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Abstract In this paper, a general resource distribution game with a hierarchical structure on the bipar-

tite graph is proposed. In this system, the game is divided into two interacting levels, the agent level and

the group level, with negotiations taking place on both levels. Each agent can belong to multiple groups,

resulting in a system topology with a bipartite structure. On the agent level, decisions are based on the

greedy principle, with the game being a state-based potential game. In contrast, some participants on

the group level behave more “smartly” and are more likely to adopt a sophisticated strategy maximizing

their personal interest. Strategies on both levels are based on distributed protocols, and the social welfare

increases as the system approaches a Nash-equilibrium point. The designed protocols are theoretically an-

alyzed from stability and efficiency. Furthermore, a reinforcement learning algorithm is introduced in the

group level, where the smarter players are allowed to refine their strategies in the multi-step decision-making

process by learning from historic game outcomes. In theory and according to simulations, agents with the

learning behavior improve not only their personal interest but also the efficiency of the systemic resource

distribution.
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1 Introduction

The theory of nature selection is one of the most fundamental research topics inspired by the evolution
of animals. Its application seems ubiquitous, ranging from natural communities to human societies and
some artificial systems [1–8]. One key idea of nature selection is that a group evolves as a whole, and
the population structure plays a much more important role than just a gathering of individuals. Many
studies focus on the cooperation and altruism behaviors in evolutionary systems. It has been suggested
that, the strategy of cooperation is more preferred by individuals in certain population structures than
others [2, 5, 8], whereas social properties such as reputation, reciprocity and kin selection have certain
effects on individual behaviors within a system [6,9–12]. The majority of evolutionary cooperative models
are based on complex networks. In traditional networks, all interactions in a system are modeled as
pairwise connections between vertices, each of which denotes an individual. Despite its simplicity, the
network approach facilitates the study of multiple individual interactions in complex systems [2,6,13,14].

However, the pairwise connections in traditional networks cannot represent some complicated struc-
tures. Hence, networks with more sophisticated architectures such as multi-layer, multiplex and bipartite
networks have gained a lot of attention in recent years [15–18]. The bipartite network is proved to be an
intuitive and elegant model for systems such as citation and actor networks that feature triple or multiple
connections between individuals [15–18].

Any economy system is essentially an ecosystem in many ways. In particular, the development of
markets in social systems is the result of mutual selections between multiple producers and consumers,
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employers and employees. Different behaviors of partners are driven by self-interest and the market
regulation, also known as the invisible hand, which in theory helps non-cooperative crowds to achieve
a good commercial order and an optimal resource distribution. However, this mechanism has not been
thoroughly studied yet. In the field of artificial system optimization, many solutions are inspired by the
principles of natural systems [19,20]. While designing a centralized control protocol is essential for some
gigantic systems, distributed protocols are often more robust and cheaper to design. Inspired by the
market law, models based on game theory are widely adopted in designing efficient and decentralized
control protocols. The target in a game-based model is to maximize the global optimization target
by encouraging each agent to maximize its private utility function. The strategic set of agents can be
complicated, and the relationship between individual agents is more than just cooperation or defection.
On the one hand, all agents have a common global optimization target, which is the sum of all local utility
functions. If the game is a convex potential game [21], a Nash-equilibrium point satisfies the first-order
Karush-Kuhn-Tucker (KKT) condition [22–26]. Even if agents are non-cooperative, and only concern
about their personal utility functions, their selfish behavior promotes the overall welfare, pushing the
overall system to a global optimization solution. Some non-convex systems can be modeled as state-based
potential games, allowing the equilibrium points to be adjusted by tuning model parameters, avoiding
the solution being trapped in local optimal solutions [26]. On the other hand, agents would compete for
scarce resources, and their selfish behavior may harm the social welfare, which is familiarly known as “the
tragedy of the commons”. One widely studied challenge is the resource distribution problem, derived
from the real-world economic dilemma how selfish agents must negotiate to allocate the scarce resources
efficiently. Agents typically use greedy algorithms to maximum the local utility functions, making it
difficult to guarantee an efficient global solution. Some promising studies focus on the Lagrange method
and bidding protocol. The transparent auction is a distributed greedy algorithm guaranteeing the resource
consumption boundary, which deserves a further study [27,28]. One of the problems with this algorithm
is that the result of the auction does not guarantee the global efficiency even if the Nash-equilibrium is
reached [27]. When the population is small, a weight modification has to be imposed on the price function
of each agent, which makes the algorithm not fully distributed. The idea of the weight control method is
also applicable to some distributed solutions of combinatorial optimization problems. For example, the
minimum vertex cover problem in graphs is extended to the weighted vertex cover problem [29]. This
constraint can be neglected when a system is sufficiently large. However, not much research has been
done toward theoretical analysis of the relationship between the system size and its efficiency.

The bipartite graph opens up a new way of studying complex game theoretic systems, while its com-
bination with the bidding and other restricted optimization protocols has not been fully studied yet.
In the bipartite graphs, vertices have two hierarchies, and their interactions are more complicated than
in traditional networks. In many previous studies, agents are considered to be either greedy (i.e., only
concerned about the current information) or smart (i.e., learning from history). However, in a game with
hierarchical structure, agents in different layers may have different behaviors. If an agent is smart, it
realizes that the strategies adopted in current step may have long-term effects to the future payoff, and
while the long-term utility function cannot be calculated directly, it can be estimated from the history.
Reinforcement learning algorithms have been proved to be an efficient tool for such multi-step games,
especially in complex systems [30–35]. Hence this study focuses on applying reinforcement learning to
games that can be represented as bipartite graphs.

