• Supplementary File •

# Key-dependent cube attack on reduced Frit permutation in Duplex-AE modes

Lingyue QIN<sup>1</sup>, Xiaoyang DONG<sup>1</sup>, Keting JIA<sup>2\*</sup> & Rui ZONG<sup>1</sup>

<sup>1</sup>Institute for Advanced Study, Tsinghua University, Beijing 100084, China; <sup>2</sup>Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

#### Appendix A

#### Appendix A.1 Brief description of Frit

Frit is a 384-bit cryptographic permutation proposed by Simon *et al.*, which operates on a state of three limbs a, b, c in  $\{0, 1\}^{128}$  updated in 16 rounds. The details are illustrated in Algorithm A1.



We use Frit to design authenticated encryption by using the duplex authenticated encryption mode as shown in Figure A1. Our attack target is the initialization phase of Frit-AE, as shown in Figure A2.



Figure A1  $\operatorname{Frit}_{\alpha}^{\beta}$ -AE.

Figure A2 Initialization phase of Frit-AE.

#### Appendix A.2 Key-dependent cube attack

The key-dependent cube attack only involves conditions which only involve secret key bits. In duplex authenticated encryption mode, such as Ketje, Ascon and  $\operatorname{Frit}_{\alpha}^{\beta}$ -AE, the initialization phase produces *l*-bit output. Each of the output

<sup>\*</sup> Corresponding author (email: ktjia@mail.tsinghua.edu.cn)

bits is written as a polynomial  $f_i(k_0, ..., k_{n-1}, v_0, ..., v_{m-1}), i = 0, 1, ..., l-1$ . Choose a common cube  $C_T$ , e.g  $(v_0, ..., v_{s-1}), 1 \leq s \leq m$ , then  $f_i = T \cdot P_i + Q_i, i = 0, 1, ..., l-1$ . In our key-dependent cube attack, a common divisor of  $P_i$  is found, which is a polynomial  $g(k_0, ..., k_{n-1})$  that only involved some key bits. Then the cube sum of  $f_i$  over all values of the cube  $C_T$  is  $P_i = g(k_0, ..., k_{n-1}) \cdot P'_i$ . The Corollary 1 is given.

Corollary 1. Given a series of polynomials  $f_i$   $(i \in \{0, 1, ..., l-1\}): \{0, 1\}^n \rightarrow \{0, 1\}$ .

$$\begin{cases} f_0(k_0, ..., k_{n-1}, v_0, ..., v_{m-1}) = T \cdot g(k_0, ..., k_{n-1}) \cdot P'_0 + Q_0 \\ f_1(k_0, ..., k_{n-1}, v_0, ..., v_{m-1}) = T \cdot g(k_0, ..., k_{n-1}) \cdot P'_1 + Q_1 \\ ... \\ f_{l-1}(k_0, ..., k_{n-1}, v_0, ..., v_{m-1}) = T \cdot g(k_0, ..., k_{n-1}) \cdot P'_{l-1} + Q_{l-1} \end{cases}$$
(A1)

where none of the monomials in  $Q_i(x)$  is divisible by T. Then the sums of  $f_i$   $(i \in \{0, 1, ..., l-1\})$  over all values of the cube (cube sum) are

$$\begin{cases} \sum_{\substack{v' \in C_T \\ v' \in C_T \\ v' \in C_T \\ v' \in C_T \\ v' \in C_T \\ m} f_1(k_0, \dots, k_{n-1}, v', v_s, \dots, v_{m-1}) = g(k_0, \dots, k_{n-1}) \cdot P_1' \\ \dots \\ \sum_{\substack{v' \in C_T \\ v' \in C_T \\ m} f_{l-1}(k_0, \dots, k_{n-1}, v', v_s, \dots, v_{m-1}) = g(k_0, \dots, k_{n-1}) \cdot P_{l-1}' \end{cases}}$$
(A2)

where the  $C_T$  contains all binary vectors of the length s, and other public variables  $v_j, j \in \{s, s+1, ..., m-1\}$  are constants.

