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Abstract In this paper, based on deterministic learning, we propose a method for rapid recognition of dy-

namical patterns consisting of sampling sequences. First, for the sequences yielded by sampling a periodic or

recurrent trajectory (a dynamical pattern) generated from a nonlinear dynamical system, a sampled-data de-

terministic learning algorithm is employed for modeling/identification of inherent system dynamics. Second,

a definition is formulated to characterize similarities between sampling sequences (dynamical patterns) based

on differences in the system dynamics. Third, by constructing a set of discrete-time dynamical estimators

based on the learned knowledge, similarities between the test and training patterns are measured by using

the average L1 norms of synchronization errors, and general conditions for accurate and rapid recognition

of dynamical patterns are given in a sampled-data framework. Finally, numerical examples are discussed

to illustrate the effectiveness of the proposed method. We demonstrate that not only a test pattern can be

rapidly recognized corresponding to a similar training pattern, but also the proposed recognition conditions

can be verified step by step based on historical sampling data. This makes a distinction compared with the

previous work on rapid dynamical pattern recognition for continuous-time nonlinear systems, in which the

recognition conditions are difficult to be verified by using continuous-time signals.
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1 Introduction

Temporal/dynamical pattern recognition is an important and challenging issue that has attracted great
attention in various areas, such as aerospace, biology, biomedicine, and control engineering [1–6]. Con-
sidering that the information of temporal patterns is embedded in time, recognition of temporal patterns
differs from that of static patterns. In research and practical applications, temporal patterns are often
measured by using sensors and are represented in a form of sampling sequences (a category of temporal
sequences). Therefore, it is of great importance to investigate the problem of modeling and recognition
of temporal/dynamical patterns represented by sampling sequences (temporal sequences) [7, 8].

There are many methods proposed for modeling and recognition of temporal sequences, for example,
hidden Markov models (HMMs) and recurrent neural networks (RNNs) [9–18]. HMMs can be used to
model temporal sequences as a series of hidden states with a probabilistic dependency [9]. This approach
has been applied to speech and video recognition tasks [10–12]; however, the applicability of HMMs is
limited to relatively simple and stationary temporal sequences due to the time-invariant nature of these
models [12]. In contrast, RNNs can be considered as an alternative powerful approach for processing
temporal sequences [13–22]. They have been shown capable of emulating the evolution of temporal
sequences by simulating discrete-time dynamical systems [14–16]. So far, RNNs and their variants have
been successfully applied to various sequence recognition tasks such as speech recognition and natural
language processing [16–22]. This has been possible not only owing to the application of advanced unit
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architectures, such as long short-term memory (LSTM) [23], and gated recurrent unit (GRU) [17], to
address the problems of vanishing and exploding gradient arising in early RNNs [24], but also to the
construction of deep network architectures, such as stacked RNNs [18], deep transition RNNs [14], and
convolutional RNNs [25], to enable hierarchical processing of temporal sequences. However, despite the
growing use of RNNs, theoretical development of such networks is not fully investigated [26], especially
concerning a theoretical problem of whether the true system dynamics within temporal sequences can be
accurately modeled/identified.

Recently, a deterministic learning approach has been proposed for accurate identification and rapid
recognition of dynamical patterns [27–30], in which they are defined as periodic or recurrent trajectories
generated from continuous-time nonlinear dynamical systems and thus belong to a specific class of tem-
poral patterns. Through deterministic learning, unknown system dynamics within dynamical patterns
can be accurately modeled in local regions along periodic or recurrent trajectories [27]. A similarity
definition for dynamical patterns was given based on differences in their system dynamics, and a mech-
anism for rapid recognition of a test dynamical pattern from a set of training dynamical patterns has
been proposed [30]. Specifically, according to this method, training patterns are firstly trained through
deterministic learning, and then, the learned knowledge is reused to construct a set of estimators to
represent these training patterns. When a test dynamical pattern is presented to estimators, a set of
state synchronization errors (recognition errors) can be generated. Rapid recognition of test dynamical
patterns can be achieved according to the principle of the smallest synchronization error. The deter-
ministic learning approach for identification and recognition of dynamical patterns has been applied to
enable modeling and rapid detection of small oscillation faults yielded from several classes of nonlinear
dynamical systems [31–36].

It should be noted that the aforementioned results on dynamical pattern recognition have been achieved
based on the frameworks of continuous-time nonlinear systems. In this paper, based on deterministic
learning, we further propose a method for rapid recognition of dynamical patterns consisting of sampling
sequences. First, for the sampling sequences yielded by sampling a periodic or recurrent trajectory (a
dynamical pattern) generated from a nonlinear dynamical system, a sampled-data deterministic learning
algorithm [37, 38] can be employed to perform accurate modeling/identification of the inherent system
dynamics. Second, a definition to characterize similarities between sampling sequences (dynamical pat-
terns) is formulated based on differences in system dynamics. The proposed definition implies that the
sampling period needs to be small enough. Third, by constructing a set of discrete-time dynamical esti-
mators based on the learned knowledge for a set of training patterns, similarities between the test and
training patterns can be evaluated through considering average L1 norms of synchronization errors. Par-
ticularly, by analyzing recognition error systems, general conditions for accurate and rapid recognition of
dynamical patterns in sampling sequences are proposed in a sampled-data framework.

In contrast with the previous studies on rapid dynamical pattern recognition for continuous-time non-
linear systems [30,31], the present study makes a distinction in that the proposed recognition conditions
can be verified step by step based on the historical sampling data in the sampled-data framework. How-
ever, concerning the continuous-time dynamical pattern recognition [30,31], general recognition conditions
are difficult to be verified by using continuous-time signals. Even in the case when misrecognition occurs,
the situation is difficult to analyze due to the lack of condition verification. Furthermore, compared with
the previously obtained results on modeling/recognition with regard to temporal sequences using HMMs
and RNNs [9–18], the proposed approach has the following features: (1) true inherent system dynamics
in dynamical patterns can be modeled/identified accurately; (2) rapid recognition can be achieved based
on analyzing differences in system dynamics of corresponding dynamical patterns.

The remainder of the paper is organized as follows. The research problem is formulated in Section 2. In
Section 3, the modeling phase and the similarity of dynamical patterns consisting of sampling sequences
are presented. The proposed rapid dynamical pattern recognition method is described in Section 4. The
results of numerical simulations conducted on the nonlinear oscillation systems are discussed in Section 5.
Finally, a conclusion is drawn in Section 6.

