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Abstract In this paper, we propose a recurrent neural network (RNN) for the tracking control of surgical

robots while satisfying remote center-of-motion (RCM) constraints. RCM constraints enforce rules suggesting

that the surgical tip should not go beyond the region of incision while tracking the commands of the surgeon.

Violations of RCM constraints can result in serious injury to the patient. We unify the RCM constraints with

the tracing control by formulating a single constrained optimization problem using a penalty-term approach.

The penalty-term actively rewards the optimizer for satisfying the RCM constraints. We then propose

an RNN-based metaheuristic optimization algorithm called “Beetle Antennae Olfactory Recurrent Neural

Network (BAORNN)” for solving the formulated optimization problem in real time. The proposed control

framework can track the surgeon’s commands and satisfy the RCM constraints simultaneously. Theoretical

analysis is performed to demonstrate the stability and convergence of the BAORNN algorithm. Simulations

using LBR IIWA14, a 7-degree-of-freedom robotic arm, are performed to analyze the performance of the

proposed framework.
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1 Introduction

With recent advances in robotics and control theory, redundant robotic manipulators have gained in-
creased research attention [1–3], which has delivered several applications for real-world scenarios [4–6].
One important application includes robot-assisted minimally invasive surgery [7, 8]. The ability to per-
form surgery with the assistance of a robotic arm greatly increases the precision and accuracy of the
surgical process and enhances the agility of the surgeon. An important distinction that makes the robot-
assisted surgery challenging, compared to other applications, is the remote center-of-motion (RCM)
constraint [8,9]. RCM constraints require that the surgical tip, attached to the end-effector of the robotic
arm, must pass through the small incision on the patient’s body and treat the incision point as the
center of motion. Figure 1 illustrates the concept of RCM constraints. To fulfill these constraints, it
is necessary to use a redundant robotic arm [10], because the extra degree of freedom (DOF) provided
by redundant joints allows us to enforce arbitrary constraints [11,12], such as obstacle avoidance [13,14]
and RCM constraints, on the motion of the end-effector. However, it is well-known in the literature that
incorporating additional constraints with redundancy resolution is an intricate technical challenge [15],
especially because a closed-form mathematical expression for the inverse-kinematic of a redundant robotic
arm does not exist [16].
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Figure 1 (Color online) Illustration of a surgical robot with a surgical tip at its end-effector. The surgical tip passes through the

point of incision on the patient’s body.

Traditionally, there have been two types of techniques used to enforce RCM constraints: passive
techniques that use mechanical mechanisms to restrict the end-effector [17,18] and active techniques that
implement software constraints using a control algorithm [8, 19, 20]. Active techniques are the primary
focus of control-theory research because it provides a high degree of motion flexibility and low-cost
compared with passive techniques. Ortmaier and Hirzinger [19] proposed an inverse-kinematic controller
for a specific type of robotic arm. Similarly, Aghakhani et al. [8] proposed a general kinematic formulation
of the RCM constraints for an arbitrary robotic arm. However, both methods considered RCM constraints
in a task space, whereas control actions are only available in a joint space. The transformation of RCM
constraints from task to joint spaces requires pseudo-inverse Jacobian operation, which is computationally
expensive. Similarly, other optimization-driven approaches have been proposed in [21,22]. However, these
approaches model RCM constraints as equality constraints in their optimization problem, which does not
actively reward the optimization algorithm for satisfying the constraints. We address this issue using the
penalty-term approach, which rewards the optimizer for satisfying the constraints.

In addition to RCM constraints, the literature on surgical robots has considered several other aspects.
For example, Su et al. [23] formulated a null-space controller that satisfies the RCM constraints while
maximizing the manipulability of the manipulators. In other words, it avoided the singularity in joint
space. Similarly, other objectives can be incorporated into the control algorithm for robots. Another
aspect of surgical robot development is the use of flexible materials to fabricate the end-effector [24–26]. It
has gained increased attention because of the widespread popularity of flexible actuators. Using a flexible
actuator as an end-effector enhances the safety of robots and assists in several surgical procedures, such
as endoscopy [27], which are otherwise very difficult to perform with rigid-actuators.

