

Input: A set Index, the dimension d

Output: A list Bc of bit conditions and a list CT of corresponding cube variables

Bc = []

CT = []

Exp = σaσc(σa(K)⊙ v)⊙ v + σc(v)⊙ v

for each j ∈ [0, 127] \ Index do

V0 = ∅
V1 = []

for each i ∈ Index do

if gi,j(K)vivj ∈ Exp and gi,j(K) ̸= 0 then

V0 ← V0 ∪ {i}
if gi,j(K) and (gi,j(K) + 1) not in Bc then

Add i to V1

Add gi,j(K) to Bc

end if

end if

end for

for each i ∈ V1 do

cube = {j, i} ∪ {km|km ∈ Index \ V0, 0 6 m 6 d− 3}
Add cube to CT

end for

end for

return Bc, CT

Appendix A.3.1 Experiments on 10-round Fritba-AE

Applying the 3-round initial structure in Figure A3 to the 10-round Fritba-AE, we can use the 22-dimension cube to get some

bit conditions of K. For example, setting j = 4 (v4 is a cube variable), there are three quadratic terms in the expressions

Qin L Y, et al. Sci China Inf Sci 4

of c3 and a3:

(K4 +K91 +K114)v4v45, (K50 +K73 +K91)v4v91, (K73 +K96 +K114)v4v114.

Keeping only one variable in set {v45, v91, v114} to be a cube variable, there is only one quadratic term in the expressions

of c3 and a3. We can get 1 bit condition of K by testing one cube. The examples of the bit conditions and relative cube

variables are listed in Table A2. All the 128 bit conditions and corresponding cube variables can be found by Algorithm A3

using SageMath [2]. Then solving a set of 128 linear equations we can recover the 128-bit key. Testing about 100 random

keys has a success rate of 100%, and recovering each key needs about 8 minutes with time complexity 229.

Table A2 Bit conditions and cube variables of 10-round Fritba-AE

Bit conditions Degree Cube variables

K4 +K91 +K114 22 v0, v1, v4, v7, v8, v15, v16, v23, v30, v31, v38, v39

v45, v46, v53, v60, v61, v68, v69, v75, v76, v83

K50 +K73 +K91 22 v0, v1, v4, v7, v8, v15, v16, v23, v30, v31, v38, v39

v46, v53, v60, v61, v68, v69, v75, v76, v83, v91

K73 +K96 +K114 22 v0, v1, v4, v7, v8, v15, v16, v23, v30, v31, v38, v39

v46, v53, v60, v61, v68, v69, v75, v76, v83, v114

Appendix A.4 Attacks on Fritbb-AE

Set variable vector v′ to limb a0 and σ−1
c σ−1

a (v) to limb c0 as Figure A4 to get a 2-round initial structure for Fritbb-AE.

.

σc

σa

.

σc

σav¢

()
a
vs ¢

K

2a

2b

2c
1 1()
c a

vs s
- -

(())
a c a

v K vs s s ¢+ ())
a c a

((¢

Figure A4 2-round initial structure of Fritbb-AE.

To linearize a2 and c2, we need to keep that the expression b1 ⊙ b2 = σa(v′) ⊙ v + σa(v′) ⊙ σaσc(K ⊙ σa(v′)) doesn’t

have quadratic terms. That is,

1. For expression σa(v′) ⊙ v, we need to keep that each vi (0 6 i 6 127) is not multiplied by v′j (0 6 j 6 127) after

mixing operation σa. So if v′j is chosen as a cube variable, variables vj , vj+18 and vj+41
1) need to be constants due

to the diffusion property of σa.

2. For expression σa(v′)⊙σaσc(K⊙σa(v′)), the quadratic term gi,j(K)v′iv
′
j(i ̸= j) depends on some relative bits of K.

For a certain K, if all gi,j(K) = 0, the expression is linear. In the attack procedure, we can set some v′is to constants

to reduce the num of bit conditions gi,j(K).