The following Property 1 is easy to get. According to Property 1 and Assumption 1, we obtain the cube tester used in our attack.

**Property 1.** If g = 0, cube sums of  $f_i$   $(i \in \{0, 1, ..., l-1\})$  will be all 0 with probability 1. **Assumption 1.** If g = 1, cube sums of  $f_i$   $(i \in \{0, 1, ..., l-1\})$  will be determined by  $P'_i$   $(i \in \{0, 1, ..., l-1\})$ , the cube sums of  $f_i$   $(i \in \{0, 1, ..., l-1\})$  all equal to 0 with probability about  $2^{-l}$  if  $f_i$   $(i \in \{0, 1, ..., l-1\})$  is a random oracle.

## Appendix A.3 Attacks on $Frit_a^b$ -AE

We give a 3-round initial structure of  $\operatorname{Frit}_a^b$ -AE by keeping the limb  $b_0$  to constants 0 and setting  $\sigma_c^{-1}\sigma_a^{-1}(v)$  to limb  $c_0$  as Figure A3. We generate the constraints set CF of  $\{x_i\}$  to guarantee there are no quadratic terms in  $a_3, c_3$  as Algorithm A2.



**Figure A3** 3-round initial structure of  $\operatorname{Frit}_a^b$ -AE.

**Algorithm A2** Generating constraints on v to linearize  $a_3, c_3$ 

**Input:** Variables set  $v = \{v_i\}$   $(i \in [0, 127])$  **Output:** A set CF of constraints  $CF = \emptyset$   $Exp = \sigma_a \sigma_c(\sigma_a(K) \odot v) \odot v + \sigma_c(v) \odot v$ for each  $i \in [0, 127]$  do for each  $j \in [i + 1, 127]$  do if  $g_{i,j}(K)v_iv_j \in Exp$  and  $g_{i,j}(K) \neq 0$  then  $CF \leftarrow CF \cup \{x_i + x_j \leq 1\}$ end if end for return CF Then our problem is modeled into a binary linear programming problem:

$$\begin{aligned} &Maximize \ \sum_{i=0}^{127} x_i, \\ &s.t. \ AX \leqslant b, \ X = \{x_i | x_i \in \{0,1\}, 0 \leqslant i \leqslant 127\}, \end{aligned}$$

where the  $AX \leq b$  describe the constraints set CF. Using the Gurobi Optimizer [1] to solve the problem, we get the first two optimum solutions and the corresponding index sets of v are listed in Table A1. Every variable  $v_i$  in each set does not multiply with each other in the same set. In the following we use the  $Index_0$  to introduce the basic idea of our attack. (The  $Index_0$  can be replaced with  $Index_1$  to get different bit conditions of K.)

Table A1 Index sets of independent variables

| Set       | Num | Values                                                      |
|-----------|-----|-------------------------------------------------------------|
| $Index_0$ | 29  | 0, 1, 7, 8, 15, 16, 23, 30, 31, 38, 39, 45, 46, 53, 60, 61, |
|           |     | 68, 69, 75, 76, 83, 91, 98, 99, 105, 106, 113, 114, 121     |
| $Index_1$ | 28  | 0, 1, 2, 9, 16, 23, 24, 25, 31, 32, 39, 46, 54, 55, 61, 62, |
|           |     | 69, 84, 85, 91, 92, 98, 99, 107, 114, 115, 121, 122         |

The procedure to attack r + 3-round  $\operatorname{Frit}_a^b$ -AE is concluded as follows.