Redundancy resolution [28–30] for tracking control [31–35] of robotic arms is a well-studied problem.
For a given redundant robotic arm, if we specify a pose (i.e., position and orientation) of the end-
effector in a Cartesian task space, infinite many angles are traversed in joint space to reach that pose.
The Jacobian matrix pseudo-inverse (JMPI) [36–38] is a traditional redundancy resolution algorithm.
However, traditional JMPI can only be used in conjunction with equality constraints. Most practical
constraints on robotic arms (e.g., joint-angle limits, obstacle avoidance, and RCM constraints) can only
be modeled as inequality constraints. Recent approaches to redundancy resolution have formulated it
as a constrained optimization problem [15, 39–41]. For example, Ding et al. [42] minimized the joint
torques. He et al. [43] and Wang et al. [44] used neural network-based approaches for tracking control of
the redundant robotic arms. Li et al. [28] proposed a dual recurrent neural network (RNN) for solving the
quadratic optimization problem for tracking control of multiple manipulators during real-time. Adaptive
control techniques have also been proposed in [45–49]. These adaptive approaches have an advantage
in that they adapt to variations in the manipulator model if a minor mechanical fault occurs in the
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manipulator [50–52]. These algorithms adapt the parameters during runtime based on the input-output
data from the manipulator. However, these actions are very computationally expensive because they
require an additional loop to update parameters, and they usually require high-end embedded processors
for implementation. Optimization-driven approaches have also been applied to resolve RCM constraints
for redundant robotic manipulators [21,22,53]. The challenges being addressed in this paper include the
following.

(1) Tracking control: moving the end-effector of the surgical tip as commanded by the surgeon.
(2) RCM constraints: restrict the motion of the surgical tip at the point of incision on the patient’s

body.
(3) Joint-angle constraints: the algorithm should generate joint-space control actions such that they

do not violate the joint-angle limits.
In this paper, we leverage the ability of optimization-driven algorithms to achieve an arbitrary goal by

properly formulating the optimization problem [15,39]. We present a novel formulation for the objective
function using position-level kinematic-model, which not only guarantees that the surgical tip reaches the
target point as commanded by the surgeon, but also ensures that the surgical tip remains constrained
to the RCM point. We introduce an inequality constraint into our optimization problem to ensure the
joint-angle limits. To solve the formulated optimization problem in real-time, we propose a metaheuristic
optimizer, a beetle antennae olfactory RNN (BAORNN). The proposed algorithm leverages the well-
known [54–56] ability of metaheuristic optimization algorithms to efficiently solve constrained nonconvex
optimization problems as compared with gradient-based optimizers [57–59]. The BAORNN algorithm is
based on the beetle antennae olfactory (BAO) algorithm [60,61], a nature-inspired algorithm motivated
by the food foraging behaviors of beetles. Owing to its recent formulation, BAO has shown potential
application in several practical cases [14, 62, 63]. We formulated the BAORNN algorithm using an RNN
approach that will enable fast prototyping that leverages hardware acceleration, distributed processing,
and software optimization offered by modern computing frameworks. Specifically, the proposed formula-
tion allows the introduction of the concept of “virtual robots”, which is a novel feature compared with
traditional algorithms. These virtual robots virtually anticipate the effect of joint-space actions before
moving the actual robotic arm. It should be noted that the proposed controller is formulated on a position
level. Hence, it does not rely on the manipulation of the Jacobian matrix, which is a computationally
expensive task. It contrasts traditional velocity-level controllers, which require the calculation of the
pseudo-inverse of a Jacobian matrix at each time step. The proposed algorithm completely avoids the Ja-
cobian manipulation by considering position-level control. The proposed algorithm is capable of handling
the nonlinear kinematic model of the manipulators, because metaheuristic optimization algorithms are
well-known for their ability to solve nonlinear optimization problems without estimating the derivative.
The main highlights of this paper include the following.

(1) We present a novel formulation of the objective function to satisfy the RCM constraints.
(2) The objective function is formulated at the position-level, as opposed to the velocity-level control

in traditional algorithms, increasing the computational efficiency of the proposed algorithm.
(3) The objective function combines tracking control and RCM constraints by using the penalty-term

approach. This approach has the added advantage of rewarding the metaheuristic optimizer for satisfying
the RCM constraints, thus accelerating the rate of convergence.