Notation. R and N denotes the set of real numbers and the set of natural numbers, respectively; for
any x ∈ R, |x| denotes its absolute value; Rn denotes the set of n×1 real column vectors; for any x ∈ R

n,
xT, ‖x‖ and ‖x‖A1 denote its transpose, Euclidean norm, and average L1 norm, respectively; for any
t1, t2 ∈ N, [t1, t2] denotes an integer set {t1, t1 + 1, . . . , t2 − 1, t2}.
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2 Problem formulation

Consider a general nonlinear dynamical system:

Ẋ = F (X ; ps), X(0) = X0, (1)

where X = [x1, . . . , xn]
T ∈ R

n denotes the state vector, F (X ; ps) = [f1(X ; ps), . . . , fn(X ; ps)]T represents
the system dynamics, in which each fi(X ; ps) is a smooth and unknown continuous nonlinear function, ps

is a vector of system parameters, Φ(X0; p
s) denotes the state trajectory started with the initial condition

X(0) = X0. Different recurrent trajectories1) generated from the above dynamical system (1) with
different parameters are referred to as different dynamical patterns [30].

The sampling sequences yielded by sampling the trajectories (dynamical patterns) are represented as
φs
T,N (X0; p

s) := {X(0), X(T ), . . . , X((N − 1)T )} (or φs for conciseness of presentation) with T being the
sampling period and N being the total number of steps.

The Euler sampled-data model of system (1) can be expressed as

X [k + 1] = X [k] + TF (X [k]; ps) + ε(k;T ), X [0] = X0, (2)

where X [k] := [x1[k], . . . , xn[k]]
T ∈ R

n denotes the state vector of the Euler sampled-data model with
X [k] = X(kT ), and ε(k;T ) denotes the modeling error of the Euler sampled-data model. The modeling
error ε(k;T ) can be very small by choosing a small enough T . Thus, we have the following assumption
regarding the sampling period.

Assumption 1. The sampling period T is a small enough positive constant.
Under Assumption 1, the sampling sequences φs can be approximately described by the Euler approx-

imation model:
X [k + 1] = X [k] + TF (X [k]; ps), X [0] = X0, (3)

where X [k] := [x1[k], . . . , xn[k]]
T ∈ R

n denotes the state vector of the Euler approximation model with
X [k] = X(kT ).

The proposed rapid dynamical pattern recognition method contains two phases, the modeling phase
and the recognition phase.

•Modeling phase. Consider the training set P := {φ1, φ2, . . . , φM}, which containsM different training
patterns, where each training pattern φs (s = 1, . . . ,M) has different system parameters ps2). The aim
of the modeling phase is to model/learn the inherent system dynamics F (X ; ps) of training patterns φs

and store the learned knowledge for further use.
• Recognition phase. Consider the test pattern yielded by sampling the recurrent trajectory generated

from the following dynamical system:

Ẋ = F (X ; pr), X(0) = X0, (4)

where the vector of system parameters pr is different from all ps in training patterns φs, s ∈ {1, . . . ,M}.
The test pattern is represented by sampling sequences φr

T,N (X0; p
r) := {X(0), X(T ), . . . , X((N − 1)T )}

(or φr for conciseness of presentation). It can also be described by the Euler approximation model (3)
with different system dynamics F (X [k]; pr).

The aim of the recognition phase is to search rapidly from the training patterns φs (s = 1, . . . ,M) for
those similar to the test pattern φr based on the inherent system dynamics of the corresponding patterns
in the sampled-data framework.

3 Modeling and similarity of dynamical patterns consisting of sampling se-
quences

In this section, a sampled-data deterministic learning algorithm [38] is firstly presented for modeling
of dynamical patterns consisting of sampling sequences. Some important steps about the sampled-data
deterministic learning algorithmwill be introduced for the completeness of presentation. Next, a similarity
definition for sampling sequences (dynamical patterns) will be formulated.

1) Recurrent trajectories are the most important types (though not all types) of trajectories generated from nonlinear dynamical

systems, which include periodic, quasi-periodic and even chaotic trajectories (see [28, 39] for a rigorous definition of the recurrent

trajectory).

2) As shown in literature on nonlinear systems, different ps, and sometimes different X0, can generate different state trajectories.
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3.1 Modeling dynamical patterns consisting of sampling sequences

Consider all training patterns φs (s = 1, . . . ,M) in the training set P . Each training pattern φs can be
described by the Euler approximation model (3) with a different dynamical function vector F (X [k]; ps).
For each training pattern φs, the following RBFN (radial basis function network)-based identifiers are
used to model the unknown dynamical function fi(·; p

s):

x̂s
i [k + 1] = xi[k] + αi(x̂

s
i [k]− xi[k]) + TŴ sT

i [k]S[X [k]], i ∈ {1, . . . , n}, (5)

where x̂s
i is the state of identifiers, X [k] = [x1[k], . . . , xn[k]] denotes the state of the sampling se-

quence, 0 < αi < 1 is the gain of identifiers, Ŵ s
i denotes the weights of the RBFNs, and S(X [k]) =

[s1(‖X [k] − ξ1‖), . . . , sn(‖X [k] − ξm‖)]T is the regressor vector of RBFNs, in which sj(‖X [k] − ξj‖) =

e
−(X[k]−ξj)

T(X[k]−ξj)

η2 , j ∈ {1, . . . ,m} is a radial basis function with ξj ∈ Ξ being neurons constructed on a
regular lattice in the input space, m being the number of neurons and η being the width of the receptive
field.

The NN (neural network) weight update law is given by

Ŵ s
i [k + 1] = Ŵ s

i (k)− TγS(X [k])ei(k + 1), i ∈ {1, . . . , n}, (6)

where γ is the learning gain of the update law, and ei[k] := x̂i[k]− xi[k] denotes the tracking errors.
By using the above identifiers (5) and weight update law (6), it is rigorously proven in [38] that the

system dynamics of sampling sequences can be locally-accurately modeled and stored in constant RBFNs.

Lemma 1 ( [38]). Consider the sampling sequence φs sampled from the dynamical system (1) with
constant sampling period T , dynamical RBFN identifiers (5), and NN weights update laws (6), where
Ŵ s

i (0) = 0, ∀i ∈ {1, . . . , n}. By choosing appropriate parameters αi and γ, locally-accurate approxima-
tion for the unknown dynamics fi(·; p

s) of system (1) along the sampling sequence φs is obtained by the
time-invariant RBFNs W̄ sT

i S(X [k]), where

W̄ s
i :=

1

kb − ka + 1

kb
∑

k=ka

Ŵ s
i [k], i ∈ {1, . . . , n} (7)

with [ka, kb] denoting a time interval after the transient process.

Remark 1. The input trajectories of RBFNs are assumed to be period or recurrent trajectories in
this paper. The neuron centers of RBFNs should be placed on a regular lattice to cover the compact
set of recurrent input trajectories. It is shown in [27, 28, 38] that the corresponding regressor vector is
persistently exciting, provided that the input variables to the RBFNs belong to certain neighborhoods
of the neuron centers. This PE (persistence of excitation) condition leads to exponential stability of the
identification error system along the recurrent system trajectory. Consequently, the estimated parameters
(i.e., the weights of RBFNs) converge to their true values exponentially. Further, the inherent dynamics
of sampling sequences can be locally-accurately modeled by the RBFNs. More detail analytical results
of the sampled-data deterministic learning algorithm are reported in [38].