- 1. First set the cube's dimension  $d = F_{r+1} + 1$ . Adding  $v_j (j \notin Index_0)$  to the cube variables set, we can choose one quadratic term  $g_{i,j}(K)v_iv_j (i \in Index_0)$  from  $c_3$  and add  $v_i$  to the cube variables set. The other d-2 cube variables are choosing from  $Index_0$ , which are not multiplied with  $v_j$ . That is, we obtain a d-dimension cube to recover one bit condition  $g_{i,j}(K)$ .
- 2. Assign the other variables of v to constants 0 except for the cube variables and calculate the cube sum of the whole 128 bits output after r + 3-round Frit. If all the 128 cube sums are 0, we take the  $g_{i,j}(K)$  as 0, otherwise  $g_{i,j}(K) = 1$ .
- 3. The time complexity of recovering 1 bit condition of K is  $2^d$ . By changing the value of j and relative quadratic term  $g_{i,j}(K)v_iv_j$ , we can generate different cube variables to recover different  $g_{i,j}(K)$ . We can get 128 linearly independent bit conditions and solve the set of equations to recover the 128-bit key. We introduce the details to choose different bit conditions and corresponding cube variables in Algorithm A3. The time complexity is  $2^d \times 2^7 = 2^{7+d}$ . (The time to solving the linear system can be omitted.)

#### Algorithm A3 Generating bit conditions and corresponding cube variables

```
Input: A set Index, the dimension d
Output: A list B_c of bit conditions and a list C_T of corresponding cube variables
  B_c = []
  C_T = []
  Exp = \sigma_a \sigma_c(\sigma_a(K) \odot v) \odot v + \sigma_c(v) \odot v
  for each j \in [0, 127] \setminus Index do
     V_0 = \emptyset
     V_1 = []
     for each i \in Index do
        if g_{i,j}(K)v_iv_j \in Exp and g_{i,j}(K) \neq 0 then
            V_0 \leftarrow V_0 \cup \{i\}
            if g_{i,j}(K) and (g_{i,j}(K) + 1) not in B_c then
               Add i to V_1
               Add g_{i,j}(K) to B_c
            end if
        end if
     end for
     for each i \in V_1 do
        cube = \{j, i\} \cup \{k_m | k_m \in Index \setminus V_0, 0 \leqslant m \leqslant d - 3\}
        Add cube to C_T
     end for
  end for
  return B_c, C_T
```

## Appendix A.3.1 Experiments on 10-round $Frit_a^b$ -AE

Applying the 3-round initial structure in Figure A3 to the 10-round  $\operatorname{Frit}_a^b$ -AE, we can use the 22-dimension cube to get some bit conditions of K. For example, setting j = 4 ( $v_4$  is a cube variable), there are three quadratic terms in the expressions

of  $c_3$  and  $a_3$ :

$$(K_4 + K_{91} + K_{114})v_4v_{45}, (K_{50} + K_{73} + K_{91})v_4v_{91}, (K_{73} + K_{96} + K_{114})v_4v_{114}$$

Keeping only one variable in set  $\{v_{45}, v_{91}, v_{114}\}$  to be a cube variable, there is only one quadratic term in the expressions of  $c_3$  and  $a_3$ . We can get 1 bit condition of K by testing one cube. The examples of the bit conditions and relative cube variables are listed in Table A2. All the 128 bit conditions and corresponding cube variables can be found by Algorithm A3 using SageMath [2]. Then solving a set of 128 linear equations we can recover the 128-bit key. Testing about 100 random keys has a success rate of 100%, and recovering each key needs about 8 minutes with time complexity  $2^{29}$ .

**Table A2** Bit conditions and cube variables of 10-round  $\operatorname{Frit}_a^b$ -AE

| Bit conditions              | Degree | Cube variables                                                                    |
|-----------------------------|--------|-----------------------------------------------------------------------------------|
| $K_4 + K_{91} + K_{114}$    | 22     | $v_0, v_1, v_4, v_7, v_8, v_{15}, v_{16}, v_{23}, v_{30}, v_{31}, v_{38}, v_{39}$ |
|                             |        | $v_{45}, v_{46}, v_{53}, v_{60}, v_{61}, v_{68}, v_{69}, v_{75}, v_{76}, v_{83}$  |
| $K_{50} + K_{73} + K_{91}$  | 22     | $v_0, v_1, v_4, v_7, v_8, v_{15}, v_{16}, v_{23}, v_{30}, v_{31}, v_{38}, v_{39}$ |
|                             |        | $v_{46}, v_{53}, v_{60}, v_{61}, v_{68}, v_{69}, v_{75}, v_{76}, v_{83}, v_{91}$  |
| $K_{73} + K_{96} + K_{114}$ | 22     | $v_0, v_1, v_4, v_7, v_8, v_{15}, v_{16}, v_{23}, v_{30}, v_{31}, v_{38}, v_{39}$ |
|                             |        | $v_{46}, v_{53}, v_{60}, v_{61}, v_{68}, v_{69}, v_{75}, v_{76}, v_{83}, v_{114}$ |