(4) We propose BAORNN algorithm to solve the formulated constrained optimization problem in
real-time to track the time-varying reference trajectory accurately.

(5) We present the theoretical analysis on the convergence of the BAORNN algorithms.
(6) We conduct extensive simulation analysis on IIWA14 (KUKA LBR), a 7-DOF robotic arm to

demonstrate the performance of the proposed algorithm.
The remainder of this paper is organized as follows. Section 2 describes the tracking-control problem

with the formulation of RCM constraints and joint-angle limits. In Section 3, we formulate the BAORNN
algorithm, and its theoretical analysis is presented. Section 4 outlines the simulation methodology and
presents the results with a detailed discussion. Section 5 concludes this paper.

2 Problem formulation

In this section, we present the mathematical formulation of the tracking control as an optimization
problem while incorporating the RCM constraints. Additionally, we discuss the joint-angle constraints
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and how to account for them with the controller.

2.1 Tracking control

Consider that the surgeon wants to move the end of a surgical tip along a path inside the patient’s body.
The problem of computing the required trajectory in joint space, which moves the surgical tip along a
designated path, considers an m-DOF robotic arm in an n-dimensional task-space. The mapping from
the joint space to the task space is defined as

x(t) = f(θ(t)), (1)

where f(·) is a forward-kinematic model of the robotic arm, x(t) ∈ R
n and θ(t) ∈ R

m are vectors denoting
the task and joint space trajectories, respectively. For a redundant robotic arm, m > n. The mapping
f(·) is usually a nonlinear function and depends on mechanical design and Denavitâ-Hartenberg (DH)
parameters of the robotic arm. However, the path commanded by the surgeon exists in the task space.
Therefore, we are interested in mapping from the task space to the joint space using an inverse kinematic
model. Inverse mapping is based upon (1):

θ(t) = f−1(x(t)), (2)

where f−1(·) denotes the inverse of function f(·). Let us define the task-space path commanded by the
surgeon as xr(t): a reference path. To track this path, the corresponding trajectory in the joint space,
θr(t), must satisfy the following equation:

xr(t) = f(θr(t)). (3)

The task of tracking control is to solve this equation for θr(t). This equation could be trivially solved
if a closed-form expression for f−1(·) exists. However, for a redundant robotic arm, infinite trajectories
exist in the joint-space that satisfies (3).

The redundancy resolution deals with the calculation of an optimal joint-space trajectory out of in-
finitely many trajectories. The redundancy resolution can be modeled as the following optimization
problem:

min
θ(t)

gtr(xr(t), θ(t)), (4)

where gtr(·) denotes the tracking objective function defined as

gtr(xr, θ) = ||xr − f(θ)||22, (5)

where xr is a point on the reference path, and θ is the joint-angle vector.

Remark 1. While formulating the objective function (5), we only consider the kinematic model of
the manipulator. The kinematic model has been widely used to develop controllers in several recent
studies [64,65]. Even commercially available manipulators, such as Adept Quattro 650HS [66], ABB IRB
360 [67], and the UR 10 manipulator [68], have leveraged several applications of the kinematic control
algorithms.

2.2 RCM-constraints

Next, we provide a mathematical formulation of RCM constraints as a penalty term for the tracking
control problem of (4). The RCM constraints require that the surgical tip remains incident to the
point of incision on the patient’s body. The policy to satisfy RCM constraints is based on the following
principle: minimize the perpendicular distance between the RCM point and the line coincident to the
surgical tip. The principle is illustrated in Figure 2. To mathematically formulate this principle, let us

define the position vector of each joint in the task space as
−→
P 1(θ),

−→
P 2(θ),

−→
P 3(θ), . . .,

−→
P m(θ), where

each
−→
P i(θ) ∈ R

n, i ∈ {1, 2, . . . ,m}, and the position vector of joints is the function of joint angles. Note

that
−→
P m(θ) corresponds to the end of the surgical tip and

−→
P m−1(θ) corresponds to the start of the
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Figure 2 (Color online) Illustration of RCM constraints. Different terms defined for RCM constraints formulation in

Subsection 2.2 are depicted here.

surgical tip. Based on these two points, the parametric linear equation coincident to the surgical tip can
be written as

l(κ) =
−→
P m−1 + κ(

−→
P m −

−→
P m−1), (6)

where dependencies are dropped for simplicity of notation. κ is the parameter used to trace the line in
the n-dimensional task space. The portion of line corresponding to 0 < κ < 1 overlaps with the surgical
tip.