Based on the above deterministic learning algorithm, the inherent dynamics F (X ; ps) within training
patterns can be modeled/identified from the sampling sequences φs. The learned knowledge is stored in
constant RBFNs and will be effectively reused in the following recognition phase.

3.2 Similarity of dynamical patterns consisting of sampling sequences

The following definition is formulated to characterize the similarity between a test pattern φr and a
training pattern φs.

Definition 1. Consider a test dynamical pattern φr and a training dynamical pattern φs yielded by
sampling the state trajectories generated from the systems (4) and (1), respectively. The test pattern φr

is said to be similar to the training pattern φs, when the trajectory of φr stays within a neighborhood
region of φs, and the differences in dynamics are small along the trajectory of φr, i.e.,

max
X[k]∈φr

|fi(X [k]; pr)− fi(X [k]; ps)| < ǫ∗i , ∀k > k0, i ∈ {1, . . . , n}, (8)
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where ǫ∗i > 0 denotes the similarity measure between the two dynamical patterns consisting of sampling
sequences.

Different from the similarity for the continuous-time system [30], the definition proposed herein requires
that the sampling period be small; otherwise, the differences in dynamics along the entire state trajectory
cannot be effectively represented because of the large gap between neighboring sampling points.

In the modeling phase (Subsection 3.1), the inherent system dynamics within training patterns (fi(X [k];
ps)) can be modeled and approximated by time-invariant RBFNs W̄ sT

i S(X [k]) in a local region along the
state trajectory of sampling sequences. The local region Ωφs (or called the approximation region) can be
expressed as follows [30]:

Ωφs = {X | dist(X,φs) < ds ⇒ |W̄ sT
i S(X)− fi(X ; ps)| < ς∗i , i ∈ {1, . . . , n}}, (9)

where dist(X,φs) denotes the smallest Euclidean distance from a fixed point X to a given trajectory of φs

(i.e., dist(X,φs) = minZ∈φs ‖X−Z‖), ds > 0 and ς∗i > 0 are constants, and ς∗i denotes the approximation
error within Ωφs .

It implies that the system dynamics fi(X ; ps) of the training pattern φs along the trajectory of the test
pattern φr can be represented by the well-trained RBFNs W̄ sT

i S(X) with a small RBFN approximation
error less than ς∗i , if the trajectory of φr stays within the approximation region of the trajectory of φs.
Based on this, Definition 1 can be rewritten as follows.

Definition 2. Consider the test dynamical pattern φr and the training dynamical pattern φs yielded by
sampling the state trajectories generated from the system (4) and (1), respectively. The test pattern φr

is said to be similar to the training pattern φs, when the trajectory of φr stays within the approximation
region Ωφs (given in (9)) of φs, and the differences in dynamics are small along the trajectory of φr, i.e.,

max
X[k]∈φr

|fi(X [k]; pr)− W̄ sT
i S(X [k])| < ǫ∗i + ς∗i , ∀k > k0, i ∈ {1, . . . , n}, (10)

where ǫ∗i and ς∗i are defined by (8) and (9), respectively.
In Section 4, a discrete-time state synchronization technique is introduced to further deal with the

comparison of dynamics between test and training patterns.

4 Dynamical pattern recognition and performance analysis

Consider all well-trained weights of RBFNs W̄ s
i , i ∈ {1, . . . , n}, s ∈ {1, . . . ,M} for all training pat-

terns. The following discrete-time dynamical estimators are constructed for all training pattern ϕs,
s ∈ {1, . . . ,M} in the training set P :

x̄s
i [k + 1] = ui[k] + bi(x̄

s
i [k]− ui[k]) + TW̄ sT

i S(U [k]), i ∈ {1, . . . , n}, (11)

where x̄s
i denotes the state of the dynamical estimator for training pattern ϕs, U [k] = [u1[k], . . . , un[k]]

T

denotes the input of the estimator, and 0 < bi < 1 is the gain of the estimator.
Consider the test pattern φr sampled from (4) with a constant sampling period T . As stated in

Section 2, the Euler approximation model can be used to represent the sampling sequence φr with a
small sampling period

xi[k + 1] = xi[k] + Tfi(X [k], pr), i ∈ {1, . . . , n}, (12)

where X [k] = [x1[k], . . . , xn[k]] denotes the state of the Euler approximation model.
The test pattern sequence φr is fed to all dynamical estimators (11) in parallel. Then the synchro-

nization error (or called recognition error) can be calculated by x̃s
i [k] := x̄s

i [k] − xi[k], ∀i = {1, . . . , n}.
Moreover, from (11) and (12), the synchronization error can be regarded as a state of the following
discrete-time dynamical system (called the recognition error system):

x̃s
i [k + 1] = bix̃

s
i [k] + T (W̄ sT

i S(X [k])− fi(X [k]; pr)), ∀s ∈ {1, . . . ,M}, (13)

where x̃s
i [k], ∀i ∈ {1, . . . , n} denotes the synchronization errors for the sth training pattern.

Note that the differences in dynamics W̄ sT
i S(X [k])−fi(X [k]; pr) appear in the right-hand side of (13).

It indicates that the similarity measure in Definition 2 will reflect in the synchronization error. As a
result, small differences in dynamics will lead to small synchronization errors.
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For improving the reliability of recognition, the following average L1 norm is used to facilitate the
recognition decision making:

‖x̃s
i [k]‖A1 :=

1

Te

k
∑

j=k−Te+1

|x̃s
i [j]|, ∀k > Te, (14)

where Te ∈ N is a pre-set positive number and denotes the range of the average L1 norm.
In the following, the theoretical analysis of the recognition process is presented.

Theorem 1. Consider the training set P = {φ1, φ2, . . . , φM}, the test pattern φr, and the synchroniza-
tion errors (13) generated from the discrete-time estimators (11). If the following conditions hold, then
the similar training pattern φs∗ can be rapidly recognized according to the smallest synchronization error
principle (i.e., ‖x̃s∗

i [k]‖A1 < ‖x̃s
i [k]‖A1 , ∀i ∈ {1, . . . , n}, s ∈ {1, . . . ,M} − {s∗}, k > Te).

