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Abstract In software development, it is easy to introduce code smells owing to the complexity of projects

and the negligence of programmers. Code smells reduce code comprehensibility and maintainability, making

programs error-prone. Hence, code smell detection is extremely important. Recently, machine learning-based

technologies turn to be the mainstream detection approaches, which show promising performance. However,

existing machine learning methods have two limitations: (1) most studies only focus on common smells, and

(2) the proposed metrics are not effective when being used for uncommon code smell detection, e.g., change

barrier based code smells. To overcome these limitations, this paper investigates the detection of uncommon

change barrier based code smells. We study three typical code smells, i.e., Divergent Change, Shotgun

Surgery, and Parallel Inheritance, which all belong to change barriers. We analyze the characteristics of

change barriers and extract domain-specific metrics to train a Logistic Regression model for detection. The

experimental results show that our method achieves 81.8%–100% precision and recall, outperforming existing

algorithms by 10%–30%. In addition, we analyze the correlation and importance of the utilized metrics. We

find our domain-specific metrics are important for the detection of change barriers. The results would help

practitioners better design detection tools for such code smells.
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1 Introduction

Software development and maintenance are essential software engineering processes. During the software
lifecycle, it is easy to introduce code smells owing to the negligence of developers, which has a negative
impact on software maintenance and evolution. To address these problems, Fowler et al. [1] proposed the
concept of code smell and defined 22 types of code smells. Code smell is a symptom of poorly designed
or implemented code that makes programs difficult to understand or error-prone. It can hinder code
understandability and maintainability. It also makes software difficult to develop and maintain. Hence,
it is important to detect code smells and help developers identify design issues that may cause problems
in future maintenance.

So far, there have been many techniques for code smell detection, such as machine learning-based
methods, metric-based detection strategies [2], search-based algorithms [3], and text and structural anal-
ysis [4]. In recent years, more and more researchers focus on machine learning approaches [5,6]. Machine
learning, as the most mainstream technology at present, also has a better detection effect [7].

However, we identify two limitations for machine learning based technologies: (1) most articles only
focus on common code smells, and (2) the metrics used in the literature may not be sufficient to train
an effective classifier for detecting uncommon code smells, e.g., change barrier code smells. Many studies
prefer to identify common code smells with simple structure, e.g., Long Method [8,9] and God Class [10,
11]. The reason they pay little attention to other code smells may be that many code smells cannot be
detected using a rule-based approach so that no valid metric1) can be found. Kreimer [10] and Fontana
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1) “Metrics” are the features/attributes to measure code. Metrics can convert the code into feature vectors for training machine

learning models. In this paper, the words “metric”, “feature”, and “attribute” are used according to the specific scene, and the

meaning is the same.
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et al. [8] focused on one or several bad smells (God Class, Data Class, Feature Envy, and Long Method),
which are more common in software projects. The metrics applied in the literature can only work for the
identification of code smells concerned in their papers, not other complex and uncommon code smells,
e.g., change barriers. Therefore, this paper studies the efficient identification method on such code smells.

To overcome the limitations, we focus on three different types of change barriers: Divergent Change,
Shotgun Surgery, and Parallel Inheritance. Linders [12] first proposed the concept of change barrier based
code smells, which means that a change in code affects many classes and requires extensive modifications
to the entire code. If a developer wants to implement a new requirement or adjust an existing module,
it is inevitable that small modifications might lead to a big, bad change, which may result in an un-
predictable workload. Therefore, it is necessary to detect this type of code smells. We consider metrics
associated with the smell characteristics. We not only extract common object-oriented metrics, such as
code size, encapsulation, and complexity, but also fully analyze the characteristics of these smells and
apply some domain-specific metrics such as concern diffusion over components (CDC), number of chil-
dren (NOC), the depth of inheritance tree (DIT), changing classes (ChC), and changing methods (CM).
We integrate the proposed metrics into a Logistic Regression algorithm to detect change barriers. We
compare the experimental results with existing metrics and classifiers including support vector machine
(SMO), NaiveBayes, JRip, J48 Decision Tree, and RandomForest.

We find that the domain-specific metrics fully reflect the definition and characteristics of each smell.
They have a positive effect on the recognition of smells. The experimental results show that our algorithm
achieves 81.8%–100% precision and recall in the detection of change barriers, which are 10% to 30%
higher than those of other algorithms. Our method is 20% to 40% higher in precision and recall than
the algorithms trained with the metrics proposed in other literatures, which proves that our metrics are
more beneficial to the recognition of change barriers. In addition, we conduct an experimental analysis
of the correlation and importance of the metrics. We use the Spearman rank correlation test to calculate
the correlation between the metrics and verify the effect of the correlation metric on the experimental
results. We also use the correlation coefficient analysis on Logistic Regression and node analysis on the
J48 Decision Tree to identify the importance of the metrics for smell detection. The analysis results
confirm the importance of our domain-specific metrics used in this paper.

The main contributions of this paper are as follows.
• To the best of our knowledge, we are the first to systematically study the change barrier code smell,

including its core characteristics and the role of different metrics in such bad smells. We collect domain-
specific metrics based on the characteristics of change barriers, and compare the experimental results of
the algorithms trained on the literature metrics. We find our solution is more beneficial to the detection
of change barriers.

• We apply Logistic Regression to solve the problem of “change barriers” code smell detection. We
compare our algorithm with state-of-the-art algorithms. The experimental result shows that our algorithm
outperforms baseline algorithms in terms of precision, recall, and F-measure.

• In addition, we carry out a metric correlation experiment and a metric importance experiment to
investigate the effects of metrics on the identification of code smells. To verify the effectiveness of our
approach, we conduct a cross-project experiment. The cross-project experimental results show that our
method can achieve better performance.