In particular, the model proposed in this paper is based on the state-based potential game with a
hierarchical structure. On the lower level, agents are greedy and short-sighted. On the upper level, the
state parameters are adjusted by “smart leaders” using a reinforcement learning algorithm. Hence, the
topology of the system is considered to be a bipartite graph with two levels, the agent level and the group
level.

The rest of the paper is organized as follows. The game is proposed and discussed in Section 2 first.
The protocols for the game on both levels are defined, and the learning behaviors of the game participants
are designed next. Then, the stability and efficiency of the employed distributed algorithms are studied.
Finally, the simulation results are presented to verify the improvement of the systematic efficiency brought
by the “smart leaders”.
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Figure 1 Connection topology of the proposed model, where groups (upper level) and agents (lower level) form a bipartite graph,

and the links exist only between these two sets.

2 Model definition and main results

2.1 Game introduction

The model proposed in this study can be presented as a bipartite graph, with its vertices divided into
two sets: agents and groups. Let V c = {vc1, v

c
2, . . . , v

c
ng
} denote the set of group vertices, and V a =

{va1 , v
a
2 , . . . , v

a
na
} denote the set of agent vertices. The edge set is denoted by E ⊆ V a × V c, with each

edge associating an agent with a group. All agents connected to the same group vertex belong to the
same group. For each agent i ∈ V a, Ni = {k ∈ V

c | (i, k) ∈ E} is called its neighbor set, which comprises
all groups it belongs to. For each group k ∈ V c, Nk = {i ∈ V a | (i, k) ∈ E} is called its neighbor set,
which comprises all agents it contains. The proposed model is illustrated in Figure 1.

Agents are free to choose their strategies from a strategy set A , {a1, a2, . . . , anA
}; mixed strategies

are allowed. For each agent i ∈ V a, the preference for strategy a ∈ A is pai , where 0 6 pai 6 1 and
∑

a∈A p
a
i = 1. The mixed strategy of an agent i is denoted by pi , [pa1

i , p
a2

i , . . . , p
anA

i ]T.
For each group k ∈ V c, the payoff depends on the strategies of all the agents it contains. Each strategy

a has an independent contribution Ua
k to the group’s utility function Uk(·), which is defined as

Uk(p
k) ,

∑

a∈A

Ua
k (p

a
k), (1)

where pk , {pi | i ∈ Nk} and p
a
k , {pai | i ∈ Nk} contain only the local information within Nk.

For each agent i ∈ V a, its utility function ui(·) is the linear combination of the payoff of all neighbor
groups:

ui(p) ,
∑

k∈Ni

wa
kUk(pk) =

∑

k∈Ni

∑

a∈A

wa
kU

a
k (p

a
k), (2)

where the weight wa
k is a non-negative value. As wa

k increases, Ua
k weights more in the agent’s utility

function, and the agent’s preference is affected by its utility function accordingly. For each strategy
a ∈ A, all its relevant weights sum up to the positive value K, namely

∑

k∈V c

wa
k = K. (3)

According to Eq. (3), each strategy has equivalent “importance” from the systematic view. However,
the weights of strategies in each group may be different, resulting in the agents in different groups having
different preferences of strategies. When each wa

k is fixed, the outcome depends only on the actions of
the agents, and the game can be presented as a one-layer network. However, if the weights vary over
time, or they are determined by group nodes with some competitive protocols, then the game’s outcome
is determined by the actions of the nodes in both layers, and the game has a two-level hierarchy.

With this model, a variety of nonlinear problems can be addressed via the choice of utility functions
Uk(·). For example, Eq. (4) can present a model similar to the Kelly’s route competition game [19], if
we properly define the limit parameter Ca

i > 0 of the resource i and the weight parameter hak > 0 of the
route a:

Ua
k (p

a
k) = hak min

i∈Nk

{Ca
i p

a
i } . (4)

Alternatively, we can get the maximum coverage problem represented as

Ua
k (p

a
k) = max

i∈Nk

Ca
ikp

a
i , (5)
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or the probability consensus problem represented as

Ua
k (p

a
k) =

∏

i∈Nk

pai . (6)

In the probability consensus problem Eq. (6), Ua
k can be viewed as the probability of the route k to be

“connected” under some channel a ∈ A.
One interesting property of the model Eq. (6) is that for each group k, Uk(pk) = 1 if and only if any

local consensus state is reached (i.e., ∃a ∈ A, ∀i ∈ Nk, p
a
i = 1). In any other cases, the reward is inferior

than in the consensus case because

1 =
∏

i∈Nk

(

∑

a∈A

pai

)

>
∑

a∈A

∏

i∈Nk

pai = Uk(pk). (7)

Hence, the consensus state is the optimal condition for both levels. However, a global consensus may
not be easily reached providing that independent decision makers have different neighbors, while the
individuals with different preferences compete with each other. To analyze these complex situations,
we propose a two-level model comprising the agent level, where members make direct decisions using a
greedy behavior, and the group level, where members try to indirectly influence the neighbor agents in
the future games and exhibit a learning behavior. These two levels are described below in turn.