(1) There exists a training pattern φs∗ , s∗ ∈ {1, . . . ,M} similar to the given test pattern φr; i.e., the
differences in the inherent system dynamics between the corresponding patterns satisfy

|W̄ s∗T
i S(X [k])− fi(X [k]; pr)| < ǫ∗i + ς∗i , ∀k > k0, i ∈ {1, . . . , n}. (15)

(2) For the other patterns φs, s ∈ {1, . . . ,M}− {s∗}, there exists a time interval Ik = [Tak, Tbk] ⊂ Lk,
s.t.

|W̄ sT
i S(X [j])− fi(X [j]; pr)| > ǫ∗i + ς∗i + µi, ∀j ∈ Ik, ∀i ∈ {1, . . . , n}, (16)

where µi > 0 denotes the similarity distinction, lk := Tbk − Tak + 1 denotes the length of the interval Ik
and Lk = [k − Te + 1, k] denotes the interval of average L1 norm.

(3) The length of the interval Ik satisfies

lk > logbi
1

4(ǫ∗i+ς∗i )

µi
+ 3

+
Te

1 + µi

2(ǫ∗i+ς∗i )

+ 1 := l. (17)

Proof. The complete proof can be divided into three steps. First, it is proven that when condition (1)
is satisfied, there exists an upper bound of the synchronization error’s average L1 norm of the similar

training pattern φs∗ (i.e., ‖x̃s∗

i [k]‖A1 <
T (ǫ∗i +ς∗i )

1−bi
, ∀k > Te). Second, it is proven that under condition (2),

there exists a lower bound of the synchronization error’s average L1 norm of the other training patterns

φs, s ∈ {1, . . . ,M} − {s∗} (i.e., ‖x̃s
i [k]‖A1 >

T (lk−l′)(ǫ∗i+ς∗i +
µi
2 )

Te(1−bi)
, ∀k > Te). Finally, with the satisfaction

of condition (3),
T (lk−l′)(ǫ∗i+ς∗i +

µi
2 )

Te(1−bi)
>

T (ǫ∗i+ς∗i )
1−bi

holds, which leads to ‖x̃s∗

i [k]‖A1 < ‖x̃s
i [k]‖A1 , ∀k > Te.

Step 1. Consider the synchronization error of the similar training pattern s∗:

x̃s∗

i [k + 1] = bix̃
s∗

i [k] + T (W̄ s∗T
i S(X [k])− fi(X [k]; pr)). (18)

The initial condition of the synchronization error is set to zero, which can be easily implemented by
choosing x̄i[k0] = xi[k0], since xi[k0] is available. Thus, the synchronization error (18) satisfies

x̃s∗

i [k] =

k−1
∑

j=k0

Tbk−1−j
i (W̄ s∗T

i S(X [j])− fi(X [j], pr)), ∀k > k0. (19)

From condition (1), we have |W̄ s∗T
i S(X [k])− fi(X [k]; pr)| < ǫ∗i + ς∗i . The absolute value of the synchro-

nization error (19) satisfies

|x̃s∗

i [k]| =

∣

∣

∣

∣

∣

∣

k−1
∑

j=k0

Tbk−1−j
i

(

W̄ s∗T
i S(X [j])− fi(X [j], pr)

)

∣

∣

∣

∣

∣

∣

6

k−1
∑

j=k0

Tbk−1−j
i

∣

∣

(

W̄ s∗T
i S(X [j])− fi(X [j], pr)

)∣

∣

< T

k−1
∑

j=k0

bk−1−j
i (ǫ∗i + ς∗i ) <

T (ǫ∗i + ς∗i )

1− bi
. (20)



Wu W M, et al. Sci China Inf Sci March 2021 Vol. 64 132201:7

Furthermore, by introducing the average L1 norm (14) in the synchronization error (19), we have

‖x̃s∗

i [k]‖A1 =
1

Te

k
∑

j=k−Te+1

|x̃s∗

i [j]| <
1

Te

k
∑

j=k−Te+1

T (ǫ∗i + ς∗i )

1− bi
=

T (ǫ∗i + ς∗i )

1− bi
, ∀k > Te. (21)

Step 2. Consider the synchronization error of the other patterns φs, s ∈ {1, . . . ,M} − {s∗}:

x̃s
i [k + 1] = bix̃

s
i [k] + T (W̄ sT

i S(X [k])− fi(X [k]; pr)). (22)

From condition (2), we have a time interval Ik = [Tak, Tbk] ⊂ Lk, s.t.

|W̄ sT
i S(X [j])− fi(X [j]; pr)| > ǫ∗i + ς∗i + µi, ∀j ∈ Ik, ∀i ∈ {1, . . . , n}. (23)

Thus, the average L1 norm of the synchronization error in (22) satisfies

‖x̃s
i [k]‖A1 =

1

Te

k
∑

j=k−Te+1

|x̃s
i [j]| >

1

Te

∑

j∈Ik

|x̃s
i [j]|, (24)

where the synchronization error in the interval Ik satisfies

x̃s
i [τ ] = bτ−Tak

i x̃s
i [Tak] +

τ−1
∑

j=Tak

Tbτ−1−j
i (W̄ sT

i S(X [j])− fi(X [j]; pr)), ∀τ ∈ Ik. (25)

Define an interval I ′
k = {k | |x̃s

i [k]| <
T (ǫ∗i +ς∗i +

µi
2 )

1−bi
} ⊂ Ik. Based on the interval I ′

k, synchronization error’s
analysis of (25) with three cases of different initial conditions x̃s

i [Tak] are listed as follows (See Appendix A
for the complete proof).

Case (i). If x̃s
i [Tak] ∈ I ′

k, then

|x̃s
i [τ ]|















<
T (ǫ∗i + ς∗i + µi

2 )

1− bi
, ∀τ ∈ [Tak, T

′
ak],

>
T (ǫ∗i + ς∗i + µi

2 )

1− bi
, ∀τ ∈ [T ′

ak + 1, Tbk],

(26)

where T ′
ak − Tak + 1 6 l′ = logbi

1
4(ǫ∗

i
+ς∗

i
)

µi
+3

+ 1.

Case (ii). If x̃s
i [Tak] /∈ I ′

k, and x̃s
i [Tak] has the same sign with W̄ sT

i S(X [Tak]) − fi(X [Tak]; p
r), then

|x̃s
i [τ ]| >

T (ǫ∗i+ς∗i +
µi
2 )

1−bi
, ∀τ ∈ Ik.

Case (iii). If x̃s
i [Tak] /∈ I ′

k, and x̃s
i [Tak] has the different sign with W̄ sT

i S(X [Tak])− fi(X [Tak]; p
r), then

|x̃s
i [τ ]|



































>
T (ǫ∗i + ς∗i + µi

2 )

1− bi
, ∀τ ∈ [Tak, T

′
ak − 1],

<
T (ǫ∗i + ς∗i + µi

2 )

1− bi
, ∀τ ∈ [T ′

ak, T
′
bk],

>
T (ǫ∗i + ς∗i + µi

2 )

1− bi
, ∀τ ∈ [T ′

bk + 1, Tbk],

(27)

where T ′
bk − T ′

ak + 1 = l′ = logbi
1

4(ǫ∗
i
+ς∗

i
)

µi
+3

+ 1.