The remainder of this article is organized as follows. Section 2 describes the definition of change
barriers and our motivation. Section 3 presents the framework of our approach. Section 4 describes
the experimental setup. Section 5 shows the experimental results. Threats to validity of the study are
described in Section 6. Section 7 introduces the related work. Section 8 concludes this paper.

2 Background

This section describes the definition of three change barrier based code smells and the motivation for
change barrier detection.

2.1 Definition

Divergent Change is proposed by Fowler [1], which is produced if a class is subjected to different changes.
It is that all corresponding modifications to the external changes occur in a single class. For example,
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Figure 1 Approach overview.

when you want to add a function, you have to modify many unrelated functions in a single class at the
same time. This requires changing other or even unrelated contents for some specific reasons.

Shotgun Surgery refers to the fact that whenever you make a change, it must make small modifications
to many different classes [1]. However, if this change appears everywhere, it will be time-consuming to
find then one by one. In this case, you may miss some information and cause the program to go wrong.
The source of this error is hard to find, so you need to keep debugging to find bugs and fix them.

Parallel Inheritance means that when you create a subclass of a class, it must create a subclass of
another class [1]. There is a strong coupling between the two classes. When modifying a class, it is
necessary to find another class with the same prefix and modify it accordingly.

The relationship between these three code smells is interesting. They are similar in type, covering
multiple levels, but slightly different. Divergent Change is a problem that a class has been impacted by
multiple changes, meaning that a single class takes on multiple tasks. In contrast, Shotgun Surgery refers
to a variation that causes multiple classes to be modified accordingly, indicating that there are too many
couplings between classes. Parallel Inheritance is a subset of Shotgun Surgery, which is defined as a form
of Shotgun Surgery.

2.2 Motivation

This paper focuses on three code smells: Divergent Change, Shotgun Surgery, and Parallel Inheritance.
They all belong to change barrier based code smells. This type of code smell can turn small changes
into big changes with knock-on effects. Developers constantly modify a software product, owing to a
series of unpredictable, inevitable reasons such as the requirements of end-users and error debugging.
The existence of change barriers makes these modifications become a tough task. If this smell is not
recognized and eliminated, developers are about to face endless changes. Therefore, the identification of
change barrier code smell has extremely practical significance. This paper applies Logistic Regression to
detect change barrier based code smells.

3 Methodology

In this paper, we study the identification of change barrier code smell by integrating the object-oriented
software quality metric to construct the Logistic Regression algorithm model. This section describes our
approach in detail.

As shown in Figure 1, we extract source code metrics from the dataset, forming the Divergent Change
dataset (Data1), the Shotgun Surgery dataset (Data2), and the Parallel Inheritance dataset (Data3) which
are composed of metrics related to three code smells, respectively. The specific dataset information is
explained in Subsection 4.1. Then, we perform data preprocessing on the three set of data, and take the
metric set formed by them as the input of the Logistic Regression model. In the model construction phase,
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Table 1 Terminological interpretation

Terminology Description

CVParameterSelection A meta-classifier for parameter optimization selection in Weka to find the optimal value for

one or more parameters within a specified range.

Filter A function used to manipulate attributes and instances in the data preprocessing phase.

ReplaceMissingValues A function for replacing all missing values for nominal and numeric attributes in a dataset

with the modes and means from the training data.

AttributeSelection A supervised attribute filter that can be used to select features.

InfoGainAttributeEval An evaluator that evaluates the worth of an attribute by measuring the information gain with

respect to the class.

Ranker A search strategy that ranks attributes by their individual evaluations.

ArrayEditor A module for inputting parameters during parameter optimization.

BatchSize A parameter for the preferred number of instances to process when a batch prediction is being

performed.

DonotCheckCapabilities A module that decides whether to check the classifier function.

NominalToBinaryFitter A module that converts the nominal attribute type to a numeric attribute.

Ridge Estimation A biased estimation regression method for collinear data analysis.

we use CVParameterSelection to optimize the parameters of the model. The CVParameterSelection
classifier uses the ArrayEditor module to perform the parameters to be optimized. We use the best
parameters of the output to build a model to predict change barriers. Finally, the prediction results
output the model’s precision and recall, as well as the confusion matrix. Table 1 details the terminology
explanations related to data preprocessing and parameter optimization in this section.

3.1 Metric extraction

We use Iplasma [13], Together [14], and Concerntagger [15] to calculate the 80 object-oriented quality
metrics for each class as shown in Table 2. We list the information about metrics, including acronyms
and their corresponding meanings. These categories of metrics are widely used in existing literature.
These three tools obtain the structural attributes of software projects by parsing the source code. Unlike
existing studies, we focus on the measurement of specific characteristics of each code smell, such as
Concern Metric for Divergent Change, CM and ChC for Shotgun Surgery, and DIT and NOC for Parallel
Inheritance.

CM refers to the number of different methods that call the method being measured, while ChC refers
to the number of classes. The combination of CM and ChC can reflect the coupling between classes.
These metrics present the nature of Shotgun Surgery because this code smell reflects severe coupling
between multiple classes.

DIT is the maximum depth from the node to the root of the tree. The depth of a class determines its
hierarchy, and the number of methods inherited determines its potential reusability. NOC refers to the
number of direct subclasses of a class, which is used to measure how many subclasses inherit the parent
class. The metrics suite [16] provided by DIT and NOC has proven to be effective for finding higher
failure rates.