#### Appendix A.4 Attacks on $Frit_b^b$ -AE

Set variable vector v' to limb  $a_0$  and  $\sigma_c^{-1}\sigma_a^{-1}(v)$  to limb  $c_0$  as Figure A4 to get a 2-round initial structure for  $\operatorname{Frit}_{b}^{+}$ -AE.



**Figure A4** 2-round initial structure of  $\operatorname{Frit}_{b}^{b}$ -AE.

To linearize  $a_2$  and  $c_2$ , we need to keep that the expression  $b_1 \odot b_2 = \sigma_a(v') \odot v + \sigma_a(v') \odot \sigma_a \sigma_c(K \odot \sigma_a(v'))$  doesn't have quadratic terms. That is,

- 1. For expression  $\sigma_a(v') \odot v$ , we need to keep that each  $v_i$  ( $0 \le i \le 127$ ) is not multiplied by  $v'_j$  ( $0 \le j \le 127$ ) after mixing operation  $\sigma_a$ . So if  $v'_j$  is chosen as a cube variable, variables  $v_j$ ,  $v_{j+18}$  and  $v_{j+41}^{(1)}$  need to be constants due to the diffusion property of  $\sigma_a$ .
- 2. For expression  $\sigma_a(v') \odot \sigma_a \sigma_c(K \odot \sigma_a(v'))$ , the quadratic term  $g_{i,j}(K)v'_iv'_j(i \neq j)$  depends on some relative bits of K. For a certain K, if all  $g_{i,j}(K) = 0$ , the expression is linear. In the attack procedure, we can set some  $v'_i$ s to constants to reduce the num of bit conditions  $g_{i,j}(K)$ .
- 3. By carefully choosing some variables  $v_i$  and  $v'_j$  and setting others to constants, we ensure that there are no quadratic terms  $v_i v'_j$  in  $b_1 \odot b_2$ . For all the quadratic terms  $g_{i,j}(K)v'_iv'_j$ : if  $g_{i,j}(K) = 0$  or at least one of  $v'_i, v'_j$  is constant, the degree of  $a_2, c_2$  is 1; otherwise the degree is 2.

The key-dependent attack on r + 2-round  $\operatorname{Frit}_{b}^{b}$ -AE is concluded as follows:

- 1. First set the cube's dimension  $d = F_{r+1} + 1$  and cube variables set  $C_i = \{v'_i, v'_{i+1}, v_{j_0}, \dots, v_{j_{d-3}}\}$ , where set  $\{j_0, \dots, j_{d-3}\}$  doesn't have any elements of  $\{i, i+18, i+41, i+1, i+19, i+42\}$ .
- 2. Assign the other variables of v, v' except for the cube  $C_i$  to constants 0 and calculate the cube sums of the whole 128 bit positions of the output limb after r + 2-round Frit over all values of the cube  $C_i$ . If all the 128 cube sums are 0, we take the  $K_{i+1}$  as 0, otherwise  $K_{i+1} = 1$ .
- 3. The time complexity of recovering 1-bit key is  $2^d$ , and the time to get the whole 128-bit key is  $2^d \times 2^7 = 2^{7+d}$  by traversing *i* from 0 to 127.

<sup>1)</sup> The addition + is in  $GF(2^7)$ , i.e. i + 1 means  $(i + 1) \mod 128$ .