Based on the above analysis, we can conclude that the largest length of the interval I ′
k is l′ =

logbi
1

4(ǫ∗
i
+ς∗

i
)

µi
+3

+ 1. Thus, from (24), we have

‖x̃s
i [k]‖A1 =

1

Te

k
∑

j=k−Te+1

|x̃s
i [j]| >

1

Te

∑

j∈I

|x̃s
i [j]|

=
1

Te





∑

j∈Ik−I′

k

|x̃s
i [j]|+

∑

j∈I′

k

|x̃s
i [j]|
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>
1

Te

∑

j∈Ik−I′

k

|x̃s
i [j]| >

1

Te

∑

j∈Ik−I′

k

T (ǫ∗i + ς∗i + µi

2 )

1− bi

=
T (lk − l′)(ǫ∗i + ς∗i + µi

2 )

Te(1 − bi)
. (28)

Step 3. Finally, if (17) holds with l′ = logbi
1

4(ǫ∗
i
+ς∗

i
)

µi
+3

+ 1, we have

lk − l′ >
Te

1 + µi

2(ǫ∗i +ς∗i )

=
Te(ǫ

∗
i + ς∗i )

ǫ∗i + ς∗i + µi

2

. (29)

By combining (28) with (29), we can get that

‖x̃s
i [k]‖A1 >

T (lk − l′)(ǫ∗i + ς∗i + µi

2 )

Te(1− bi)
=

T (ǫ∗i + ς∗i )

1− bi
. (30)

Further, from (21) and (30), it can be guaranteed that ‖x̃s
i [k]‖A1 > ‖x̃s∗

i [k]‖A1 , ∀k > Te.

Remark 2. The recognition conditions indicate that the test pattern can be rapidly recognized accord-
ing to the smallest synchronization error principle, if (a) the differences in dynamics between the test and
the similar training pattern is small, (b) and the others (the differences in dynamics between the test and
the other training patterns) are large. In the sampled-data framework, these recognition conditions can
be verified step by step based on historical sampling data. This makes a distinction compared with the
previous results for continuous-time nonlinear systems [30, 31]. It is worth noting that, the recognition
conditions are very difficult to be verified by using continuous-time signals. Even when misrecognition
occurs, the situation is difficult to be analyzed due to the lack of condition verification.

Remark 3. The above result implies that the recognition time is less than or equal to Te (the range of
the average L1 norm). In previous study [31], Te is set to be the period of the test pattern. By contrast,
Te defined herein can be less than the period of the test pattern. Smaller Te will lead to less time for
recognition. Moreover, for the recognition conditions given in [31], the selection of gains of dynamical
estimators relies on the prior knowledge of dynamical patterns. This restriction is removed in this paper,
which makes the conditions more practical and meaningful.

5 Simulation

In this section, numerical simulation examples will be given to demonstrate the effectiveness of our
proposed method. On one hand, we will verify the result of the rapid recognition (i.e., the recognition
time is less than Te). On the other hand, we will further verify the recognition conditions step by step
based on the historical sampling data. This makes a distinction compared with the previous results for
continuous-time nonlinear systems [30,31], in which the recognition conditions are difficult to be verified
by using continuous-time signals.

5.1 Data description and identification of system dynamics

Two types of nonlinear oscillation systems [40] are used to generate sampling sequences. One is the
Duffing system:

ẋ1 = x2,

ẋ2 = −p2x1 − p3x
3
1 − p1x2 + q cos (ωt),

(31)

where fd(X) = −p2x1 − p3x
3
1 − p1x2 is the dynamical function of the Duffing system with p1, p2, p3, q,

ω being the system parameters.
The other is the Duffing-VanderPol system:

ẋ1 = x2,

ẋ2 = p1(1− x2
1)x2 − p2x1 − p3x

3
1 + q cos(ωt),

(32)
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Table 1 System parameters of training patterns

Pattern p1 p2 p3 q ω Initial state X0

Duf1 1.2 −1.5 1 0.9 1.8 [0.438; 0.07713]

Duf2 0.4 −1.5 1 0.9 1.8 [0.438; 0.07713]

Duf3 0.55 −1.1 1 1.498 1.8 [0.438; 0.07713]

Duf4 0.2 −1.1 1 1.498 1.8 [0.438; 0.07713]

DVan1 0.6 1 0.8 1 1.498 [1.3; 2.2]

DVan2 0.6 1 1.3 1 1.498 [1.3; 2.2]

Table 2 Transformation parameters of different systems

System Shifting of x1 (Sh1) Scaling of x1 (Sc1) Shifting of x2 (Sh2) Scaling of x2 (Sc2)

Duf(1,2) 0 1/1.2 −0.8 1/1.2

Duf(3,4) 0 1/3.5 0 1/3.5

DVan 0 1/5 0 1/5

where fv(X) = p1(1 − x2
1)x2 − p2x1 − p3x

3
1 is the dynamical function of the Duffing-VanderPol system

with p1, p2, p3, q, ω being the system parameters.
For each type of oscillation system, we use specific parameters to generate different dynamical patterns

within sampling sequences with sampling period 0.01 s and total time 150 s. Six groups of sampling
sequences (four for the Duffing system and two for the Duffing-Vanderpol system) are taken as the data
of training patterns (or TRP for short). Specific parameters of different TRPs are shown in Table 1,
where Duf2, Duf4, and DVan2 belong to the category of chaotic trajectories.

Since the trajectories of different patterns stay within areas of different sizes in phase space, a prepro-
cessing step is needed to normalize all the sampling sequences, such that the trajectories stay within the
same region [−1, 1] × [−1, 1]. Specifically, the formulas x1tran = (x1 + Sh1)Sc1, x2tran = (x2 + Sh2)Sc2

are taken into account. And the specific transformation parameters of different systems are shown in
Table 2. Similarly, the preprocessing step corresponding to the training pattern is also used to normalize
the data of the test pattern (or TEP for short). Note that the system dynamics will also be changed in
the normalization (i.e., fdtran(x1tran, x2tran) = fd(

x1tran

Sc1
− Sh1,

x2tran

Sc2
− Sh2) and fvtran(x1tran, x2tran) =

fv(
x1tran

Sc1
− Sh1,

x2tran

Sc2
− Sh2)). Nevertheless, the morphological character of the original dynamics is not

changed.
Before the recognition process, we need to identify the system dynamics in all training patterns. To

this end, we construct RBFNs containing 21× 21 neurons covering the region [−1, 1]× [−1, 1] regularly.
The receptive field width is set as η = 0.1. The deterministic learning algorithm presented in Subsection
2.2 is used to identify the dynamic information in these training patterns3). Figure 1 shows the knowledge
representation of all TRPs. Figure 2 shows the NN approximation of system dynamics along the TEP’s
trajectory (fd for the dynamical function of Duffing systems, and fv for the dynamical function of Duffing-
VanderPol systems). It is shown that good NN approximation of system dynamics can be achieved along
the TEP’s trajectory via the deterministic learning algorithm.