Concern Metric is designed to capture the module properties of concerns in the drive design [17]. It
depends on the mapping of the element to concerns. Concerns are those important properties of software
artifacts that are handled in a modular manner. Each concern belongs to a modular unit. The concern can
be on classes, functions, methods, or even a member variable. Existing research has shown that concern
metrics can be used not only for the implementation of modularity issues in software products but also
for design flaws identification [17]. We expect to use this metric to improve the detection of Divergent
Change. In the experimental section, we analyze and evaluate these metrics in detail. We experiment and
demonstrate that these characteristic related metrics promote and support the identification of change
barriers.

3.2 Data preprocessing

We use the open-source machine learning software Weka [18] to perform data preprocessing on Data1,
Data2, and Data3. We handle missing values and select important metrics. In Weka, we use Filter
to process the metrics and instances. Filter is a function that contains a variety of data processing
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Table 2 Metric definition

Category Name Definition Category Name Definition

Basic Address Address of class Complexity AMW Average methods weight

BUR Usage ratio AC Attribute complexity

Class name Name of class CC Cyclomatic complexity

CRIX Children ratio EC Essential complexity

GREEDY Raised exceptions NORM Number of remote methods

is static is static class NOAV Number of accessed variables

is leafclass is leafclass NOLV Number of local variable

is interface is interface NOEU Number of external variables

is rootclass is rootclass NOP M Number of parents in the method

is abstract is abstract class NOP Pr Number of parents in the project

Package Package of class RFC Response for class

Project Project of class WOC Weight of a class

PNAS Public number of accessors WMC Weighted methods count

PS Package size WMPC1 Weighted methods per class 1

Code Size LOC lines of code in the class WMPC2 Weighted methods per class 2

LOCC Lines of code classes Coupling AOFD Access of foreign data

LOC M lines of code in the method ATFD Access to foreign data

LOC Pa lines of code in the packages CE Efferent coupling

LOC Pr lines of code in the project ChC Changing classes

NOCON Number of constructors CM Changing methods

NOM Number of methods CBO Coupling between objects

NOM Pr Project number of methods DD Dependency dispersion

NOM Pa Package number of methods DAC Data abstraction coupling

NOA Number of ancestors FDP Foreign data providers

NAM Number of accessor methods FANOUT Number of classes referenced

NOD Number of descendants FANIN Number of classes that reference

NOIS Number of import statements MIC Method invocation coupling

NOO Number of operations NOEC Number of external clients

NCC Number of client classes NRSS Number of static calls

NOIC Number of internal clients NOED Number of external dependencies

PProtM Percentage of protected members WCM Weighted changing methods

PPubM Percentage of public members Cohesion ALD Access of local data

PPrivM Percentage of private members AID Access of import data

Inheritance DIT Depth of inheritance tree TCC Tight class cohesion

DOIH Depth of inheritance hierarchy Encapsulation LAA Locality of attribute accesses

HIT Height of inheritance tree NOPA Number of public attribute

NOC Number of children NOAM Number of added methods

NOCC Number of child classes NOOM Number of overridden methods

NOC Pr Number of children in the project Concern CDC Concern diffusion over components

NOC Pa Number of children in the package CDO Concern diffusion over operations

operations. It is divided into two parts, supervised and unsupervised. Owing to missing value processing
independent of category, we take the unsupervised filter to process the data.

First, we use the ReplaceMissingValues filter to solve the problem of the missing data. The Re-
placeMissingValues function is used to replace the missing values with the average values. Next, for
the problem of redundant metrics in the data, we adopt the AttributeSelection filter in Weka to select
metrics and remove metrics unrelated to output variables. In the AttributeSelection function, we use
the “InfoGainAttributeEval” as an evaluator and “Ranker” as a search strategy. They rank metrics by
calculating the information gain value of metrics. Finally, we remove 10 metrics that are listed at the
end with an information gain value of zero as they have no effect on the classification of smells. The
deleted metrics include NOEC, NOIC, NRSS, AID, HIT, NCC, NOCP, PPrivM, PProtM, and PPubM.
The remaining 70 metrics are used as experimental data to construct the Logistic Regression model.

3.3 Logistic Regression

There are many optional machine learning models such as Logistic Regression, NaiveBayes, and Random-
Forest. This study uses Logistic Regression to predict code smells. In the experiment, we compare the
performance of different machine learning models. As a generalized linear analysis model, Logistic Re-
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gression is one of the most classical binary classification algorithms. The principle of Logistic Regression
is to establish the cost function in the face of a regression or classification problem and then iteratively
solve the optimal model parameters through the optimization method. The traditional method for solving
Logistic Regression parameters is gradient descent. After the cost function is constructed, a small part
of the partial derivative direction (the direction with the fastest descending speed) is stepped forward
each time until the lowest point is reached after N iterations. The threshold value obtained by Logis-
tic Regression can be mapped as a decision boundary of the plane. The greatest advantage of Logistic
Regression is that its output can not only be used for classification but also represent its corresponding
probability. It can map the original output from 0 to 1, thus completing the estimation of the probability.

Here, we consider the detection of code smell as a binary classification problem. There are only two
output results of Logistic Regression, which respectively represent the positive and negative categories.
The independent predictor of this experiment contains a series of extracted quality metrics, and the
dependent variable is whether a class contains code smells. First, we build and use a polynomial Logistic
Regression model with a ridge estimation. In order to improve estimation accuracy and make the model
relatively stable, we introduce a ridge estimation. It adds a regularization term to the loss function and
a coefficient adjusting the weight of linear regression term and the regularization term, which reduces the
regression coefficient and the variance of the estimated value. The parameters of the ridge estimation are
usually set by the gradient descent method. Common gradient descent methods include the conjugate
gradient descent method and the quasi-Newton method. Here we use the conjugate gradient descent
method. Because compared with the quasi-Newton method, the conjugate gradient descent method can
converge faster with smaller memory. It is also more stable than the quasi-Newton method in calculating
parameter problems. To determine the direction of the gradient descent, we set BatchSize to be processed
to the full dataset pattern when performing the prediction. Since the full dataset can better represent
the sample population, it is more accurate toward the direction of the extreme value and faster to process
the data.

