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Dear editor,

Mathematical expressions have been widely employed in sci-

entific research, finance, and statistics, and play a significant

role in educational activities. For example, if a computer

can recognize teachers’ handwritten expressions as standard

printed mathematical expressions, this will undoubtedly be

more conducive and helpful for improving the effectiveness

of lectures. Thus, the question of how to make computers

automatically recognize mathematical expressions is highly

significant.

Mathematical expression recognition was first proposed

by Anderson [1] in 1968. Subsequently, many researchers

have attempted to investigate this problem in various as-

pects [2–5]. Lavirotte and Pottier [2] proposed a model

based on graph grammars. Chan and Yeung [3] proposed

a method employing definite clause grammars. In 2006, Ya-

mamoto [4] presented a system using probabilistic context-

free grammars. And several years later MacLean and

Labahn [5] developed an improved approach based on re-

lational grammars and fuzzy sets.

Compared to the traditional text recognition, there re-

main some difficulties in recognizing mathematical expres-

sions, making this a challenging research problem. The main

reason for this is that mathematical expressions can contain

a large number of mathematical symbols and have a complex

two-dimensional structure. First, the character coverage of

mathematical expressions includes numbers, operators, En-

glish letters, Roman letters, commas, dots, and other types.

Second, some symbols are not shown in the expressions, and

these symbols need to be recognized by spatial positions of

mathematical expressions. For example, ‘X6’ denotes the

sixth power of ‘X’, but the operator ‘∧’ is not directly writ-

ten in this mathematical expression. Finally, some of the

characters in mathematical expressions are very similar, but

have completely different meanings. For example, the En-

glish letter ‘O’ and the number ‘0’. Therefore, owing to

these challenging issues, handwritten mathematical expres-

sion recognition has considerable room for development and

improvement in terms of the accuracy and range of recogni-

tion.

Framework. To recognize handwritten mathematical ex-

pressions, an encoder–decoder framework is utilized in this

study. This framework consists of three parts: an encoder, a

decoder, and a context vector generated by the encoder. In

this study, we employ a convolutional neural network (CNN)

as the encoder, because inputs are pictures, and a recurrent

neural network (RNN) is utilized as the decoder, because

outputs are LaTeX sequences.

Encoder model. In this study, dense convolutional net-

work (DenseNet), a recently proposed CNN architecture by

Huang [6], is employed as the encoder, and further enhanced

in a feed-forward fashion. We designed three dense blocks,

and added a multi-scale structure to better extract features

from input pictures. The multi-scale CNN used in this study

is illustrated in Figure 1(a).

The reason for adopting this structure is that the high-

level neural network in the CNN can obtain more advanced

abstract features, which are conducive to improving the gen-

eralization performance of the network, while the low-level

neural network in the CNN contains more edge informa-

tion, which is conducive to target location. Therefore, the

combination of these two-level features can lead to a better

performance for the network.

Decoder model. We employ an RNN as the decoder. In
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Figure 1 (a) Schematic structure of multi-scale convolutional neural network; (b) test results.

further detail, the gated recurrent unit (GRU) model [7]

is utilized for the design of the RNN in this study. Al-

though the GRU model is employed, the effect is still not

ideal for complex sequences such as mathematical expres-

sions. Therefore, the attention model is adopted in the

RNN, which is a method that can considerably improve the

model’s performance. The main design ideas are described

as follows.

In our model, because the outputs of the CNN consist

of three three-dimensional matrixes, and each of these can

be expressed as C ×H ×W , the inputs of the RNN can be

written as follows:

a = {a1, a2, a3, . . . , an} , ai ∈ R
L, (1)

where L = H×W . Thus, each ai is a C-dimensional vector.

Then, we define the function fatt given in (2) and (3) as our

attention function. Therefore, the RNN with attention in

our model can be calculated by the function fatt:

eti = vTa × tanh(waht−1 + Uaai), (2)

αti =
exp eti∑L

k=1
exp etk

. (3)

In (2), ht−1 is the value of the previous hidden layer in the

GRU model, ai is the i-th vector in (1), and va is a random

initialization matrix, which is updated continuously follow-

ing the training of the network. Its main role is to adjust

the dimensions of eti. In (3), αti is the value of the next

attention model.

Coverage model. By incorporating attention, the perfor-

mance of the RNN model can be improved compared to the

model without attention. However, the problem of a lack of

coverage remains in the attention model. Coverage refers to

the parts of the input images that have been translated. If

we do not add a coverage model, then the computer may re-

peatedly translate one part. The coverage model requires all

past values of the attention model to be summed. Therefore,

after including the coverage model the function fatt will be

computed as follows, where we now denote it as fatt conv :

βt =

t−1∑

l

αl, (4)

F = Qβ̇t, (5)

eti = vTa × tanh(waht−1 + Uaai + Uffi), (6)

αti =
exp eti∑L

k=1
exp etk

. (7)

In (4), α is the value calculated by the attention model in

the previous step, and its initial value is 0. In (5), Q is a

random initialization matrix, which is updated continuously

following the training of the network. The main role of Q is

also to adjust the dimensions. Furthermore, F is the value

of the coverage model, and fi is the i-th vector in F . Then,

the attention value can be calculated using (6) and (7).

Output. Because the output from the encoder is multi-

scale, the context vector of each scale will be computed using

the following equation:

ctk =
L∑

i

αtiai k = 1, 2, 3, (8)

ct = Concat(ct1, ct2, ct3). (9)

Each ctk will be computed from (8). Then, we can com-

bine these as ct by simply applying the cat function in (9).

Subsequently, the next hidden layer will be calculated as

follows:

ht = GRU(xt−1, ht−1, ct), (10)

where ht−1 is the value of the previous hidden layer and

xt−1 is the value of the previous input, whose initial value

is 〈sos〉. We can obtain the next hidden layer ht according to

(10). Finally, the output from the model can be computed

as follows:

yt = g(W0(Eyt−1 +Whht +Wcct)). (11)

where g is the softmax function, and W0, Wh, Wc, and E

are random initialization matrixes, which can be continu-

ously updated following the neural network training.

Experiment. In the experiment, all tests were performed

on the CROHME 2014 dataset. Furthermore, we choose

Adam as the optimizer and CrossEntropy as the loss func-

tion. The initial learning rate was 0.00010. Moreover, the

experiments in this study were all performed on an NVIDIA

Tesla K80. The CUDA version utilized in the tests was 8.0,
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the cuDNN version was 7.0, the Python version was 3.6, and

the Pytorch version was 0.3. The results are illustrated in

Figure 1(b), and our model achieved the best results com-

pared with other approaches under the same conditions. De-

tailed experimental data can be found in Appendix.

Conclusion. Based on the state-of-the-art approach of

combining a multi-scale CNN with an attention-based RNN,

a new neural network model is proposed to identify two-

dimensional handwritten mathematical expressions as one-

dimensional LaTeX sequences. Using the public benchmark

of the CROHME 2014 dataset, our experimental test results

demonstrate that the WER loss and ExpRate on the test-

ing dataset are 25.715% and 28.216%, respectively. So, our

approach achieved a more advanced level of accuracy than

previous methods under the same test conditions.
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