#### Appendix A.4.1 Experiments on 9-round $Frit_b^b$ -AE

We do experiments on the 9-round  $\operatorname{Frt}_b^b$ -AE to verity our attack results. Using the 2-round initial structure in Figure A4, we can use a  $(F_8 + 1)$ -dimension (22-dimension) cube to recover 1-bit K. The cube variables for recovering  $K_1$  are listed in Table A3. To recover  $K_i$  ( $0 \le i \le 127$ ), the cube variables needed are the variables in Table A3 by adding i - 1 to the indexes in  $GF(2^7)$ . We give several examples of the recovered 1-bit key and corresponding 128-bit cube sums for some random keys in Table A4, using the cube variables in Table A3. The details of the experiments refer to https://github. com/qly14/FritAE.git. We test about 100 random keys, and the success rate of recovering the whole 128-bit key is 100%. The time complexity of our attack on 9-round  $\operatorname{Frit}_b^b$ -AE is  $2^{29}$ , which only needs about 7 minutes on a personal computer.

**Table A3** Cube variables of 9-round  $\operatorname{Frit}_{b}^{b}$ -AE

| Key   | Degree | Cube variables                                                                   |
|-------|--------|----------------------------------------------------------------------------------|
| $K_1$ | 22     | $v_0', v_1', v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_{10}, v_{11}, v_{12}$          |
|       |        | $v_{13}, v_{14}, v_{15}, v_{16}, v_{17}, v_{20}, v_{21}, v_{22}, v_{23}, v_{24}$ |

**Table A4** Experimental results of 9-round  $\operatorname{Frit}_{h}^{b}$ -AE

| 1-bit key   | 128-bit random key                                              | Cube sums                                             |
|-------------|-----------------------------------------------------------------|-------------------------------------------------------|
| $K_1 = 0$   | 0x1c93b7ae 81cf5ca8 644a0463 0c41db9e                           | 0x0000000 0000000 0000000 0000000                     |
| $K_1 = 1$   | $0xe58ec52a\ 3b3fccf2\ 17d04d42\ 4618e031$                      | $0 x 0 800 c 010 \ 20000040 \ 00000000 \ 00802020$    |
| $K_{2} = 0$ | 0x05ab60a7 fe41288e 69983eed 4ae9fe4c                           | 0x0000000 0000000 0000000 0000000                     |
| $K_2 = 1$   | 0xe96f359e 26ace184 1565c5cb 0fe1b095                           | $0 {\bf x} 04006008 \ 10000020 \ 00000000 \ 00401010$ |
| $K_{3} = 0$ | 0x8047f929 e59445dc 0d13ea46 60acb0ec                           | 0x0000000 0000000 0000000 0000000                     |
| $K_{3} = 1$ | $0 x b 3 e 808 b 5 \ a 9094 c b 4 \ 1064 f a 84 \ 339 e a c 56$ | $0 x 0 2003004 \ 0 8000010 \ 0 0000000 \ 0 0200808$   |

## Appendix A.4.2 Experiments on 10-round Fritb-AE

Adding 8-round Frit after the 2-round initial structure, we can attack 10-round  $\operatorname{Frit}_{b}^{b}$ -AE using the  $(F_{9} + 1)$ -dimension (35-dimension) cube. Similar to the attack on 9-round  $\operatorname{Frit}_{b}^{b}$ -AE, we give the cube variables for recovering the  $K_{1}$  of the 10-round  $\operatorname{Frit}_{b}^{b}$ -AE in Table A5. The time complexity is  $2^{35}$  for recovering 1-bit key and  $2^{42}$  for all 128-bit key. Limited to the personal computer power, we only try to recover  $K_{1}$  for a certain key as an example. The success rate of testing 10 random keys is 100%, and recovering each 1-bit key needs about 8 hours.