Let
−→
P rcm be the position vector of the RCM point at the location of incesion. The perpendicular

distance between the surgical tip and the RCM point is given by

d⊥(θ,
−→
P rcm) =

√

∣

∣Pm−1Prcm

∣

∣

2

2
−

(

Pm−1Prcm ·
Pm−1Pm

||Pm−1Pm||2

)2

, (7)

where Pm−1Prcm =
−→
P rcm −

−→
P m−1 and Pm−1Pm =

−→
P m −

−→
P m−1, and the symbol · denotes the dot

product of two position vectors. The proof of (7) follows the Pythagorean theorem. Let
−→
P ′rcm denote

the point on the line l(κ) closest to the RCM point (i.e., d⊥(θ,
−→
P rcm) = |P ′rcmPrcm|

2
2).

To enforce the RCM constraints, we must perform two tasks. First, we minimize the distance between

the surgical tip and the RCM point. Second, we ensure that the point
−→
P ′rcm lies on the surgical tip. For

the first task, we formulate the following optimization problem:

min
θ(t)

grcm(θ(t),
−→
P rcm), (8)

where grcm(·) is the penalty term for RCM constraints defined as

grcm(θ,
−→
P rcm) =

[

d⊥(θ,
−→
P rcm)

]2
, (9)

where (·)2 is used to avoid the square-root operation because the distance d⊥ > 0 is always set. This
penalty term ensures that the line l(κ) and the RCM point are incident. To achieve the second task (i.e.,

keeping
−→
P ′rcm on the surgical tip), we must constrain the value of κ in (6) in the range of [0, 1] as shown

in Figure 2. The figure shows that when κ = 0, the surgical tip is entirely inside the body of the patient,
and when κ = 1, it is outside the patient. To keep the surgical tip partially inside the patient, we require

κ > 0 and κ < 1. (10)

The value of κ also follows from the Pythagorean theorem:

κ =

(

Pm−1Prcm ·
Pm−1Pm

|Pm−1Pm|2

)2/(

|Pm−1Pm|22

)

. (11)
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Combining (8) and (10), we formulate a general constrained optimization problem:

min
θ(t)

grcm(θ(t),
−→
P rcm) s.t. κ > 0, κ < 1. (12)

It is worth noting that κ is also a function of joint angles θ.

2.3 Joint-angle constraints

Another important constraint on the motion of the robotic arm is the joint-angle limitation. The joints
of the robotic arm are only capable of rotating inside a mechanically allowed limit, depending on the
mechanical geometry of its link and the type of actuators. To satisfy the joint-angle constraints, the
joint-space trajectory must satisfy the following relation:

θ
− < θ(t) < θ

+, (13)

where θ− ∈ R
m and θ+ ∈ R

m denote the lower and upper limits on the joint angles, respectively.

2.4 Unified optimization problem

Until now, we mathematically formulated three components of the problems of tracking control (4), RCM
constraints (12), and joint-angle limits (13). Next, we unify them into a single constrained optimization
problem as follows:

min
θ(t)

gtr(xr(t), θ(t)) + Λgrcm(θ(t),
−→
P rcm) (14)

s.t. θ
− < θ(t) < θ

+, κ > 0, κ < 1,

where Λ is a constant parameter that controls the priority between tracking the target point and satisfying
the RCM constraints. The effect of Λ on the performance of the surgical robotic arm is presented in detail
in Section 4.

To simplify the notation in Section 3, we define a combined objective function g(·) as

g(
−→
P rcm,xr, θ) = gtr(xr, θ) + Λgrcm(θ,

−→
P rcm). (15)

Based on the above, the optimization problem can be written in complete form as

min
θ(t)

||xr(t)− f(θ(t))||22 + Λ

(

∣

∣Pm−1Prcm

∣

∣

2

2
−

(

Pm−1Prcm ·
Pm−1Pm

||Pm−1Pm||2

)2
)

(16)

s.t. θ− < θ(t) < θ
+, κ > 0, κ < 1.

The solution to this problem is the required joint-space trajectory θr(t).