2.2 Problem formation on the agent level

On the agent level, given a set of all group weights and all strategies of other agents, if an agent i adopts
a pure strategy a ∈ A, the agent’s payoff is

ui(a, p−i) =
∑

k∈Ni

wa
k





∏

j∈Nk,j 6=i

paj



 , (8)

where pj denotes the strategy of player j, who belongs to the neighbor set of i, and p−i denotes the
current strategies of all members in the agent level except agent i. When the agent i adopts a mixed
strategy pi, the agent’s utility function can be written as

ui(pi, p−i) =
∑

a∈A

pai ui(a, p−i). (9)

In other words, each utility function ui(p) is a linear combination of the agents’ pure strategy payments.
At each step, the agent i might have the motivation to adjust its strategy pi to achieve a higher

reward. The system’s Nash-equilibrium is the state where no agent has such a motivation. One stable
Nash-equilibrium point is a solution of pis satisfying the following condition:

pi = argmax
pi

ui(pi, p−i) s.t.
∑

a∈A

pai = 1. (10)

For any state deviating from the Nash-equilibrium, the strategy of each agent pi may be improved
using its local information. For a given agent, since its probabilities to adopt each strategy sum up to 1,
the set of values [qai ] ⊂ R can be defined to satisfy the following conditions:

pai =
qai
∑

b q
b
i

, (11)

q̇ai = f(qai , u
a
i ), (12)

where qai s are non-negative and the function f satisfies f(0, uai ) = 0. One reasonable choice is to set
f(qai , u

a
i ) = qai u

a
i , which would result in the pi being updated according to the following replicator

equation:

ṗai = α
∑

b∈A

pbip
a
i (ui(a, p−i)− ui(b, p−i)) = αpai (ui(a, p−i)− ui(pi, p−i)) = αpai (t)g

a
i (t), (13)
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where gai (t) , ui(a, pi(t)) − ui(pi(t)). Eq. (13) has the formation of the replicator dynamic equation;
hence the solution would remain on the simplex

∑

a∈A p
a
i (t) = 1, and if 0 6 pi(0) 6 1, the continuous

dynamic equation guarantees 0 6 pi(t) 6 1 for any t > 0.
In large systems, agents typically update their states and strategies asynchronously. At the beginning

of each interval tn = nT , the agent i has the opportunity 0 < δ 6 1 to update itself during the
interval [tn, tn+1). When the system is large and δ is sufficiently small, the update can be viewed as
asynchronous. The asynchronous update sequence [it1 , it2 , . . . ] of all time intervals is called the agents’
updating sequence.

For the updating agent i = iin at time t ∈ [tn, tn+1), its personal profit is achieved greedily by modifying
the strategy according to the replicator dynamic in Eq. (13):

ṗai (t) =α
∑

b∈A

pai (t)p
b
i(t)g

ab
i , (14)

where the parameter

gabi ,
∑

k∈Ni

(

wa
kU

a
k (a, p−i(tn))− w

b
kU

b
k(b, p−i(tn))

)

is viewed as a constant during the time interval [tn, tn+1).
Under this dynamic setup, each agent makes decisions only based on local information and in a dis-

tributed manner. As the greedy motivation of each agent does not necessarily promote the global welfare,
there is no guarantee that the system would get close to any equilibrium conditions. This leads to the
first question of this study, whether the asynchronous update protocol under Eq. (14) guarantees the
system to reach any Nash equilibrium point, given that the parameters of each group level are fixed.

2.3 Problem formation on the group level

According to the behaviors in the agent level, a higher/lower group weight wa
k ∈ W

a encourages/discoura-
ges the agents in a group k to select a strategy a. For the private interest of each group, the allocation
of group weights does not directly affect its payoffs. However, since agents take these parameters into
consideration according to Eq. (2), groups with higher weights are more likely to reach a local consensus.
While the sum of weights of one strategy in all groups is fixed, its allocation is crucial for the com-
petitiveness of that strategy. The game on the group level is similar to the board of Go, where each
strategy has its own domain. Focusing on a strategy may expand its domain across the groups. Hence,
more weights should be allocated to one group node if this node brings about larger marginal revenue.
If the utility function of each member is known beforehand, a centralized control protocol can be more
appropriate, with each parameter being allocated using a tailored optimization algorithm. However, the
individual utility functions in most real systems are private information; hence, a distributed protocol
is more practical in such situations. The task of the weight allocation problem is to find the efficient
assignment of group weights {wa

k | k ∈ V
c} for each strategy a in a distributed manner.

First, we assume that each private payoff function fa
k (w

a
k) is known by each member, which is its

estimation of the utility function in future game. The members can negotiate for the weight allocation by
the means of “transparent auction” mechanism: considering the following general distribution problem
with global constraints.

max
wa>0

F a(wa) ,
∑

k∈V c

fa
k (w

a
k) s.t. 1Twa = Ka, (15)

where wa , [wa1 , wa2 , . . . , wanA ]T, and Ka > 0. At each time step, the auction requires each group k to
offer a bid sak > 0 for a portion of Ka. Group k finally gets a portion wa

k of Ka, which is

wa
k =

sak
∑

h∈V c sah
Ka. (16)

The allocation wa
k is proportional to its bid sak. The bid also involves a cost Ca

k (s
a
k). We assume that for

each k, the profit function is smooth, increasing, upper-bounded and concave, while the cost function is
smooth, increasing, and convex. The discounted private payoff is the benefit minus the cost:

Ja
k (s

a
k | s

a
−k) , fa

k (w
a
k)− C

a
k (s

a
k). (17)
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The Nash-equilibrium of the auction is the condition in which each Ja
k reaches a local maximum when

no other individuals change their choices, namely sak = argmaxs>0 J
a
k (s | s

a
−k), ∀k ∈ V

c.
Since bids are based on personal interest, the Nash-equilibrium is not necessarily a global optimal

solution of F a(wa). The global measurement F a
k (w

a) reveals the overall competitiveness of a strategy a.
According to Eq. (15) its necessary optimal condition is: wk = 0 or fa

k
′(wk) = λ where λ is a constant.