3. By carefully choosing some variables vi and v′j and setting others to constants, we ensure that there are no quadratic

terms viv
′
j in b1 ⊙ b2. For all the quadratic terms gi,j(K)v′iv

′
j : if gi,j(K) = 0 or at least one of v′i, v

′
j is constant, the

degree of a2, c2 is 1; otherwise the degree is 2.

The key-dependent attack on r + 2-round Fritbb-AE is concluded as follows:

1. First set the cube’s dimension d = Fr+1 + 1 and cube variables set Ci = {v′i, v′i+1, vj0 , · · · , vjd−3
}, where set

{j0, · · · , jd−3} doesn’t have any elements of {i, i+ 18, i+ 41, i+ 1, i+ 19, i+ 42}.

2. Assign the other variables of v, v′ except for the cube Ci to constants 0 and calculate the cube sums of the whole

128 bit positions of the output limb after r + 2-round Frit over all values of the cube Ci. If all the 128 cube sums

are 0, we take the Ki+1 as 0, otherwise Ki+1 = 1.

3. The time complexity of recovering 1-bit key is 2d, and the time to get the whole 128-bit key is 2d × 27 = 27+d by

traversing i from 0 to 127.

1) The addition + is in GF (27), i.e. i+ 1 means (i+ 1) mod 128.

Qin L Y, et al. Sci China Inf Sci 5

Appendix A.4.1 Experiments on 9-round Fritbb-AE

We do experiments on the 9-round Fritbb-AE to verity our attack results. Using the 2-round initial structure in Figure A4,

we can use a (F8 + 1)-dimension (22-dimension) cube to recover 1-bit K. The cube variables for recovering K1 are listed

in Table A3. To recover Ki (0 6 i 6 127), the cube variables needed are the variables in Table A3 by adding i − 1 to

the indexes in GF (27). We give several examples of the recovered 1-bit key and corresponding 128-bit cube sums for some

random keys in Table A4, using the cube variables in Table A3. The details of the experiments refer to https://github.

com/qly14/FritAE.git. We test about 100 random keys, and the success rate of recovering the whole 128-bit key is 100%.

The time complexity of our attack on 9-round Fritbb-AE is 229, which only needs about 7 minutes on a personal computer.

Table A3 Cube variables of 9-round Fritbb-AE

Key Degree Cube variables

K1 22 v′0, v
′
1, v2, v3, v4, v5, v6, v7, v8, v10, v11, v12

v13, v14, v15, v16, v17, v20, v21, v22, v23, v24

Table A4 Experimental results of 9-round Fritbb-AE

1-bit key 128-bit random key Cube sums

K1 = 0 0x1c93b7ae 81cf5ca8 644a0463 0c41db9e 0x00000000 00000000 00000000 00000000

K1 = 1 0xe58ec52a 3b3fccf2 17d04d42 4618e031 0x0800c010 20000040 00000000 00802020

K2 = 0 0x05ab60a7 fe41288e 69983eed 4ae9fe4c 0x00000000 00000000 00000000 00000000

K2 = 1 0xe96f359e 26ace184 1565c5cb 0fe1b095 0x04006008 10000020 00000000 00401010

K3 = 0 0x8047f929 e59445dc 0d13ea46 60acb0ec 0x00000000 00000000 00000000 00000000

K3 = 1 0xb3e808b5 a9094cb4 1064fa84 339eac56 0x02003004 08000010 00000000 00200808

Appendix A.4.2 Experiments on 10-round Fritbb-AE

Adding 8-round Frit after the 2-round initial structure, we can attack 10-round Fritbb-AE using the (F9 + 1)-dimension

(35-dimension) cube. Similar to the attack on 9-round Fritbb-AE, we give the cube variables for recovering the K1 of the

10-round Fritbb-AE in Table A5. The time complexity is 235 for recovering 1-bit key and 242 for all 128-bit key. Limited

to the personal computer power, we only try to recover K1 for a certain key as an example. The success rate of testing 10

random keys is 100%, and recovering each 1-bit key needs about 8 hours.