3 Control design

In this section, the formulation of the BAORNN algorithm is presented with the corresponding RNN
architecture. The formulated algorithm numerically solves the optimization problem (16).

3.1 BAORNN algorithm

After the formulation of the optimization problem in Section 2, we now propose the BAORNN algo-
rithm to calculate the solution numerically in real-time. The BAORNN algorithm is based on BAO
algorithm [60], a metaheuristic optimization algorithm inspired by the food-foraging behavior of a beetle.
A beetle uses its olfactory sense of its antennae to find its way toward food in a previously unknown
environment. At each step, the beetle senses the magnitude of smell at both antennae’s locations and
uses the differences of magnitude to estimate an optimal direction toward the food source. This use of
olfactory senses prior to actually taking a step inspired us to introduce the concept of “virtual robots”,
analogous to the olfactory sense of antennae, into the BAORNN algorithm.
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Suppose that, at time-step k, the joint angles of the robotic arm are θk. We generate a normally
distributed normalized random direction vector, ~b ∈ R

m, |~b|22 = 1. The random vector is analogous to an
antenna of the beetle. As both antennae are located on opposite sides of the beetle’s head, the location
of their endpoints are

θkL = θk + λk
~b, θkR = θk − λk

~b, (17)

where λk represents the antenna length, θkL and θkR are the locations of antennae at time-step k. How-
ever, these vectors may not satisfy the joint-angle limits and RCM constraints given in the optimization
problem (16). Thus, we define a projection function:

Ω
θkX = PΩ(θkX), (18)

where PΩ(·) denotes the projection function, ΩθkX is the projection of θkX on the constrained set
Ω = {θ ∈ R

m|θ− < θ < θ+ ∧ κ ∈ [0, 1]}, and X ∈ {L,R}. We define the projection function as follows:

PΩ(θ) =

{

max{θ−,min{θ, θ+}}, if κ ∈ [0, 1],

θk, otherwise,
(19)

where κ is the same as that defined in (6). The objective function in (15) is evaluated at projected
antennae’s locations ΩθkX using virtual robots (i.e., calculated using the mathematical model instead of
actually moving the robotic arm):

vgkX = g(
−→
P rcm,xr(t),

Ω
θkX), (20)

where vgkX (X ∈ {L,R}) denotes the value of the objective function at both antennae’s locations. The
superscript v denotes that the value is calculated using virtual robots.

The following update rule uses the calculated values vgkX at both antennae’s locations to take the next
step inside the joint space toward a direction where the value of the objective function is decreasing:

Ω
θ
′
k+1 = PΩ(θk − δk(λk)sign(

vgkL − vgkR)~b), (21)

where Ωθ′k+1 is the updated location projected on Ω. δk(λk) denotes the actual Euclidean step size. Note
that the step size depends on the antenna length λk. The dependency is discussed later. The objective
function is then evaluated at updated location Ωθ′k+1, again using the virtual robot:

vg′k+1 = g(
−→
P rcm,xr(t),

Ω
θ
′
k+1). (22)

The value vg′k+1 is then compared to the value gk from the previous time step. If the value is improved

(i.e., the new value g′k+1 is smaller), the robotic arm changes angles to Ω
θ
′
k+1. Otherwise, it remains at

its current position. Mathematically, this can be written as

θk+1 =

{

Ωθ′k+1, if vg′k+1 < gk,

θk, if vg′k+1 > gk.
(23)

Similarly, we assign the value to gk+1 for use in the next iteration in (23),

gk+1 =

{

vg′k+1, if vg′k+1 < gk,

gk, if vg′k+1 > gk.
(24)

After changing the joint angles to θk+1, the iterative procedure is repeated for next time steps. Algo-
rithm 1 systematically lists the steps of the BAORNN algorithm.

The choice of the hyper-parameters λk and δk(λk) where k denotes the time step, effects the speed
of convergence. By empirical analysis, we find that the following rules for selection of hyper-parameters
provide a reasonable convergence rate:

λk =
√

g′k, δk(λk) = λk.
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Algorithm 1 BAORNN algorithm: tracking control & obstacle avoidance

Require: f(·): kinematic model of robotic arm. xr(t) ∈ R
n: the reference trajectory of surgical tip.

−→
P rcm: position vector of

RCM point. Λ: parameter defined in (14).