Next, two scenarios will be considered. In the first scenario, we select Duf1, Duf2, DVan1, and DVan2
as the four TRPs in order. The pattern, whose parameters are close to Duf1, is selected as the TEP. The
objective of this scenario is to verify the effectiveness of the main results in this paper (verify the proposed
recognition conditions step by step based on the historical sampling sequences). In the second scenario,
Duf3, Duf4, DVan1, and DVan2 are selected as the four TRPs in order. We choose another pattern in
Duffing systems as the TEP. The second scenario mainly explores what is the most representative training
patterns in our method. The specific system parameters of TEPs in two scenarios are shown in Table 3.
Figure 3 shows the state trajectories of test and training patterns in two scenarios.

5.2 Scenario 1

In this scenario, Duf1, Duf2, DVan1, and Dvan2 are selected as the TRPs. A group of discrete-time
dynamical estimators are constructed with the well-training RBFNs4).

3) To identify the dynamics fd in Duffing patterns, the identifier is slightly modified as x̂[k + 1] = x2[k] + α(x̂[k] − x2[k]) +

TW̄T[k]S[X[k]] + Tq cos(ωkT ) to remove the influence of the time-varying term q cos(ωt).

4) Similarly, the estimator is slightly modified as x̄s[k+1] = x2[k]+b(x̄s[k]−x2[k])+TW̄ sT[k]S[X[k]]+Tq cos(ωkT ) to remove

the influence of the time-varying term q cos(ωt).
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Figure 1 (Color online) Function approximation of fd of (a) Duf1, (b) Duf2, (c) Duf3, and (d) Duf4 in space. Function approxi-

mation of fv of (e) DVan1 and (f) DVan2 in space.

In the recognition phase, we input the test pattern sequences into the discrete-time dynamical estima-
tors and further calculate the synchronization error and its average L1 norm as shown in Figures 4(a)
and (b), where the gain of estimators is set as b = 0.1 and the range of the average L1 norm Te is set as
the period of TEP (i.e., 350 steps). It is shown in Figure 4(b) that the most similar pattern (TRP1) is
recognized in 51 steps (less than Te steps) successfully. Further, based on the historical sampling data, the
information of dynamic differences in the sense of Definition 2 can be calculated and shown in Figure 4(c).
It can be found out that the figure of the synchronization error (i.e., Figure 4(a)) is quite similar to the
figure of the dynamic differences (i.e., Figure 4(c)).

Next, the effectiveness of the proposed recognition conditions will be verified step by step. Figure 5
shows the information about the dynamic differences between the TEP and TRPs in the steady-state
process. Specifically, in this scenario, TRP1 is the most similar training pattern to the TEP. As shown
in the black dashed-line box in Figure 5, the dynamic differences between TEP and TRP1 are less
than 0.03, i.e., ǫ∗ + ς∗ = 0.03 in condition (1). For the second similar pattern TRP2, the average
L1 norm interval Lk is shown in the green dashed-line box. Moreover, the corresponding subinter-
val Ik as described in condition (2) can be shown in the blue dashed-line box, where the similarity
distinction is µ = 0.17 (i.e., the dynamic differences are larger than ǫ∗ + ς∗ + µ = 0.2 as shown in
the red dashed-line box). Note that the length lk of the subinterval Ik is changed over time. Based
on the historical sampling data, we can calculate the relations of lk for different TRPs, as shown in
Figure 6(a). Note that since the trajectory of TEP is periodic, the relation shown in Figure 6(a)
will repeat periodically.



Wu W M, et al. Sci China Inf Sci March 2021 Vol. 64 132201:11

6000
Steps

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

(a)

Steps

−2.0

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

(b)

5000
Steps

−1.0

−0.5

0

0.5

1.0

(c)

Steps

−2

−1

0

1

2

(d)

7000

Steps

−2

−1

0

1

2

(e)

Steps

−4

−2

0

2

4

(f)

6500 7000 7500 8000 6000 7000 8000 9000 10000

6000 7000 8000 9000 10000 5000 6000 7000 8000 9000 10000

7500 8000 8500 9000 9500 10000 7000 7500 8000 8500 9000 9500 10000

WDuf1S(XDuf1[k])Tfd (XDuf1[k], pDuf1) WDuf2S(XDuf2[k])Tfd (XDuf2[k], pDuf2)

WDuf4S(XDuf4[k])T

fd (XDuf4[k], pDuf4)

WDVan1S(XDVan1[k])Tfv (XDVan1[k], pDVan1)
WDVan2S(XDVan2[k])Tfv (XDVan2[k], pDVan2)

WDuf3S(XDuf3[k])Tfd (XDuf3[k], pDuf3)

f
f

f

f
f

f

Figure 2 (Color online) Function approximation of fd of (a) Duf1, (b) Duf2, (c) Duf3, and (d) Duf4 along the time axis. Function

approximation of fv of (e) DVan1 and (f) DVan2 along the time axis.

Table 3 System parameters of test patterns

Pattern p1 p2 p3 q ω Initial state X0

TEP in Scenario 1 (Duf) 1.22 −1.5 1 0.9 1.8 [0.438; 0.07713]

TEP in Scenario 2 (Duf) 2 −1.3 1 1.498 1.8 [0.438; 0.07713]

Based on the results from above analysis, we know that ǫ∗ + ς∗ = 0.03, µ = 0.17, Te = 350, b =
0.1. Thus, we can calculate l = 54.0689 from condition (3). It is seen in Figure 6(a) that for TRP2
mini∈[ib+Te−1,ie] lk = 95, for TRP3 mini∈[ib+Te−1,ie] lk = 118, for TRP4 mini∈[ib+Te−1,ie] lk = 92, where
ib and ie denote the beginning point and the ending point of the steady-state process of TEP, respectively.
It is verified that mini∈[ib+Te−1,ie] lk of TRP2–TRP4 are larger than the theoretical value l. Thus, all
three conditions of the theorem can be guaranteed simultaneously.

As a result, the most similar pattern will be recognized in Te steps based on the average L1 norm of
the synchronization error. Note that when k < Te, the average L1 norms of the synchronization errors

are unavailable. To this end, a modified average L1 norm ‖|x̃[k]|‖A1 =
∑k

j=1 x̃[j]

k , k < Te is used instead of
the original one in this simulation. Nevertheless, this modification does not affect the recognition result
that the most similar pattern will be recognized in Te steps.