3.4 Parameter optimization

Machine learning algorithms usually have many parameters. These parameters have a huge effect on
the classifier algorithm. However, manually finding the best parameter configuration is very difficult and
inefficient. We solve the above problem with the CVParameterSelection classifier. CVParameterSelec-
tion [19] is a meta-classifier for parameter optimization selection. It finds the optimal values for one or
more parameters within a specified range. It uses a cross-validation method to optimize the selection of
any number of parameters and automatically run all possible combinations of parameters. When per-
forming cross-validation, CVParameterSelection executes parameter composition using only the collapsed
training dataset. We use Weka to implement this method and find the best parameter configuration for
the experiment.

As shown in Figure 1, in the process of parameter optimization, we first enter the parameters to
be optimized in the ArrayEditor module of the CVParameterSelection classifier, and set the numerical
range and step size. The parameters to be tuned include the minimum number of bits, BatchSize, the
number of iterations, the ridge value, DonotCheckCapabilities, and NominalToBinaryFitter. Detailed
terminology explanations for parameters are listed in Table 1. In the visualization area, it outputs the
parameters that work best within this test range after running. From the optimal parameter results,
CVParameterSelection sets the minimum number of bits in the model for outputting numbers to four,
and BatchSize is set to the full dataset. The maximum number of iterations to be executed and the
ridge value are set to different standards depending on the smell. DonotCheckCapabilities is set to
False to check the capabilities of the classifier before building it. The default value is replaced by
ReplaceMissingVakuesFitter. NominalToBinaryFitter converts the nominal attribute type to a numeric
attribute.

4 Experimentation

The experimental process is as follows: first, we collect the dataset. A total of 17 labeled software projects
are collected. We define our dataset as

Q = {X1, X2, X3, . . . , Xi}, i = 1, 2, 3, . . . , (1)
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Table 3 Project information for the dataset

Project KLOC Packages Classes Divergent Change Parallel Inheritance Shotgun Surgery

Aardvark 25 11 103 0 0 0

And Engine 20 90 596 0 0 0

frameworks-base 770 253 2766 2 3 0

cassandra 117 43 826 3 0 0

commons-codec 23 7 103 0 0 0

commons-logging 23 17 61 1 3 0

derby 166 194 1746 0 0 0

Eclipse Core 162 843 1190 0 7 0

Google Guava 16 25 153 0 0 0

HealthWatcher 6 26 132 12 0 7

James Mime4j 280 26 250 1 0 0

MobileMedia 3 10 51 4 0 3

sdk 54 198 268 1 12 0

support 59 22 246 1 0 1

telephony 75 17 223 0 0 0

Tomcat 336 154 1284 1 10 1

tool-base 119 69 532 0 0 0

where Q is our training dataset, consisting of a series of class files, Xi represents a class which is marked
as a code smell (or not).

Then, for each Xi in Q, its features are extracted as a set of metric values. We define these metrics as

M = {(x1, y1), (x2, y2), . . . , (xi, yi)}, i = 1, 2, 3, . . . , (2)

where M is the set of software quality metrics, xi is the class in which the measures are calculated, and
yi marks whether the class is a bad smell, with a value of 0 or 1.

Next, we construct a Logistic Regression model for training. We perform parameter optimization to
select the optimal parameters. We apply the optimized model on the testing dataset for evaluation.

4.1 Dataset collection

In our research, we consider the Landfill dataset labeled by Palomba et al. [20] and the HealthWatcher and
MobileMedia projects collected by Padilha et al. [17]. The Landfill dataset has 20 projects. We remove
five projects since the marked class files cannot be found in the snapshot versions of these projects.
Together with the HealthWathcer and MobileMedia projects [17], we collect a total of 17 projects with
2254 KLOC and 22151 classes. The lines of codes (KLOC), the number of packages, the number of classes
of these projects, and the number of classes affect by code smells are listed in Table 3.

In these projects, change barrier based code smells have been manually labeled by previous studies.
The size of these projects varies from 3 to 770 KLOC, which reflects the characteristics of real-world
industrial applications. We also adopt 7 projects that are not affected by code smells to ensure the
integrity of experimental data. As can be seen from Table 3, instances affected by code smells are evenly
distributed among projects from small to large. We mix all the labeled results in these unequal-sized
projects together to form the final dataset, thus avoiding the bias owing to the size of the project. At
last, we get a total of 296 change barrier related instances. The dataset of Divergent Change contains 27
positive instances and 81 negative instances. Parallel Inheritance’s dataset contains 35 positive instances
and 105 negative instances. Shotgun Surgery contains 12 positive instances and 36 negative instances.
We divide these datasets into the training set, validation set, and testing set in a ratio of 4:2:4. The
training and validation sets are used to train the Logistic Regression model and adjust parameters. The
testing set is used to evaluate our model.

4.2 Comparison algorithms

In this experiment, we compare our algorithm with five classifiers commonly used in the literature [8],
i.e., SMO, J48 Decision Tree, NaiveBayes, RandomForest, and JRip. For each classifier, we perform
parameter optimization with CVParameterSelection for fair comparison.
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For SMO, we select the best kernel configuration for classification from PolyKernel, Puk Kernel, and
RBFKernel. Since SMO implements sequential minimal optimization, its output coefficient belongs to
standardized data. Other SMO parameters include normalize training data, standardize training data,
and no normalize/standardize. They represent converting data to normalized data, converting data to
standardized data, and not converting data, respectively. For J48, both trimming and unpruning are
considered. After pruning, we solve the zero-probability problem according to the number of Laplace
smooth cotyledons. The pruned decision tree can reduce the complexity of the tree and prevent it from
over-fitting. For the numerical properties in NaiveBayes, there are two implementations that use kernel
estimation and discretization to convert them into nominal attributes. As a rule-based algorithm, JRip
outputs a set of rules just like the decision tree algorithm. It is necessary to complete the four stages
of construction, growth, pruning, and optimization. Finally, it summarizes detection rules by repeated
incremental pruning to produce error reduction (RIPPER).