1: θ0 ← initial joint coordinates.

2: k← 0.

3: kstop ← maximum number of time-steps allowed.

4: while k < kstop do

5: Generate a normally distributed normalized random direction vector ~b ∈ R
m.

6: Use (17) to calculate the locations of antennae.

7: Use (19) to project the locations of these antennae on the constrained set Ω = {θ ∈ R
m|θ− < θ < θ

+ ∧ κ ∈ [0, 1]}.

8: Use (20) to evaluate the values of objective function using virtual robots as defined in (20).

9: Use (21) to compute the updated location in joint space.

10: Use (23) to check whether the updated location results cause any improvement.

11: Move the joint of robotic arm to θk+1 and update the value of gk+1 using (24).

12: k ← k + 1.

13: end while

14: return θr(t): an optimal trajectory in joint space.
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Figure 3 (Color online) Topology of the RNN of the proposed BAORNN algorithm. The diagram illustrates the working of the

algorithm formulated in Section 3.

Figure 3 shows the representation of the algorithm as an RNN. The RNN topology comprises two layers
with a temporal feedback connection between the output of the second layer and the input of the first
layer with an input delay. The network topology comprises a total of 3m+ 6 neurons, of which 3m are
projection neurons, shown as small circles. They represent the functionality of the projection function
PΩ(·) as their activation function. Similarly, a total of 3 neurons, shown as curved rectangular boxes,
represent the functionality of “virtual manipulator”, with f(·) being their activation function. These
blocks implement the forward kinematic model of the manipulator and are used to search the joint space
for the optimal trajectory without actually moving the manipulator’s joints. These blocks take joint
angles as input and output the task-space coordinates of the manipulator’s links. Additionally, 3 more
neurons, shown as curved boxes (filled in cyan), represent the objective function g(·) as their activation
function. The “random” block depicts a random-number generator and provides the normally distributed
normalized direction vector ~b for the algorithm. The diagram also contains an “if-condition” block to
implement the functionality of (23) and (24).

3.2 Computational complexity

Next, the computational complexity of the BAORNN algorithm is estimated. The generation of an
m-dimensional random vector ~b which is the first step of the proposed algorithm, requires α1m floating-
point operations, where α1 represents the number of operations required to generate a single floating-
point random number. Note that m is the number of joints in the manipulator. The second step given
in (17) requires a total of 2m additions and 2m multiplications (i.e., 4m floating-point operations). The
third step given in (18) requires the calculation of κ twice along with 4m comparisons. Suppose the
number of floating-point operations required to calculate κ is α2. Its value can then be determined
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from (11). Therefore, the total number of operations in this step is 2α2 + 4m. The fourth step is the
most computationally expensive step of the algorithm because it requires the calculation of the objective
function as given in (15). A careful analysis of (15) reveals that the number of floating-point operations
required for its evaluation is linearly proportional to the number of joints in the manipulator m. This
is approximately equal to 8m. Because objective function is evaluated twice during the fourth step, it
gives us a total of 16m floating-point operations. The fifth step given in (21) requires a total of α2 + 4m
floating-point operations. The sixth step again requires the calculation of the objective function (i.e.,
8m additional floating-point operations). The last step as given in (23) and (24), just requires two
comparisons. After adding the floating-point operations required in each step, the final count becomes
(α1m+ 4m+ 2α2 + 4m+ 16m+ α2 + 4m+ 8m+ 2) = (α1 + 36)m+ 3α2 + 2.

The above analysis shows that, in general, the algorithm has a complexity of O(m) (i.e., linear in
terms of the number of joints of the manipulator). For m = 7 (i.e., for the case if IIWA14 manipulator),
the number of floating-point operations required is in the order of hundreds. Even low-end embedded
processors are capable of performing such computations in a few microseconds.

3.3 Theoritical analysis

Theorem 1. For the tracking control of a redundant robotic arm under RCM constraints, starting from
an initial angle θ0, the joint-space trajectory θr(t), generated by BAORNN algorithm, is stable. That is,

gk+1 6 gk, ∀k > 0, (25)

and the values of objective function are monotonically decreasing.

Proof. See Lemma 1 of [61].