This condition can be summarized as follows: for any k, h ∈ V c,

wkwh = 0 or |fa
k
′(wk)− f

a
k
′(wh)| = 0. (18)

Based on Eq. (18), an approximated solution is ǫ-close to the accurate one if there exists some ǫ > 0
satisfying that for any pair of groups h, k ∈ V c,

ŵkŵh = 0 or |fa
k
′(ŵk)− f

a
k
′(ŵh)| 6 ǫ. (19)

In this way the scale of ǫ is the measure of the efficiency of the auction outcome. The smaller ǫ is, the
better the allocation is, while the accurate global solution is just a special case of the ǫ-close solutions
where the lower bound of ǫ is 0.

This entails the main concern on the group level, which is, whether the efficiency of the auction can be
guaranteed in the sense of ǫ-close, given each utility function of the members, and if so, what condition
should be satisfied to get an enough small ǫ value.

The questions formulated for the proposed two-level model are analyzed in Section 3 separately. For
the agent level, the stability is proved using the conclusion of the state-based potential game. For the
group level, the efficiency is proved to have a relation with the system size, while the upper bound of ǫ
can be calculated.

3 Theoretical results

First of all, it can be proved that from the view of any agent in the updating sequence, its utility function
is non-decreasing during its own updating. According to Eq. (14), when a single agent i in the system
updates its strategy pi, the utility function ui changes as follows:

u̇i(t) =
∑

a∈A

ṗaui(a, p−i) =α
∑

a∈A

∑

b∈A

pai (t)p
b
i(t)

(

uai (a, p−i)− u
b
i(b, p−i)

)2
> 0. (20)

This proves that ui(·) is non-decreasing, and the protocol is greedy from the perspective of agent i.
Furthermore, if u̇i = 0, for any a, b ∈ A, either pai p

b
i = 0 or uai (a, p−i) = ubi(b, p−i) must be true, which

means that ui reaches the first order KKT point.
From the perspective of the whole system, the function defined as below can be proved to be a potential

function:
V (p) =

∑

k∈V c

∑

a∈A

wa
kU

a
k (p

a
k). (21)

Since 0 6 Ua
k 6 1 is true, V (p) is a bounded function.

Theorem 1. Eq. (21) is the potential function for the game on the agent level. Furthermore, the
temporal trace V (t) , V (p(t)) is a non-decreasing function and limt→0 V̇ (t) = 0.
Proof. To prove that V (t) is a potential function, it is just necessary to prove that when one single
agent alters its strategy, its utility function and the potential V (p) are changed for the same value. It is
obvious that V (p) is a smooth function of p, and for any i ∈ V a and a ∈ A,

∂V (p)

∂pai
=
∑

k∈Ni

∂

∂pai
wa

kU
a
k (P

A
K ) =

∂

∂pai
uai (p) =

∂

∂pai
ui(p).

Hence, any change about pai would cause V (p) and ui(p) to change for the same value. Thus it completes
the proof that V (p) is a potential function.

From Eq. (20) the temporal trace V (t) can be derived as

V̇ (t) =
∑

i∈V a

∑

a∈A

∂V

∂pai
ṗai =

∑

i∈V a

u̇i(t) > 0. (22)
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Since the value of each parameter 0 6 pai 6 1 is bounded, it is easy to check that both the functions ṗ(t),
V (p) are uniformly bounded. Furthermore, in each time interval t ∈ [tn, tn+1) where the updating agent
is i, we have

V̇ = u̇i(t) =
∑

a∈A

ṗaui(a, p−i) = α
∑

a∈A

∑

b∈A

pai (t)p
b
i (t)

(

uai (a, p−i)− u
b
i(b, p−i)

)2
> 0, (23)

V̈ = üi(t) =
∑

a∈A

ṗaui(a, p−i) = α
∑

a∈A

∑

b∈A

pai (t)p
b
i (t)

(

uai (a, p−i)− u
b
i(b, p−i)

)2

= α
∑

a∈A

∑

b∈A

(

ṗai (t)p
b
i (t) + pai (t)ṗ

b
i(t)
) (

uai (a, p−i)− u
b
i(b, p−i)

)2
. (24)

All variables in Eq. (24) are uniformly bounded, so V̈ (t) is uniformly bounded in each time interval, which
implies that V̇ (t) is uniformly continuous during all the temporal intervals. Similar to the conclusion of
the Barbalat’s Lemma, if V (t) is bounded, V̇ > 0 and is uniformly continuous at each temporal interval,
then V̇ (t) must converge to 0.

Remark 1. Barbalat’s Lemma cannot be directly applied to Theorem 1 because V̇ (t) is not continuous
and there is an abrupt switch at the beginning of each time interval. However, the conclusion of Theorem 1
can still be achieved by resorting to the technique similar to the proof of Barbalat’s Lemma. Since V̇ (t)
is uniformly continuous in each interval with the same parameters, if V̇ → 0 does not hold, namely,
there exist an ǫ0 > 0 and infinitely many updating intervals each of which contains at least a time point
th ∈ [tnh

, tnh+1) where h = 1, 2, . . . such that V̇ (th) > ǫ0, then a contradiction would be produced.
Actually, since V (t) is uniformly continuous in all intervals, a unique value δ > 0 can be found, such that
at each point th ∈ [tnh

, tnh+1), and for any t ∈ [tnh
, tnh+1) satisfying |t− th| 6 δ, V̇ (t) > ǫ0/2 holds. The

value can be set to satisfy δ < T . For each time point th, in the inner of its time interval of length T , a
neighbor domain [τh, τh + δ] can be found, where τh 6 th 6 τh + δ, and V̇ (t) > ǫ0/2 always holds in this
neighbor domain. This implies V (τh + δ)−V (τh) > ǫ0δ/2 for every h, and hence no upper boundary can
be expected in regard to V (t) when t gets infinitely large, which is a contradiction.