Table A5 Cube variables of 10-round Fritbb-AE to recover K1

Key Degree Cube variables

K1 35 v′0, v
′
1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17

v20, v21, v22, v23, v24, v25, v26, v27, v28, v30, v31, v32, v33, v34, v35, v36, v37

Appendix A.4.3 Attacks on 11-round Fritbb-AE

Using the 2-round initial structure we can choose the 56-dimension cube to attack the 11-round Fritbb-AE. The time

complexity of recovering 128-bit key is 256 × 27 = 263. The cube variables to recover K1 for 11-round Fritbb-AE are

given in Table A6.

Table A6 Cube variables of 11-round Fritbb-AE to recover K1

Key Degree Cube variables

K1 56 v′0, v
′
1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v20, v21

v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39,

v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v56, v57, v59, v60, v61, v62

Appendix A.4.4 Attacks on 12-round Fritbb-AE

Similar to the previous attack, the 90-dimension cube can be used to attack 12-round Fritbb-AE with complexity 290 × 27 =

297. The cube variables to recover K1 for 12-round Fritbb-AE are given in Table A7 as an example.

Qin L Y, et al. Sci China Inf Sci 6

Table A7 Cube variables of 12-round Fritbb-AE to recover K1

Key Degree Cube variables

K1 90 v′0, v
′
1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v20, v21

v22, v23, v24, v25, v26, v27, v28, v29, v30, v31, v32, v33, v34, v35, v36, v37, v38, v39,

v40, v43, v44, v45, v46, v47, v48, v49, v50, v51, v52, v53, v54, v56, v57, v58, v59, v60

v61, v62, v63, v64, v65, v66, v67, v68, v69, v70, v71, v72, v73, v74, v75, v76, v77, v78

v79, v80, v81, v82, v83, v84, v85, v86, v87, v88, v89, v90, v91, v92, v93, v94

Appendix A.5 Attacks on Fritbc-AE

We give a 4-round initial structure of Fritbc-AE by keeping the limb a0 to constants 0 and setting σ−1
c σ−1

a (v) to limb b0 as

Figure A5. The procedure to attack r+4-round Fritbc-AE is similar with the procedure to attack r+3-round Fritba-AE. We

notice that only the 128 independent equations used to recover the 128-bit key are different.

.

σc

σa

.

σc

σa

K
.

σc

σa

.

σc

σa

4c

4b

4a0

0

()
a c c

v Ks s s+()
a c

Ks s

1 1()
c a

vs s
- -

()
a c

Ks s

1()
a
vs

-

() (())
c a c a c
v K vs s s s s+))) *K+

()
a c c

v Ks s s+

Figure A5 4-round initial structure of Fritbc-AE, K∗ = σaσc(σaσcσc(K)⊙ σaσc(K)).

Appendix A.5.1 Experiments on 11-round Fritbc-AE.

Applying the 4-round initial structure in Figure A5 to the 11-round Fritbc-AE, we can use a 22-dimension cube to get

1 bit condition of K, which is similar to the experiment on 10-round Fritba-AE. The three examples of recovering 1 bit

condition are listed in Table A8. It is clear that the only differences are the bit conditions, which are recovered by the

same cube variables. Recovering 128-bit K needs to solve a set of 128 linear equations, which are also can be calculated by

Algorithm A3. Testing about 100 random keys also has a success rate of 100% in about 8 minutes at each.

Table A8 Bit conditions and cube variables of 11-round Fritbc-AE

Bit conditions Degree Cube variables

K4 +K51 +K74 +K81 +K91 22 v0, v1, v4, v7, v8, v15, v16, v23, v30, v31, v38, v39

+K92 +K104 +K114 +K122 v45, v46, v53, v60, v61, v68, v69, v75, v76, v83

K10 +K33 +K40 +K50 +K51 22 v0, v1, v4, v7, v8, v15, v16, v23, v30, v31, v38, v39

+K63 +K73 +K81 +K91 v46, v53, v60, v61, v68, v69, v75, v76, v83, v91

K33 +K56 +K63 +K73 +K74 22 v0, v1, v4, v7, v8, v15, v16, v23, v30, v31, v38, v39

+K86 +K96 +K104 +K114 v46, v53, v60, v61, v68, v69, v75, v76, v83, v114

References

1 http://www.gurobi.com/

2 http://www.sagemath.org/