Theorem 2. For the tracking control of a redundant robotic arm under RCM constraints, starting from
an initial angle θ0, the end-effector trajectory f(θr(t)) is convergent to the reference trajectory xr(t).
That is,

f(θ(t)) → xr(t), as t → ∞. (26)

Proof. See Theorem 1 of [61].

4 Simulation results and discussion

In this section, we present the simulation methodology used to test the performance of the BAORNN
algorithm for implementing RCM constraints. A KUKA LBR IIWA14 robotic arm is used as the test-
bench. A three-dimensional model of the robotic arm with a surgical tip attached to the end effector is
shown in Figure 4.

4.1 Simulation methodology

An accurate computational model of the IIWA14 is provided by the MATLAB Robotic System Tool-
box [69]. The computational model is a realistic testbench used to verify the accuracy of an algorithm
without using a hardware platform. To test the tracking performance of the BAORNN algorithm, we
define two reference trajectories (i.e., circular and linear reference) inside the patient’s body to simulate
the commands provided by a surgeon. These two reference trajectories depict the most common tasks
performed by a surgeon during surgery. The RCM point is also specified on the patient’s body in the
region of the incision. The simulation setup is shown in Figure 5.

A linear reference trajectory is defined using the following equation:

x
Line
r (t) =

−→
L 1 +

t

T

(−→
L 2 −

−→
L 1

)

,

where
−→
L1 and

−→
L2 denote the position vectors to the endpoint of the linear trajectory for t ∈ [0 T ].

Similarly, the following equation is used to define the circular reference trajectory inside the patient’s
body:

x
circle
r (t) =

−→
C + r cos(2πt/T )

−→
A + r sin(2πt/T )

−→
B, (27)
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Figure 5 (Color online) Illustration of the simulation methodology. A circular reference trajectory (red circle) is shown, which is

used to simulate the surgeon’s commands. The point of the incision (blue circle) is also shown. The RCM point lies at the center

of the incision.

where
−→
C denotes the center of the circular trajectory, whereas

−→
A and

−→
B are two orthogonal unit vectors

(i.e., |
−→
A|2 = 1, |

−→
B |2 = 1 and

−→
A ·

−→
B = 0), which define the plane of circular trajectory. r is the radius

of the circular trajectory, and T denotes its time-period. The endpoints of the linear trajectory
−→
L 1 and

−→
L 2 are chosen such that it lies below the RCM point inside the patient’s body. Similar considerations

are made for choosing the value of the center
−→
C , radius r,

−→
A, and

−→
B .

To systematically analyze the performance of the proposed algorithm, the first set of experiments
are conducted without considering the RCM constraints (i.e., setting Λ = 0 in (14)) for both reference
trajectories. The second set of simulation results are compiled by setting a higher value for Λ. The Λ
controls the weight of the RCM penalty term in the objective function. A higher value of Λ would ensure
that the RCM constraint remains strict, but tracking performance could be degraded. The value of Λ
must therefore be tuned to maintain a reasonable trade-off between tracking performance and compliance
with RCM constraints. In the following discussion, the value of Λ is chosen after extensively analyzing
the results of several simulations. The impact of Λ on the performance of the proposed algorithm is
discussed.
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Figure 6 (Color online) Performance of the circular reference trajectory for the value of Λ = 0 (i.e., RCM constraints not

enforced). It can be seen that the surgical tip goes beyond the incision region.

4.2 Trajectory tracking results

As discussed in Subsection 4.1, we first perform simulations without considering the RCM constraints.
Figure 6 shows the results of the circular trajectory, and Figure 7 shows the results of the linear trajectory.
The next set of experiments involves setting a high value of Λ (i.e., increasing the impact of RCM penalty
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Figure 7 (Color online) Performance of the linear reference trajectory for the value of Λ = 0.

term). Figure 8 shows the results of the circular trajectory, and Figure 9 shows the results of the linear
trajectory with different values of Λ.