According to the properties of potential games, any local maximum point of the potential function
V (p) is a Nash-equilibrium. Furthermore, V (t) is non-decreasing according to Eq. (22). Since any upper-
bounded non-decreasing function must converge, V (t) must be converge to some value, V (t)→ V0. Since
the updating of agents is asynchronous, the final state is not only associated with the initial state but
also with the updating sequence. If the updating sequence is random, the system would approach an
equilibrium state.

Theorem 2. If the updating sequence is totally random, and the agents update strategies asyn-
chronously using Eq. (14), the system almost surely converges to the set of Nash-equilibrium points.
Proof. In the Nash-equilibrium state p∗, each agent must be in the stable or boundary condition;
i.e., u̇i(p

∗) = 0 must be true for any i ∈ V a. The agent with the largest margin utility can be defined
as u̇max(t) , maxi u̇i(t). Since the updating sequence is random, the probability for agent i to be
selected is 1/na. Since u̇i > 0, E(V̇ (t)) =

∑

i E(u̇i(t))/na > E(u̇max(t))/na. According to Theorem 1,

limt→∞ E(V̇ (t)) = 0, so limt→∞E(u̇max(t)) = 0, and for any selected i, limt→∞ u̇i(t) = 0 is almost surely
true. Furthermore, according to Eq. (20), u̇max(p) is the function of p, and is uniformly continuous in
the domain, so it is almost surely true that p converges to the set of points where u̇i = 0, which is the
set of Nash-equilibrium points.

Remark 2. Theorem 2 does not exclude some special conditions in which some agent j ∈ V a only
appears finite times in the updating sequence, and there would be no guarantee that ∂Uj/∂pj → 0 as
t → 0, which is required by the Nash-equilibrium condition. However, since the system is finite and the
updating sequence is random, the probability for such event is only 0, and Theorem 2 is almost surely
true.

Theorems 1 and 2 guarantee that since the replicator dynamic is applied, the state of the agent level
would converge to and remain in the Nash-equilibrium, given the weight of each group is constant.
However, when the allocation of weights is updated, the utility functions are modified, driving the system
to a different equilibrium point. This is a kind of state-based potential game defined in the work of
Marden [26]. In previous studies, the state of the system is switched based on the random Markov
process. In this study, a reinforcement learning framework is applied by each group that leads to a
higher overall welfare. Furthermore, the weights would be optimized at early stages of the game before
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any equilibrium state is approached, if the group nodes can repetitively learn from experience and the
protocol is efficient. Although the agents are greedy, their actions are predicted by the sophisticated
group members, and hence the final state is selected with caution prospectively.

In the group level, the following conditions are assumed to be true: (a) for any group k ∈ V c, its
payoff fa

k (w) is upper bounded by NF , namely 0 6 fa
k (w) 6 NF for any w > 0, and NF is irrelevant to k;

(b) each payoff function is smooth, satisfying fa
k (0) = 0, and dfa

k (w)/dw is a positive, decreasing function
when w > 0; (c) each group k shares the same linear cost function, namely Ca

k (s) = Cs, where C is a
positive constant; (d) the sum of allocated weights Ka is large enough in respect to the system scale nc.
Moreover, there exists some constant Ma > 0, such that Ka >Manc.

If the assumptions above are true, the efficiency of the group level can be guaranteed using the definition
of ǫ-close. Theorem 3 reveals that the larger the system gets, the more efficiency it could guarantee.

Theorem 3. If the assumptions (a)–(d) are true, the allocation in group level is ǫ-close to the optimal
condition of Eq. (15). Furthermore, ǫ can be infinitely small if the system scale nc expands infinitely
large. In precise, small ǫ can be selected such that ǫ 6 2NF/(Manc).
Proof. To prove the theory, the essential point is that for any k, h ∈ V c, the requirement of Eq. (19)
should be satisfied. In the condition of wk = 0 or wh = 0, Eq. (19) is already true for any ǫ > 0. On
other conditions, i.e., wkwh > 0, without losing of generality, we assume that sk > sh > 0 for the sake of
simplicity. Since the function fa

k (w) is concave and f
a
k (0) = 0, for any w > 0, there exists some 0 < ψ < w

such that fa
k
′(ψ) = fa

k (w)/w. Since f
a
k
′(w) is decreasing, fa

k
′(ψ) > fa

k
′(w) must be true. This leads to

fa
k
′(w) 6 fa

k
′(ψ) =

fa
k (w)

w
6
NF

w
. (25)

Moreover, since w is the Nash-equilibrium of the auction and wk > 0, we have

0 =
∂Ja

k (wk)

∂sk
= fa

k
′(wk)

Ka(1 − vk)
∑

m∈V c sm
− C, (26)

where vk = sk/
∑

m∈V c sm. This leads to

fa
k
′(wk) =

C
∑

m∈V c sm

Ka(1− vk)
. (27)

Combining Eqs. (25) and (27) derives the conclusion that for any k ∈ V c,

1

1− vk
6

KaNF

Cwk

∑

k∈V c sm
. (28)

Applying the condition of Eq. (19) gets the result:

|fa
k
′(wk)− f

a
k
′(wh)| =

C
∑

m∈V c sm

Ka

∣

∣

∣

∣

1

1− vk
−

1

1− vh

∣

∣

∣

∣

=
C
∑

m∈V c sm

Ka

|vk − vh|

(1 − vk)(1− vh)
. (29)

Since vk > vh and 0 < vk + vh 6 1, we have

1

1− vh
6
vk + vh
vk

6 2. (30)