4.3 Evaluation metric

The results in all the experiments in this paper are evaluated using precision, recall, F-measure, and ROC
area.

Precision is the ratio of correctly predicted bad smell instances to all predicted bad smell instances.

Precision =
TP

TP + FP
, (3)

where TP is an instance of correctly predicted bad smell and FP is an instance of incorrectly predicted
bad smell.

Recall is the ratio of correctly predicted bad smell instances to all actual bad smell instances.

Recall =
TP

TP + FN
, (4)

where FN is an example of an incorrect prediction that is not a bad smell.

F-measure is the harmonic mean of precision and recall, which comprehensively considers the two
evaluation metrics,

F-measure =
2× Precision× Recall

Precision + Recall
. (5)

The ROC curve area reflects a comprehensive measurement of the two indicators of specificity and
sensitivity. The specificity is the proportion of instances that are incorrectly predicted as not bad smell
to all instances that are not actually bad smell. The sensitivity is by definition the same as recall. In
general, the larger the ROC curve area is, the better the performance of the model is.

4.4 Research questions

In order to verify the validity of our method, we investigate and answer the following research questions.

RQ1: What is the computation time of the Logistic Regression model and other machine learning
algorithms?

RQ2: Is the precision, recall, F-measure and ROC area of the Logistic Regression algorithm superior
to other machine learning algorithms in the detection of code smell?

RQ3: Is the performance of the algorithm built by existing literature metrics better than the perfor-
mance of the algorithm built by our metrics?

RQ4: How much influence does the removal of correlation metrics have on the experimental results?

RQ5: For each bad smell, which metrics are the most important to the classifiers?

RQ6: How does our algorithm perform for cross-project detection?

5 Experimental result

This section analyzes and discusses our experimental results, and answers the six research questions.
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Table 4 Comparison of the computation time between Logical Regression and other machine learning algorithms

Machine learning Divergent Change Shotgun Surgery Parallel Inheritance

algorithm Training time (s) Testing time (s) Training time (s) Testing time (s) Training time (s) Testing time (s)

SMO 0.08 0.05 0.04 0.02 0.48 0.14

NaiveBayes 0.10 0.05 0.04 0.03 0.17 0.13

J48 0.08 0.05 0.04 0.01 0.10 0.05

JRip 0.08 0.05 0.04 0.03 0.09 0.05

RandomForest 0.07 0.05 0.04 0.02 0.10 0.05

Logistic Regression 0.08 0.04 0.04 0.02 0.09 0.04

Table 5 Comparison of Logistic Regression with five other machine learning algorithms

Machine learning
Divergent Change Shotgun Surgery Parallel Inheritance

algorithm
Precision Recall F-measure ROC Precision Recall F-measure ROC Precision Recall F-measure ROC

(%) (%) (%) (%) (%) (%) (%) (%) (%)

SMO 72.7 72.7 72.7 0.817 100 83.3 90.9 0.917 81.8 81.8 81.8 0.887

NaiveBayes 60.0 81.8 69.2 0.901 83.3 83.3 83.3 0.949 60.0 54.5 57.1 0.788

J48 60.0 81.8 69.2 0.838 71.4 83.3 76.9 0.821 69.2 81.8 75.0 0.885

JRip 64.3 81.8 72.0 0.885 75.0 50.0 60.0 0.712 88.9 72.7 80.0 0.853

RandomForest 77.8 63.6 70.0 0.903 100 75.0 85.7 0.817 77.8 63.6 70.0 0.937

Logistic Regression 81.8 81.8 81.8 0.895 100 83.3 90.9 1.000 81.8 81.8 81.8 0.935

5.1 RQ1: Computation time comparison

RQ1 discusses the computation time of different algorithms on code smell detection. The experiment
is performed on Windows10 Intel(R) Core i7-7700 CPU@3.60 GHz processors. 296 data instances are
adopted, and 70 metrics are used to build the model. Table 4 shows the training time and testing time for
Logistic Regression and five other machine learning algorithms. The experimental result is the average
of ten times running.

From Table 4, the computation time of Logistic Regression is 0.02–0.09 s, which is less than other
algorithms. In the detection of Parallel Inheritance, the difference between Logical Regression and SMO
in training time is 0.39 s at most, and the difference in testing time is 0.1 s. We can observe that the
training time and testing time of Logistic Regression on the three change barrier code smells are slightly
less than other algorithms, but the overall difference is not significant.

Answer to RQ1: Overall, all the algorithms can detect change barriers efficiently.

5.2 RQ2: Algorithm comparison

RQ2 evaluates the performance of different algorithms on change barrier detection. Table 5 shows pre-
cision, recall, and F-measure for Logistic Regression and five other machine learning algorithms. The
precision of our model is between 81.8% and 100%, recall is between 81.8% and 83.3%, and F-measure
is between 81.8% and 90.9%. For Divergent Change and Parallel Inheritance, precision, recall, and F-
measure are both 81.8%. Precision of Shotgun Surgery is as high as 100%, recall is 83.3%, and F-measure
is 90.9%. For ROC, ROC values of the three smells are all over 0.8, indicating the good performance of
our model.