First, we consider the results for circular trajectories. It can be seen in Figure 6(a) that, although
the end of the surgical tip accurately tracks the reference trajectory, it moves outside the incision region.
This is because, in this case, we set Λ = 0, which implies that the optimization problem (14) ignores the
RCM penalty term. This effect can be clearly seen in Figure 6(e), where red region indicates that the
distance between surgical tip and the RCM point is greater than the incision region. Because a large
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Figure 8 (Color online) Performance of the circular reference trajectory for the value of Λ = 2.5 (i.e., RCM constraints enforced,

as defined in (14)). In this case, both (a) and (e) show that the RCM constraints are respected.

part of the surgical tip trajectory lies in the red region, it indicates bad performance that can potentially
injure the patient. Figures 6(b) and (c) show the profiles of the joint- and task-space trajectories of
the robotic arm. Figure 6(d) shows the tracking error. It can be seen that the reference tracking error
shows a very unsmooth profile. Such behavior can be explained in terms of the stochastic nature of the
metaheuristic optimization algorithm. Such an unsmooth response is typical of metaheuristic algorithms.
We then perform the experiments for the circular reference trajectory using Λ = 2.5 (i.e., higher weight
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Figure 9 (Color online) Performance of the linear reference trajectory for the value of Λ = 3.

to the RCM penalty term in (14)). It can be seen in Figure 8(a) that, in this case, the surgical tip
remains inside the region of the incision (blue circle) closer to the RCM point while tracking the reference
trajectory. Such a response is desirable for a surgical robot, because it does not cause any harm to the
patient. Similar results can be drawn from Figure 8(e), which shows that the entire profile for d⊥ lies
inside the green region. It is worth noting that the tracking performance is comparable in both cases,
as shown in Figures 6(d) and 8(d), respectively. However, compliance with RCM constraints is clearly
superior with Λ = 2.5, as depicted in Figures 6(e) and 8(e).
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Figure 10 (Color online) Simulation results for (a) circular reference trajectory with Λ = 2.5 and (b) linear reference trajectory

with Λ = 3.

From the results of the linear reference trajectory shown in Figures 7 and 9, similar results can be
drawn. Figures 7(a) and (e) show that the surgical tip violates the boundary of the incision region with
Λ = 0. Figures 9(a) and (e) show that the surgical tip complies with the RCM constraints. Similar to the
circular trajectory, the tracking error shows comparable results, even in this case, as shown in Figures 7(d)
and (e). To visualize the working of the surgical robot using the BAORNN algorithm, we compile a few
images of the simulated model as shown in Figure 10. Figure 10(a) shows the performance for the circular
trajectory with Λ = 2.5 (i.e., corresponding to Figure 8). Figure 10(b) shows the performance for the
linear trajectory with Λ = 3 (i.e., corresponding to Figure 9).

5 Conclusion and future work

In this paper, we proposed a framework for the tracking control of surgical robots while satisfying RCM
constraints. We first presented a formulation of a constrained optimization problem using the penalty-
term approach, which unified the tracking control and RCM constraints. The optimization problem
performed two tasks: minimize the distance between the surgical tip and target point; and minimize
the perpendicular distance between the surgical tip and the RCM point. This formulation boosted the
performance of the optimizer by actively rewarding the joint-space configuration, satisfying the RCM
constraints. To get a numerical solution of the optimization problem in real time, we proposed an RNN-
based metaheuristic optimizer BAORNN. The theoretical analysis of the stability and convergence of
the proposed algorithm was then presented. Extensive simulation results using a realistic computational
model of IIWA14, a 7-DOF robotic arm, demonstrated that the proposed algorithm could track the
reference trajectory while accurately satisfying the RCM constraints.

Potential future work should build upon the contribution of the current paper by adding other op-
timization objectives apart from the RCM constraints. For example, the collision avoidance constraint
should be considered. Although the proposed controller satisfied the RCM constraints, ensuring the safety
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of the patient under normal situations is key. Unfortunately, it did not actively try to avoid collisions of
the manipulator with the patient and the environment. Therefore, if the patient attempted to move or
some other moving object appeared in the surroundings of the manipulator, it would pose a safety risk
upon collision. Additionally, the current work assumes a constant weight Λ of the RCM penalty term in
the formulation of the objective function. It currently relies on a human to tune this parameter. It would
be beneficial to investigate an adaptive mechanism to adjust the value of Λ automatically. Another po-
tential direction is found in the consideration of a flexible manipulator as the end-effector of the surgical
manipulator. Flexible robots are gaining popularity because of their inherent compliance. Using them as
end-effectors will enhance the safety of several surgical tasks, including endoscopy.
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