Furthermore, we have |vk − vh| < vk. Eq. (29) can be transformed further:

|fa
k
′(wk)− f

a
k
′(wh)| 6 C

vk
∑

m∈V c sm

Ka

2

1− vk
6 2C

vk
∑

m∈V c sm

Ka

KaNF

Cwk

∑

m∈V c sm

=
2NF

Manc

Kavk
wk

=
2NF

Manc
. (31)

This means that some ǫ 6 2NF/(Manc) can always be found satisfying Eq. (18). This upper boundary
is irrelevant to the choice of k, h. So, as nc gets infinitely large, ǫ→ 0 must be uniformly true. Thus the
proof is completed.
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Remark 3. One precondition of the efficiency of the auction is that each partner k must have full
knowledge of its payoff function fa

k beforehand. However, in multi-step games the payoff function is hard
to estimate for three reasons. First, predicting the future game for multiple steps requires a great deal of
computation. Second, since each partner might only have incomplete information of the whole system,
the prediction is not accurate. Last, the strategies of the members are interdependent, so no one can
make valid prediction of the future personal payoff without fully knowing the behavior of all the other
participants. To resolve this issue, the reinforcement learning algorithm will be discussed in Section 4.

According to Theorem 3, a large margin increase in the payoff curve fa
k implies that if a larger weight

wa
k were allocated to group k, a higher likelihood for the strategy a would be observed from the agents

within the group. In this case, group k should bid more than the rival groups whose margin payoffs are
smaller. If everyone is reasonable and the system is large enough, the result allocation is globally efficient.
This efficiency is affected by the select of the cost parameter C, which is the conclusion of Theorem 4.

Theorem 4. For any local discounted payoff function Ja
k (s

a
k) = fa

k (w
a
k) − Csak, the choice of any

parameter C > 0 leads to the same outcome of the auction.
Proof. See Appendix A.

Another property of the auction protocol is that no monopoly would come about even if the system is
large. In the equilibrium state, the bid sak has the property as follows:

C
∑

m∈V c sam
Ka(1− vak)

= fa
k
′(wa

k) 6
NF

wa
k

.

Applying wk = Kas
a
k/
∑

m sam,

sak 6
NF

C
(1− vak) 6

NF

C
. (32)

So despite the system scale, any personal bid sk is only upper bounded by NF /C, which is irrelevant of
nc. In real-world economy systems, the total bid

∑

m∈V c sm is always large, and the effect of sk would
be negligible to the whole. In this case, for each k where sk > 0, the marginal income is

fa
k
′(wa

k) =
C
∑

m∈V c sm

Ka

1

1− vk
≈
C
∑

m∈V c sm

Ka
.

So, the values of fa
k
′(wa

k)s approximately get consensus to the same value. This explains why the com-
petitions in large markets help build and maintain a fair and efficient economy system.

4 Reinforcement learning for group level strategy

According to the previous discussions, the efficiency of the distributed weight allocation in the group
level depends on the full knowledge about the personal payoff functions beforehand. However, the exact
payoff function is hard to calculate since each group only has incomplete information of the whole system.
Furthermore, calculating the expectation of the long-run payoff in multi-step games is difficult. So the
agents must learn to estimate. If the game is repeated for many times, and each agent keeps the data of
the previous games, a reinforcement learning algorithm can be designed and performed along with the
auction process.

At the time t, the target of the learning task for the group k is to optimize the bid sak(t) for a proper
amount of group weight wa

k . Since the payoff function is unknown, a Q-function could be defined to
calculate the future payoff, as follows:

Qa
k(Xk(tn), s

a
k(tn)) =

∞
∑

α=0

γαE [rak(tn+α)|Xk(tn), s
a
k(tn)] , (33)

where rak(t) denotes the one-step payoff at time t, Xk(t) is the local information available to group k at
time t, and the discount parameter 0 < γ < 1 should be less than one so as to guarantee the convergence
of the learning algorithm. The most intuitive definition of rak(·) is

rak(tn+α) = Ua
k (Xk(tn+α))− s

a
k(tn+α). (34)
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This definition balances the payoff and cost.
The current bid sak affects not only the one-step payoff, but also the payoffs in future steps. If all rak(·)s

are uniformly bounded, the discounted sum Qa
k(·) should be a finite value. So the Bellman-equation can

be applied to recursively solve the Q-function in each step:

max
sa
k
(tn)

Qa
k(Xk(tn), s

a
k(tn)) = rak(tn) + γ max

ss
k
(tn+1)

Qa
k(Xk(tn+1), s

n
k (tn+1)). (35)

The transition from Xk(tn) to Xk(tn+1) is a Markov jump. At every time step, each Markov jump along
with other information can be recorded as a tuple: gak(tn) = (Xk(tn), Xk(tn+1), s

a
k(tn), r

a
k(tn)). With the

help of these records, the value of Qa
k(·) can be approximated by training a neural network Q̂a

k(·). As

the record is accumulated along with time, Q̂a
k(·) can be trained online. Selecting the learning scale as

0 < β1 < 1, the value of Q̂a
k is updated as follows:

Q̂a
k(Xk(tn), s

a
k(tn))← (1− β1)Q̂

a
k(Xk, s

a
k) + β1

[

rak(tn | tn) + γQ̂a
k(X

a
k (tn+1), s

a∗
k (tn+1))

]

, (36)

where the sa∗k (·) denotes the optimal value under the given information, which can be estimated using

Q̂a
k(·):

sa∗k (tn+1) , argmaxs>0Q̂
a
k(Xk(tn+1), s). (37)

When a better value is updated for the neural network Q̂a
k, its parameters are modified to make its

output closer to the better value. To estimate the maximized output of the network Q̂a
k(·), another

neural network ŝak(X) is adopted, whose training target is ŝak = argmaxs Q̂
a
k(X, s). Selecting the training

scale as β2 > 0, the value of ŝak is updated as follows:

ŝak(Xk)← ŝak(Xk) + β2
∂Q̂a

k(Xk, s)

∂s

∣

∣

∣

∣

s=ŝa
k
(Xk)

. (38)

The learning process in Algorithm 1 can be performed in a variety of forms, for example, all the
groups sharing a neural network, or each group having its own network. The better the neural network is
trained, the smarter the members in the group level would be, and the more global efficiency the system
can achieve.