At the end of the identification process, we have to verify whether the trajectory of the TEP stays
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Figure 4 (Color online) (a) Synchronization error of four training patterns in the first scenario; (b) average L1 norm of synchro-

nization error of four training patterns; (c) information of dynamic differences in the sense of Definition 2.

within the approximation region of the similar TRP. We use d(k) = mini∈[ib1,ie1] ‖XTEP(k)−XTRP1(i)‖2
to describe the distance from each point of the TEP trajectory to the TRP1, where ib1, ie1 denote the
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Figure 5 (Color online) Information of dynamic differences in the sense of Definition 2 in the steady-state process.
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Figure 7 (Color online) (a) RBF representation of fd of TRP1 along the test pattern trajectories in space; (b) RBF representation

of fd of TRP1 along the time axis.

beginning point and the ending point of the steady-state process of TRP1. It is shown in Figure 6(b)
that when the TEP trajectory enters the steady-state process, the distance to the TRP1 is much small
(smaller than 0.01). It is revealed that TEP stays within the approximation region of the similar TRP
(i.e., the TRP1). Furthermore, it is shown in Figures 7(a) and (b) that good NN approximation of
system dynamics of TRP1 can be achieved along the TEP’s trajectory when the TEP stays within the
approximation region of the TRP1.
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To ensure the effective recognition, condition (1) indicates that there must exist a training pattern
similar to the test pattern in the training set P (i.e., the dynamic differences ǫ∗ + ς∗ are small enough).
This condition can be usually satisfied in real applications (by obtaining enough patterns). Besides,
another key factor of condition (1) is that the trajectory of the test pattern should stay within the
approximation region of the similar training pattern. Fortunately, this problem can be verified by using
a simple numerical calculation at the end of the recognition process. Condition (2) shows that there
must exist a similarity distinction µ > 0 between the similar training pattern and the other training
patterns. It means that the test pattern can be accurately recognized based on the average L1 norm
of the synchronization errors, if there exists a subinterval Ik with sufficient similarity distinction µ in
the average L1 norm interval Lk. And the dynamic differences in the complementary interval are not
limited (i.e., the dynamic differences between the test pattern and the training pattern can be zero in
the complementary interval of Ik). It should be pointed out that after choosing Te, in each time-interval
Lk, the length lk of the subinterval Ik is changed over time. Based on the historical sampling data,
the relations of lk for different TRPs can be calculated, as shown in Figure 6(a). Condition (3) reveals
that there exists a relationship between the distinction µ and the required length l of the interval Ik in
condition (2). All these conditions can be verified step by step based on historical sampling data.

Remark 4. This makes a distinction compared with the previous results [30, 31] for continuous-time
nonlinear system. The proposed recognition conditions herein can be verified step by step based on
historical sampling data in the sampled-data framework. It is worth noting that the precise description
of dynamical functions is often unavailable in practical engineering. Nevertheless, sampling data of
the test dynamical pattern can be recorded. Based on the historical sampling data, the sampled-data
deterministic learning algorithm is employed for accurately modeling dynamics of the test pattern along
its trajectory. Based on this, the proposed recognition conditions can be verified by using the modeling
result.

Although the expression of the dynamical function is unavailable in real-world applications, we can use
the sampled-data deterministic learning algorithm to model the dynamics of the test pattern again based
on the historical sampling data. Therefore, the proposed recognition conditions can also be verified in
real-world applications.

5.3 Scenario 2

In the following scenario, we further investigate the selection of the most representative training pattern.
Duf3, Duf4, DVan1, and Dvan2 are selected as the TRPs. A group of discrete-time dynamical estimators
are constructed with the well-training RBFNs5).

Similarly, we input the test pattern sequences into the discrete-time dynamical estimators and further
calculate the synchronization error and its average L1 norm as shown in Figures 8(a) and (b), where the
gain of estimators is set as b = 0.1. As shown in Figure 8(b), TRP2 is recognized as the most similar
pattern to TEP. As shown in Figure 8(c), TRP2 is recognized as the most similar pattern to TEP. Figure
8(c) shows the information of dynamic differences in the sense of Definition 2, which is calculated by
using the historical sampling data.

In this scenario, both TRP1 and TRP2 belong to the dynamical system (the Duffing system), which is
the same as the TEP. Their trajectories are shown in Figure 9(a). It can be seen that the trajectory of the
TRP2 is a chaotic trajectory, which explores much larger areas in phase space than the periodic trajectory
of the TRP1. In this case, most of the trajectory of TEP stays in the approximation region of TRP2
rather than in the approximation region of TRP1. The distances from the TEP trajectory to the TRP1
and TRP2 are calculated by the formula introduced in Subsection 5.2, d1(k) = mini∈[ib1,ie1] ‖XTEP(k)−
XTRP1(i)‖2 and d2(k) = mini∈[ib2,ie2] ‖XTEP(k) − XTRP2(i)‖2, respectively. As shown in Figure 10,
compared with the distance to the TRP1, the distance from the TEP to the TRP2 is much smaller. It is
clearly verified in Figure 11 that the RBF approximation error of TRP1 is much larger than the error of
TRP2. Consequently, even though the actual dynamic differences between TEP and TRP1 are smaller
than those between TEP and TRP2 slightly, it is recognized that the TRP2 is the most similar pattern
rather than the TRP1.

The result indicates that compared with chaotic trajectories (like the TRP2), periodic trajectories (like
the TRP1) explore limited areas in phase space. It leads to a limited approximation region of the corre-

5) The estimator is slightly modified as x̄s[k + 1] = x2[k] + b(x̄s[k] − x2[k]) + TW̄ sT[k]S[X[k]] + Tq cos(ωkT ) to remove the

influence of the time-varying term q cos(ωt).
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Figure 8 (Color online) (a) Synchronization error of four training patterns in the second scenario; (b) average L1 norm of

synchronization error of four training patterns; (c) information of dynamic differences in the sense of Definition 2.
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Figure 9 (Color online) (a) Comparison in trajectories; (b) dynamic differences between TEP and TRPs.

sponding TRP. When the parameters of TEP are much different from the periodic TRP (like the TRP1),
most of the TEP trajectory may not stay within limited approximation region of the corresponding TRP.
By contrast, the chaotic patterns are more spatially expanded, which implies that chaotic patterns are



Wu W M, et al. Sci China Inf Sci March 2021 Vol. 64 132201:16

0 500 1000 1500
Steps

0

0.02

0.04

0.06

0.08

0.10

0.12

D
is

ta
n
ce

TRP1

TRP2

Figure 10 (Color online) Distance from TEP to TRPs.
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Figure 11 (Color online) RBF representation of fd of (a) TRP1 and (b) TRP2 along the time axis.

more suitable for use as the dynamical patterns stored in the training set.