Compared with other machine learning algorithms, Logistic Regression performs better in detecting
the three change barrier code smells on the four indicators. In order to improve the credibility of the
results, we carry out T-test [21], a statistical test method, to verify the difference between five algorithms
and Logistic Regression in precision, recall, F-measure, and ROC. The results of the T-test are shown
in Table 6. In general, if the P-value is less than 0.05, it means the two samples are considered to have
significant differences.

The results of Logistic Regression in the Divergent Change detection in Table 5 show a higher F-
measure. In statistical testing, only the difference between SMO and Logistic Regression is significant.
Since the other four algorithms are identical to the Logistic Regression in recall and ROC respectively,
there is no statistically significant difference between them and Logistic Regression. For Shotgun Surgery,
SMO and Logistic Regression achieve the same good effect, while the F-measure values of NaiveBayes and
RandomForest are slightly lower. From the statistical test, Logistic Regression is significantly different
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Table 6 The P-value of T-test of five other machine learning algorithms

Machine learning algorithm Divergent Change Shotgun Surgery Parallel Inheritance

SMO 0.0251 0.7081 0.7359

NaiveBayes 0.2688 0.1895 0.0121

J48 0.1411 0.0209 0.2769

JRip 0.2585 0.0054 0.6659

RandomForest 0.7943 0.2768 0.2802

Table 7 Logistic Regression and comparison classifiers trained on metrics in the existing literature

Machine learning
Divergent Change Shotgun Surgery Parallel Inheritance

algorithm
Precision Recall F-measure ROC Precision Recall F-measure ROC Precision Recall F-measure ROC

(%) (%) (%) (%) (%) (%) (%) (%) (%)

SMO-o 66.7 30.8 42.1 0.621 50.0 33.3 40.0 0.635 66.7 42.9 52.2 0.679

NaiveBayes-o 66.7 22.2 33.3 0.595 50.0 33.3 40.0 0.750 57.1 57.1 57.1 0.776

J48-o 50.0 44.4 47.1 0.513 12.5 33.3 18.2 0.375 66.7 42.9 52.2 0.679

JRip-o 66.7 22.2 33.3 0.596 12.5 33.3 18.2 0.375 62.5 35.7 45.5 0.643

RandomForest-o 66.7 44.4 53.3 0.809 40.0 66.7 50.0 0.646 66.7 28.6 40.0 0.619

Logistic Regression-o 50.0 33.3 40.0 0.552 40.0 66.7 50.0 0.646 56.3 64.3 60.0 0.757

from J48 and JRip. In this way, it is confirmed that Logistic Regression can achieve better detection
effect than these two algorithms. The other three algorithms are not significantly different from Logistic
Regression. As for Parallel Inheritance, apart from Logistic Regression, SMO and JRip with F-measure
above 80% can also achieve better effects. The difference between them and Logistic Regression is not
significant. NaiveBayes has a P-value of less than 0.05, which is not effective for Parallel Inheritance
detection.

From the above analysis, Logistic Regression performs well in many cases. There are several reasons
why we analyze its good performance. First, Logistic Regression is more suitable for this continuous
and categorical independent variable, and the dependent variable obeys the binomial distribution. Sec-
ondly, compared with other machine learning methods, Logistic Regression does not as sensitive to the
correlation of metrics as NaiveBayes does, and does not require the linear relationship between indepen-
dent variables and dependent variables. Thirdly, Logistic Regression gets a probability feedback and is
anomaly-tolerant, compared with Decision Tree and SMO. Therefore, Logistic Regression performs better
on smell detection in this study. In our framework, the promising performance is achieved by both the
domain-specific metrics and the Logistic Regression model. However, through experiments, we find that
under the same metrics, the average performance of Logistic Regression on different indicators is better.

Answer to RQ2: In summary, Logistic Regression is superior to SMO, Decision Tree, NaiveBayes,
JRip, and RandomForest in terms of precision, recall, and F-measure for change barrier detection.

5.3 RQ3: Metric comparison

RQ3 is designed to verify whether our proposed metrics have a positive effect on the detection of code
smells. We use the metrics in Reshi et al.’s work [22] to construct machine learning models to compare
with our proposed metrics. The literature applies the machine learning method to predict defects. They
use code smell as the influencing factor, that is they use Iplasma to analyze code smells in software projects
and extract software metrics for training machine learning algorithms. Hence, the defects and code smells
here can be analogized. Code smells can lead to defects, which is one of the methods for discriminating
defects. Many studies take advantage of code smells to analyze whether there are defects [23]. Therefore,
we use the metrics in [22] for comparison.

Table 7 reports the precision, recall, F-measure, and ROC curve area of machine learning algorithms
trained on the metrics in the existing literature. We use -o to represent these algorithms constructed
with the metrics in reference [22]. Table 8 shows the P-value of the T-test between the corresponding
algorithms constructed by different metrics. From the experimental results, the precision, recall, and F-
measure achieved by Logistic Regression-o are always below 60% on Divergent Change, Shotgun Surgery,
and Parallel Inheritance. It is far less effective at identifying change barriers than we are.

For the other five algorithms, the precisions of NaiveBayes-o and JRip-o increase by 6.7% and 2.4%,
while the recall decreases, and the overall F-measure is lower than those of our method in the classification
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Table 8 The P-value of T-test of classifiers trained on metrics in this paper and classifiers trained on metrics in the existing

literature

Machine learning algorithm Divergent Change Shotgun Surgery Parallel Inheritance

SMO-o 0.0309 0.0009 0.0059

NaiveBayes-o 0.0539 0.0088 0.9619

J48-o 0.0046 0.0002 0.0275

JRip-o 0.0387 0.0033 0.0085

RandomForest-o 0.2013 0.0098 0.0514

Logistic Regression-o 0.0003 0.0021 0.0069

of Divergent Change. For Shotgun Surgery, the precision and recall of the five algorithms are all below
50%. In Parallel Inheritance recognition, the precision of NaiveBayes-o decreases, and the recall increases.
The overall F-measure does not change. The measurement values of the other four algorithms are reduced,
which are significantly lower than our method. From a statistical point of view, in addition to the
RandomForest-o and NaiveBayes-o in the Divergent Change and Parallel Inheritance detection, other
algorithms present a significant difference. To sum up, our method as an integrated approach is superior
to the algorithm model constructed following the existing study [22].