**Table A5** Cube variables of 10-round  $\operatorname{Frit}_{b}^{b}$ -AE to recover  $K_{1}$ 

| Key   | Degree | Cube variables                                                                                                                           |
|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------|
| $K_1$ | 35     | $v_0', v_1', v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15}, v_{16}, v_{17}$                     |
|       |        | $v_{20}, v_{21}, v_{22}, v_{23}, v_{24}, v_{25}, v_{26}, v_{27}, v_{28}, v_{30}, v_{31}, v_{32}, v_{33}, v_{34}, v_{35}, v_{36}, v_{37}$ |

## Appendix A.4.3 Attacks on 11-round $Frit_b^b$ -AE

Using the 2-round initial structure we can choose the 56-dimension cube to attack the 11-round  $\operatorname{Frit}_{b}^{b}$ -AE. The time complexity of recovering 128-bit key is  $2^{56} \times 2^{7} = 2^{63}$ . The cube variables to recover  $K_1$  for 11-round  $\operatorname{Frit}_{b}^{b}$ -AE are given in Table A6.

**Table A6** Cube variables of 11-round  $\operatorname{Frit}_{b}^{b}$ -AE to recover  $K_{1}$ 

| Key   | Degree | Cube variables                                                                                                                                       |
|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| $K_1$ | 56     | $v_0', v_1', v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15}, v_{16}, v_{17}, v_{20}, v_{21}$                 |
|       |        | $v_{22}, v_{23}, v_{24}, v_{25}, v_{26}, v_{27}, v_{28}, v_{29}, v_{30}, v_{31}, v_{32}, v_{33}, v_{34}, v_{35}, v_{36}, v_{37}, v_{38}, v_{39}, \\$ |
|       |        | $v_{43}, v_{44}, v_{45}, v_{46}, v_{47}, v_{48}, v_{49}, v_{50}, v_{51}, v_{52}, v_{53}, v_{54}, v_{56}, v_{57}, v_{59}, v_{60}, v_{61}, v_{62}$     |

Appendix A.4.4 Attacks on 12-round  $Frit_b^b$ -AE

Similar to the previous attack, the 90-dimension cube can be used to attack 12-round  $\operatorname{Frt}_b^b$ -AE with complexity  $2^{90} \times 2^7 = 2^{97}$ . The cube variables to recover  $K_1$  for 12-round  $\operatorname{Frt}_b^b$ -AE are given in Table A7 as an example.

|       |        | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Key   | Degree | Cube variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $K_1$ | 90     | $v_0', v_1', v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}, v_{12}, v_{13}, v_{14}, v_{15}, v_{16}, v_{17}, v_{20}, v_{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |        | $v_{22}, v_{23}, v_{24}, v_{25}, v_{26}, v_{27}, v_{28}, v_{29}, v_{30}, v_{31}, v_{32}, v_{33}, v_{34}, v_{35}, v_{36}, v_{37}, v_{38}, v_{39}, v_{31}, v_{32}, v_{33}, v_{34}, v_{35}, v_{36}, v_{37}, v_{38}, v_{39}, v_{31}, v_{32}, v_{33}, v_{34}, v_{35}, v_{36}, v_{37}, v_{38}, v_{39}, v_{31}, v_{32}, v_{33}, v_{34}, v_{35}, v_{36}, v_{37}, v_{38}, v_{39}, v_{31}, v_{32}, v_{33}, v_{34}, v_{35}, v_{36}, v_{37}, v_{38}, v_{39}, v_{31}, v_{32}, v_{33}, v_{34}, v_{35}, v_{36}, v_{37}, v_{38}, v_{39}, v_{31}, v_{32}, v_{33}, v_{34}, v_{35}, v_{36}, v_{37}, v_{38}, v_{39}, v_{39}, v_{31}, v_{32}, v_{33}, v_{34}, v_{35}, v_{36}, v_{37}, v_{38}, v_{39}, v_{39}, v_{31}, v_{32}, v_{33}, v_{34}, v_{35}, v_{36}, v_{37}, v_{38}, v_{39}, v_{3$ |
|       |        | $v_{40}, v_{43}, v_{44}, v_{45}, v_{46}, v_{47}, v_{48}, v_{49}, v_{50}, v_{51}, v_{52}, v_{53}, v_{54}, v_{56}, v_{57}, v_{58}, v_{59}, v_{60}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |        | $v_{61}, v_{62}, v_{63}, v_{64}, v_{65}, v_{66}, v_{67}, v_{68}, v_{69}, v_{70}, v_{71}, v_{72}, v_{73}, v_{74}, v_{75}, v_{76}, v_{77}, v_{78}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |        | $v_{79}, v_{80}, v_{81}, v_{82}, v_{83}, v_{84}, v_{85}, v_{86}, v_{87}, v_{88}, v_{89}, v_{90}, v_{91}, v_{92}, v_{93}, v_{94}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