6 Conclusion

In the present paper, we have proposed a rapid dynamical pattern recognition method for the sampled-
data framework. In the modeling phase, the sampling sequences of the training patterns are modeled by
using sampled-data deterministic learning. The obtained knowledge is then employed to construct a set
of discrete-time dynamical estimators to represent all training patterns. In the recognition phase, average
L1 norms of synchronization errors are considered to reflect similarities between the test and training
patterns. General conditions for accurate and rapid recognition of dynamical patterns are established.
We would like to emphasize that the proposed recognition conditions can be verified step by step based
on historical sampling data in the sampled-data framework. This makes a distinction compared with the
previous results for continuous-time nonlinear systems, in which the recognition conditions are difficult
to be verified using continuous-time signals. As a follow-up to the present paper, real applications on
fault detection and fault isolation will be implemented.
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Appendix A Analysis in the interval I ′
k

Let Hs
i [k] := W̄ sT

i S(X[k]) − fi(X[k], pr), ∀k ∈ Ik. The solution of the synchronization error (13) can be expressed as follows:

x̃s
i [k] = b

k−Tak
i x̃s

i [Tak] +

k−1∑

j=Tak

Tbk−1−j
i Hs

i [j]. (A1)

Since we do not know any information about the synchronization error in the beginning of Ik (i.e., in Tak steps), we have to

discuss three cases: (i) the magnitude of x̃s
i [Tak] is small; (ii) the magnitude of x̃s

i [Tak] is large and x̃s
i [Tak] has the same sign with

Hs
i [k]; (iii) the magnitude of x̃s

i [Tak] is large and x̃s
i [Tak] has a different sign with Hs

i [k].
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In order to facilitate analysis, we assume the sign of Hs
i [k] is positive in follows. (The opposite situation can directly carried

out by following the same proof with the negative sign.)

Case (i). If |x̃s
i [Tak]| <

T (ǫ∗i +ς∗i +
µi
2

)

1−bi
, the synchronization error satisfies:

x̃
s
i [k] > −b

k−Tak
i

T (ǫ∗i + ς∗i +
µi
2 )

1 − bi
+

k−1∑

j=Tak

Tb
k−1−j
i H

s
i [j]

> −
Tb

k−Tak
i (ǫ∗i + ς∗i +

µi
2 )

1 − bi
+

T (1 − b
k−Tak
i )(ǫ∗i + ς∗i + µi)

1 − bi

= −
Tb

k−Tak
i (2ǫ∗i + 2ς∗i +

3µi
2 )

1 − bi
+

T (ǫ∗i + ς∗i + µi)

1 − bi
. (A2)

Next, we have to estimate the maximum time for passing the area |x̃s
i | <

T (ǫ∗i +ς∗i +
µi
2

)

1−bi
. With the property (A2), we can

estimate the maximum passing time by using the following condition:

−
Tb

k−Tak
i (2ǫ∗i + 2ς∗i +

3µi
2 )

1 − bi
+

T (ǫ∗i + ς∗i + µi)

1 − bi
>

T (ǫ∗i + ς∗i +
µi
2 )

1 − bi
,

⇔
Tb

k−Tak
i (2ǫ∗i + 2ς∗i +

3µi
2 )

1 − bi
6

Tµi

2(1 − bi)
. (A3)

Based on the analysis in (A3), we can conclude that |x̃s
i [k]| >

T (ǫ∗i +ς∗i +
µi
2

)

1−bi
satisfies, if

k > Tak + logbi

µi

4ǫ∗i + 4ς∗i + 3µi

. (A4)

In case (i), a time interval I′

k = {k | |x̃s
i [k]| <

T (ǫ∗i +ς∗i +
µi
2

)

1−bi
} = [Ta, T

′

ak] appears in the beginning of the time interval Ik.

The maximum time length of the interval I′

k is T ′

ak − Tak + 1 6 l′ := logbi

µi
4ǫ∗

i
+4ς∗

i
+3µi

+ 1. In the time interval k ∈ Ik − I′

k,

|x̃s
i [k]| >

T (ǫ∗i +ς∗i +
µi
2

)

1−bi
.

Case (ii). If |x̃s
i [Tak]| >

T (ǫ∗i +ς∗i +
µi
2

)

1−bi
and x̃s

i [Tak] has the same sign with Hs
i [k], the synchronization error satisfies

x̃s
i [k] > b

k−Tak
i

T (ǫ∗i + ς∗i +
µi
2 )

1 − bi
+

k−1∑

j=Tak

Tbk−1−j
i Hs

i [j]

>
Tb

k−Tak
i (ǫ∗i + ς∗i +

µi
2 )

1 − bi
+

T (1 − b
k−Tak
i )(ǫ∗i + ς∗i + µi)

1 − bi

=
T (ǫ∗i + ς∗i +

µi
2 )

1 − bi
+

T (1 − b
k−Tak
i )(

µi
2 )

1 − bi
. (A5)

We know that
T(1−b

k−Tak
i

)(
µi
2

)

1−bi
is always larger than 0. Thus, we have

x̃
s
i [k] >

T (ǫ∗i + ς∗i +
µi
2 )

1 − bi
. (A6)

In case (ii), the time interval I′

k = {k | |x̃s
i [k]| <

T(ǫ∗i +ς∗i +
µi
2

)

1−bi
} will be an empty set I′

k = ∅. In the time interval k ∈ Ik − I′

k,

|x̃s
i [k]| >

T (ǫ∗i +ς∗i +
µi
2

)

1−bi
.

Case (iii). If |x̃s
i [Tak]| >

T (ǫ∗i +ς∗i +
µi
2

)

1−bi
and x̃s

i [Tak] has a different sign with Hs
i [k], there exists a time interval I′

k = {k | |x̃s
i [k]| <

T (ǫ∗i +ς∗i +
µi
2

)

1−bi
} = [T ′

ak, T
′

bk] in Ik such that

|x̃s
i [k]| >

T (ǫ∗i + ς∗i +
µi
2 )

1 − bi
, ∀k ∈ [Tak, T

′

ak − 1], (A7)

|x̃s
i [k]| 6

T (ǫ∗i + ς∗i +
µi
2 )

1 − bi
, ∀k ∈ [T ′

ak, T
′

bk], (A8)

|x̃s
i [k]| >

T (ǫ∗i + ς∗i +
µi
2 )

1 − bi
, ∀k ∈ [T ′

bk + 1, Tbk]. (A9)

In case (iii), we can conclude that the time length of I′

k is T ′

bk − T ′

ak +1 = l′ = logbi

µi
4ǫ∗

i
+4ς∗

i
+3µi

+1 according to the analysis

of case (i). In the time interval k ∈ Ik − I′

k, |x̃
s
i [k]| >

T (ǫ∗i +ς∗i +
µi
2

)

1−bi
holds.
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