Answer to RQ3: Metrics in the existing literature are not effective to detect change barriers. The
metrics related to bad smell characteristics proposed in this paper promote the detection results, which
proves that our metrics play a very important role in change barrier detection.

5.4 RQ4: Metric correlation evaluation

RQ4 analyzes the correlation between metrics and their impact on experimental results. We analysis the
pairwise correlation between measures using the Spearman rank correlation coefficient (ρ), which analyzes
the closeness of the relationship between the two groups of variables with linear correlation analysis. It
is calculated based on the rank. Its value is between −1 and 1. In the meantime, the closer the value is
to 1 (or −1), the more positive/negative the correlation is. We respectively define two sets of metrics as
X and Y , and the dataset size is n. The reordered positions of the elements x and y in the two sets are
respectively denoted by xi and yi. ρ is calculated as

ρ = 1−
6Σd2

i

n(n2 − 1)
, (6)

where di represents the ranking difference between elements x and y, di = xi − yi, 1 6 i 6 n.

We divide the experiments into two groups according to the value of ρ. The first group of experiments
removes one of a pair of metrics with ρ > 0.9, leaving only a single metric. The second group eliminates
metrics with ρ > 0.8. We reconstruct the algorithm model for the experiment of code smell recognition
after deleting correlation metrics and observe the effect of correlation metrics.

Figures 2–4 show the correlation analysis results for each bad smell. We keep the metrics that are easy
for calculation in each correlative group. There are 45 pairs of correlation metrics over 0.8 in Divergent
Change and 19 pairs over 0.9. Shotgun Surgery has 40 pairs of correlation metrics over 0.8 and 18 pairs
over 0.9. In addition, there are 33 pairs of Parallel Inheritance with over 0.8 and 21 pairs with over 0.9.
We remove 24, 23, 19 metrics with all correlations above 80% for each of the three code smells. For the
90% threshold, we delete 12 metrics for all three code smells.

Tables 9 and 10 show the experimental results after removing the 80% and 90% correlation metrics
respectively. In Table 10, except for the ROC curve area floating above 0.01, there is no change in
the precision, recall, and F-measure. After removing the 80% correlation metrics, Divergent Change
experiences a decrease in precision and an increase in recall, but overall, its F-measure increases by 1.5%.
The ROC curve area floats above 0.005. Shotgun Surgery and Parallel Inheritance remain unchanged
in value. The P-value of both groups is greater than 0.05, which is not significantly different from our
method. On the whole, the removal of the correlation metrics has little effect on the original experimental
results, but the learning time of classifiers is shortened.

Answer to RQ4: For the three bad smells, there are 118 pairs of metrics with ρ > 0.8 and 58 pairs with
ρ > 0.9. The deletion of the correlation metrics has no significant effect on the experimental results.
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Figure 2 The correlation analysis results of Divergent Change.
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Figure 3 The correlation analysis results of Shotgun Surgery.
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Figure 4 The correlation analysis results of Parallel Inheritance.

5.5 RQ5: Metric importance evaluation

RQ5 discusses the importance of the metrics for change barrier detection. To verify which metrics play a
key role in the detection of each bad smell, we perform a metric importance verification experiment. In
the output of the Logistic Regression model, we can get the correlation coefficient of the metric index,
so as to judge the importance of the metric. In addition, the J48 algorithm constructs a decision tree
in which top nodes in trees represent important metrics. We compare the importance analysis results of
Logistic Regression and J48 to analyze their correlations and differences. Table 11 reports the top ten
metric rankings for the three code smells in the Logistic Regression correlation coefficient. Figures 5–7
show the decision trees generated for the three code smells.

For the Divergent Change, the most important metrics are LOC M, NOP, and CDC. In Figure 5, the
root node of the decision tree is LOC M. NOP is located on the third layer of the tree. This shows that the
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Table 9 Results without the 0.8 correlation metrics

Code smell Precision (%) Recall (%) F-measure (%) ROC area P-value

Divergent Change 76.9 90.9 83.3 0.903 0.6856

Shotgun Surgery 100 83.3 90.9 1.000 1.0000

Parallel Inheritance 81.8 81.8 81.8 0.943 0.9642

Table 10 Results without the 0.9 correlation metrics

Code smell Precision (%) Recall (%) F-measure (%) ROC area P-value

Divergent Change 81.8 81.8 81.8 0.881 0.8927

Shotgun Surgery 100 83.3 90.9 1.000 1.0000

Parallel Inheritance 81.8 81.8 81.8 0.937 0.9908

Table 11 Results of the top ten metric coefficients

Number
Divergent Change Shotgun Surgery Parallel Inheritance

Metric Coefficients Metric Coefficients Metric Coefficients

1 is interface 1.4067 TCC 46.5202 BUR 2.4688

2 is root 1.2052 is static 7.6223 is static 1.6495

3 PNAS 1.1199 DOIH 2.1524 is leaf class 1.3356

4 is leaf class 1.0874 DIT 1.6331 is interface 1.1756

5 BUR 1.0834 NAM 1.3989 MIC 1.1132

6 AMW 1.0525 NOC 1.3080 NOCON 1.1101

7 DAC 1.0422 FDP 1.1255 CRIX 1.0605

8 CDC 1.0333 AMW 1.1252 DAC 1.0536

9 CRIX 1.0265 ChC 1.0140 NAM 1.0448

10 MIC 1.0203 CM 1.0035 NOC Pa 1.0007
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Figure 5 The decision tree generated by Divergent Change.
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Figure 6 The decision tree generated by Shotgun Surgery.