Algorithm 1 The overall list of the stepwise auction algorithm for the allocation of groups’ weights

From the initial time n = 0, do:

1. For each group k ∈ V c, record the local information as Xk(tn).

2. Each individual offers a bid sak for the auction, using the neural network sak(tn) = ŝak(Xk(tn)).

3. Allocate the weight values.

4. Wait until the next time step tn+1.

5. Store the current local information Xk(tn+1).

6. Add the tuple (Xk(tn), Xk(tn+1), s
a
k(tn), r

a
k(tn | tn)) into the training set.

7. Set n← n + 1, go back to step 2.

5 Simulations and analysis on the motivational model

In the simulation, all agents are placed on the 2D periodic lattices. Each group is composed of each K
successive agents along any row, column or diagonal. The lattices and groups are illustrated as Figure 2.

It is obvious that the groups and agents in the lattices have the following properties:
(1) Each group contains the same number of agents, and each agent belongs to the same number of

groups.
(2) There is no boundary on the torus surface, so all groups are equivalent.
In the simulation, the strategy set A = {a1, a2} contains two strategies, and the size of each group

is K = 5. The value pij ∈ [0, 1] denotes the probability of the agent in the i-th row and j-th column
for the strategy a1, so 1 − pij denotes its probability for a2. The size of the lattices is 70 × 70. All
weights of groups are set to constant 1. The dynamic of each agent follows the replicator dynamic in
Eq. (13). The strategy distribution of the agents is illustrated in Figure 3, and the temporal curve of
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Figure 2 Five groups on the lattices when K = 5. Any K successive agents along any direction belong to a common group,

while only 5 groups are illustrated here. One group spans across the bound recursively.

t = 1000000 t = 2500000

t = 600000t = 0

1.00.80.60.40.20.0

Figure 3 (Color online) The probability of choosing strategy a1 by the agents in the 70×70 lattices. The agents’ initial strategies

are selected randomly from the range [0, 1]. The agents in lattices adapt to each other’s strategy by following the replicator dynamic,

until the system reaches the stable state. During the process, agents keep adjusting their strategies trying to get accordance with

their neighbour agents. In the final state, the lattices are divided into several areas based on the strategy preferred by agents in

each area.
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Figure 4 (Color online) The temporal curve of the potential function V (t), which is a monotonic increasing function converging

to its upper bound.

the system’s potential function is illustrated in Figure 4. It can be seen that in the final state each
agent converges to the pure strategy a1 or a2. In the next experiment, the game is repeated for several
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Figure 5 (Color online) The total reward of strategies a1 and a2 in the game. The strategy a1 (learning strategy) uses

strategically allocated group weights, while strategy a2 (average strategy) allocates the weights averagely. In this experiment,

strategy a1 performs better than strategy a2.
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Figure 6 (Color online) The temporal curves of the total rewards of strategies a1 and a2 in the system, which are scaled on both

axes. The strategy a1 performs the reinforcement learning method, while the strategy a2 allocates the group weights averagely.

The dashed line denotes the equal points where the rewards on both strategies are equivalent. Most traces end at the right part of

the dashed line, which means that the learning strategy a1 acquires higher rewards than the strategy a2 by large.

times from randomized initial states. Only strategy a1 performs reinforcement learning method, while
strategy a2 allocates all group weights averagely. The utility of both strategies is recorded along time,
and illustrated as the traces of the points (Ua1(t), Ua2(t)). The learning algorithm is repeated several
times for learning parameters to converge, and then the multi-step game is performed repeatedly from
random initial states, during which the agent payoffs are recorded. The payoff curve of the strategies in
a single experiment is shown in Figure 5, while the final outcomes from the repeated experiments are
illustrated in Figure 6. In Figure 6, the points with a higher value in the x-label denote a state where
strategy a1 is overall preferred, while those with a higher value in the y-label denote a state where a2
is overall preferred. From both Figures 5 and 6, it is clear that the payoff of strategy a1 is significantly
higher in total. For experiments with or without reinforcement learning method, a comparison of their
final strategy distributions is illustrated in Figure 7.

The better performance of the strategy a1 implies a higher efficiency in weight allocation for a1 than
for a2. Since the system is large and the utility functions are bounded, the condition of Theorem 3 is
satisfied, and the auction protocol based on greedy strategies leads to the result close to the centralized
optimization. Even though the group weights of each strategy sum up to the same value, the allocation
of the group weights about strategy a1 is better refined by the competition in the auction and the
reinforcement learning process. So in the agent level, those who adopt a1 enjoy the higher payoff by
large, and in the final state, there is more likelihood that a group reaches the consensus of a1 than of a2.
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Figure 7 (Color online) The final strategy allocation of agents in eight independent experiments is illustrated, where the values

denote the probability of choosing a1 in agents’ mixed strategies. In (a), weights of both strategies are allocated averagely. In (b),

the group weights of a1 are allocated using the reinforcement learning algorithm, while the weights of a2 are allocated averagely.