**Table A7** Cube variables of 12-round  $\operatorname{Frit}_{b}^{b}$ -AE to recover  $K_{1}$ 

## Appendix A.5 Attacks on $Frit_c^b$ -AE

We give a 4-round initial structure of  $\operatorname{Frit}_c^b$ -AE by keeping the limb  $a_0$  to constants 0 and setting  $\sigma_c^{-1}\sigma_a^{-1}(v)$  to limb  $b_0$  as Figure A5. The procedure to attack r + 4-round  $\operatorname{Frit}_c^b$ -AE is similar with the procedure to attack r + 3-round  $\operatorname{Frit}_a^b$ -AE. We notice that only the 128 independent equations used to recover the 128-bit key are different.



**Figure A5** 4-round initial structure of  $\operatorname{Frit}_{c}^{b}$ -AE,  $K^{*} = \sigma_{a}\sigma_{c}(\sigma_{a}\sigma_{c}\sigma_{c}(K) \odot \sigma_{a}\sigma_{c}(K))$ .

# Appendix A.5.1 Experiments on 11-round $Frit_c^b$ -AE.

Applying the 4-round initial structure in Figure A5 to the 11-round  $\operatorname{Frit}_c^b$ -AE, we can use a 22-dimension cube to get 1 bit condition of K, which is similar to the experiment on 10-round  $\operatorname{Frit}_a^b$ -AE. The three examples of recovering 1 bit condition are listed in Table A8. It is clear that the only differences are the bit conditions, which are recovered by the same cube variables. Recovering 128-bit K needs to solve a set of 128 linear equations, which are also can be calculated by Algorithm A3. Testing about 100 random keys also has a success rate of 100% in about 8 minutes at each.

| Table A8 | Bit conditions and cube variables of 11-round $\operatorname{Frit}_{c}^{b}$ -A | ٩E |
|----------|--------------------------------------------------------------------------------|----|
|----------|--------------------------------------------------------------------------------|----|

| Bit conditions                               | Degree | Cube variables                                                                    |
|----------------------------------------------|--------|-----------------------------------------------------------------------------------|
| $K_4 + K_{51} + K_{74} + K_{81} + K_{91}$    | 22     | $v_0, v_1, v_4, v_7, v_8, v_{15}, v_{16}, v_{23}, v_{30}, v_{31}, v_{38}, v_{39}$ |
| $+K_{92} + K_{104} + K_{114} + K_{122}$      |        | $v_{45}, v_{46}, v_{53}, v_{60}, v_{61}, v_{68}, v_{69}, v_{75}, v_{76}, v_{83}$  |
| $K_{10} + K_{33} + K_{40} + K_{50} + K_{51}$ | 22     | $v_0, v_1, v_4, v_7, v_8, v_{15}, v_{16}, v_{23}, v_{30}, v_{31}, v_{38}, v_{39}$ |
| $+K_{63} + K_{73} + K_{81} + K_{91}$         |        | $v_{46}, v_{53}, v_{60}, v_{61}, v_{68}, v_{69}, v_{75}, v_{76}, v_{83}, v_{91}$  |
| $K_{33} + K_{56} + K_{63} + K_{73} + K_{74}$ | 22     | $v_0, v_1, v_4, v_7, v_8, v_{15}, v_{16}, v_{23}, v_{30}, v_{31}, v_{38}, v_{39}$ |
| $+K_{86} + K_{96} + K_{104} + K_{114}$       |        | $v_{46}, v_{53}, v_{60}, v_{61}, v_{68}, v_{69}, v_{75}, v_{76}, v_{83}, v_{114}$ |

#### References

- 1 http://www.gurobi.com/
- 2 http://www.sagemath.org/