According to the final states of the agents, each agent trends to choose the same strategy as the neighbor agents in the same groups

do, while groups at distance may not reach the consensus about the strategies, dividing the system into several areas. Furthermore,

in the experiments with reinforcement learning (b), the agents who prefer a1 outnumbers the agents preferring a2, which suggests

the advantage of a1 because of the more efficient allocation of group weights.

6 Conclusion

This paper presented a two-level game theoretic model of a structured population, adding new features
to the exiting evolutionary game models. In the proposed model, agents are grouped into overlapped
groups, their rewards are connected to the group payoff, and decisions are made on both the agent and
group levels. On the agent level, the decisions are made based on the “greedy” strategy. In particular,
agents assume that the environment remains stable and adjust their individual strategies towards the
maximum of their personal interest. On the group level, long-term strategy programming is performed,
and reinforcement learning is used to help each group adapt to the environment. Furthermore, the
stability and efficiency of the proposed algorithm was analyzed. On the agent level, the game was proved
to be a state-based potential game. On the group level, the auction method was designed and proved to
be efficient when utility functions are bounded and the scale of the population is efficiently large. Several
simulations of the proposed framework are also presented.

Acknowledgements This work was supported by Tianjin Natural Science Foundation (Grant Nos. 20JCYBJC01060, 20JC-

QNJC01450) and National Natural Science Foundation of China (Grant No. 61973175).

References

1 Quijano N, Ocampo-Martinez C, Barreiro-Gomez J, et al. The role of population games and evolutionary dynamics in

distributed control systems: the advantages of evolutionary game theory. IEEE Control Syst, 2017, 37: 70–97

2 Nowak M A, Tarnita C E, Antal T. Evolutionary dynamics in structured populations. Phil Trans R Soc B, 2010, 365: 19–30

3 Fu F, Wang L, Nowak M A, et al. Evolutionary dynamics on graphs: efficient method for weak selection. Phys Rev E, 2009,

79: 046707

4 Taylor C, Fudenberg D, Sasaki A, et al. Evolutionary game dynamics in finite populations. Bull Math Biol, 2004, 66:

1621–1644

5 Ohtsuki H, Nowak M A. Evolutionary games on cycles. Proc R Soc B, 2006, 273: 2249–2256

6 Nowak M A. Five rules for the evolution of cooperation. Science, 2006, 314: 1560–1563

7 Ohtsuki H, Nowak M A, Pacheco J M. Breaking the symmetry between interaction and replacement in evolutionary dynamics

on graphs. Phys Rev Lett, 2007, 98: 108106

8 Tarnita C E, Ohtsuki H, Antal T, et al. Strategy selection in structured populations. J Theory Biol, 2009, 259: 570–581

9 Xia C Y, Li X P, Wang Z, et al. Doubly effects of information sharing on interdependent network reciprocity. New J Phys,

2018, 20: 075005

10 Tang C B, Li X, Wang Z, et al. Cooperation and distributed optimization for the unreliable wireless game with indirect

reciprocity. Sci China Inf Sci, 2017, 60: 110205

11 Xia C Y, Ding S, Wang C J, et al. Risk analysis and enhancement of cooperation yielded by the individual reputation in the

spatial public goods game. IEEE Syst J, 2017, 11: 1516–1525

12 Chen M H, Wang L, Sun S W, et al. Evolution of cooperation in the spatial public goods game with adaptive reputation

assortment. Phys Lett A, 2016, 380: 40–47

13 Fudenberg D, Levine D K. The Theory of Learning in Games. Boston: MIT Press, 1998

https://doi.org/10.1109/MCS.2016.2621479
https://doi.org/10.1098/rstb.2009.0215
https://doi.org/10.1103/PhysRevE.79.046707
https://doi.org/10.1016/j.bulm.2004.03.004
https://doi.org/10.1098/rspb.2006.3576
https://doi.org/10.1126/science.1133755
https://doi.org/10.1103/PhysRevLett.98.108106
https://doi.org/10.1016/j.jtbi.2009.03.035
https://doi.org/10.1088/1367-2630/aad140
https://doi.org/10.1007/s11432-017-9165-7
https://doi.org/10.1109/JSYST.2016.2539364
https://doi.org/10.1016/j.physleta.2015.09.047


Guo L H, et al. Sci China Inf Sci March 2021 Vol. 64 132206:14

14 Li J Q, Zhang C Y, Sun Q L, et al. Changing intensity of interaction can resolve prisoner’s dilemmas. Europhys Lett, 2016,

113: 58002
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Appendix A Proof of Theorem 4

Proof. We set J1k(sk) = fa
k (wk) − C1s, J2k(sk) = fa

k (wk) − C2sk, and s1 = [s11, s12, . . . , s1nc ] is the solutions of J1k. So

according to the Nash-equilibrium condition we have

0 =
∂J1k

∂s1k
=

fa
k

′(w1k)(1− v1k)K
a

∑
m∈V c s1m

− C1. (A1)

Now we set s2 = [s21, s22, . . . , s2nc ] where s2k = C1s1k/C2. This makes v1k = v2k and w1k = w2k to be the same allocation of

weights. s2 also satisfies

∂J2k

∂s2k
=

fa
k

′(w2k)(1− v2k)K
a

∑
m∈V c s2m

− C2 =
C2

C1

fa
k

′(w1k)(1 − v1k)K
a

∑
m∈V c s1m

− C2 = C2 − C2 = 0. (A2)

Namely s2 is also the Nash-equilibrium of each function J2k(·). Since s1 and s2 denote the same allocation, we know that all the

Nash-equilibrium of J1 is the Nash-equilibrium of J2, and the inverse proposition holds the same. So the choice between C1 and

C2 only affects the scale of the bid sk but not the final allocation of the auction.
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