larger the number of codes and project size, the more complex the project. Such projects are more likely
to have the code smell of Divergent Change. As shown in Table 11, the top three most important metrics
for Divergent Change detection are “is interface”, “is root”, and PNAS, with correlation coefficients above
1.1. Although CDC ranks the eighth in Table 11, its coefficient is not much different from the previous
ones. It proves that the concern metric does play a significant role in Divergent Change detection and
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Figure 7 The decision tree generated by Parallel Inheritance.

Table 12 Results of the cross-project experiment

Code smell Precision (%) Recall (%) F-measure (%) ROC area P-value

Divergent Change 100 50.0 66.7 0.833 0.4549

Shotgun Surgery 100 66.7 80.0 1.000 0.4786

Parallel Inheritance 60.0 30.0 40.0 0.603 0.0037

has a positive influence. The primary purpose of the CDC (concern diffusion over components) is to
achieve the number of classes of concerns and the number of other classes accessing them. If CDC is
spread widely enough, a project is easier to have Divergent Change.

For the Shotgun Surgery, TCC, NAM, ChC, and CM are critical for detection. The coefficient of
TCC is 46.5202. The number of public method pairs of classes with common attribute usage affects the
detection of Shotgun Surgery with a high probability. NAM ranks the fifth in the metric coefficient list,
and is in the third level in the decision tree, which indicates the importance of NAM. In other words, if
there is a declared non-inherited accessor method in the interface of a class, Shotgun Surgery is likely
to occur. The number of different methods and classes that call the measured method can affect the
classification of Shotgun Surgery. The more methods and classes that call the measured method, the
more likely Shotgun Surgery exists.

The most important indicators for Parallel Inheritance are BUR, DIT, and NOC Pa. BUR ranks first
in the coefficient ranking and locates at the first level of J48 Decision Tree, which is the most critical
metric. As the root node, BUR determines the branch structure of the decision tree. Figure 7 is a
four-level tree structure rooted by BUR. 1-level judges whether BUR exceeds 3 or not. If the inheritance
tree depth exceeds 1, the program will have Parallel Inheritance. This fully demonstrates that the deeper
the Inheritance tree is, the more descendants it has, the more likely Parallel Inheritance will appear.
NOC Pa and NOC Pr in Table 11 and Figure 7 show the number of subclasses in the entire project or
package that can facilitate Parallel Inheritance detection. The more subclasses of a class, the more likely
it is to have Parallel Inheritance in the project.

Taken together, some metrics are critical for two or more code smell detection, including “is interface”,
“is static”, “is leaf class”, BUR, AMW, DAC, CRIX, MIC, and NAM. These metrics have a positive
impact on the three code smells. Many metrics reflect domain-specific such as CDC, DIT, NOC, CM,
and ChC.

Answer to RQ5: In the Logistic Regression algorithm model and the J48 Decision Tree, the most
important metrics with influence include LOC M, CDC, NOP, TCC, NAM, ChC, CM, BUR, NOC Pa,
and DIT. These metrics play an important role in detecting code smells.

5.6 RQ6: Cross-project detection

In order to re-evaluate the performance of our algorithm, cross-project experiments are carried out. In this
experiment, we conduct the leave-one-out evaluation; i.e., we train models with instances from 16 projects
and detect change barriers in the remaining one project each time. In addition, other experimental settings
are kept unchanged, and the optimal parameter configuration and metrics are still adopted.

Cross-project experimental results are reported in Table 12. As shown in Table 12, the precision of
Divergent Change increases, the recall decreases, and the F-measure decreases by 15.1 percentage points
overall. Shotgun Surgery’s recall drops slightly, while the ROC curve area remains constant. The overall
F-measure decreases by 10.9 percentage points. In the detection of Parallel Inheritance, the P-value is
less than 0.05, which shows a statistically significant difference. The precision, recall, and F-measure of
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Parallel Inheritance all decrease. On the whole, the detection results of these three bad smells are not
much changed, and the effect is reduced within the reasonable range of the cross-project experiment.
This indicates that the experimental method has good effectiveness and performance.

Answer to RQ6: The overall detection results of Divergent Change, Shotgun Surgery and Parallel
Inheritance decrease within the normal range of cross-project experiments.

6 Threats to validity

Generalization. Our datasets are open source systems labeled in [17,20]. Our experiment is only built
on a single version of the system. The experimental results may be one-sided. If further research is
needed in future work, we will consider using multiple versions of the system to validate our approach.

Representativeness. The representation of the dataset needs to be considered. We use the publicly
available dataset that contains change barrier code smells for experiments. Although our dataset is
relatively small, its projects cover a wide range of topics, largely including most categories of industrial
environments. The 17 project systems we collect cover a wide variety of examples, from small to large
and from simple to complex. They include Apache’s open-source projects (Tomcat, Cassandra, Commons
Codec, Derby, James Mime4j, and Commons Logging), Android source code (framework-opt-telephony,
frameworks-base, frameworks-support, sdk, and tool-base), the Java development platform Eclipse kernel,
Google’s Java core dependency library Guava, massive information search engine Aardvark and game
engine “And Engine”, Health Watcher and Mobile Media system. They can be displayed in the vast
majority of categories. In future work, we consider labeling more datasets to support our experiments.

Usability. Our algorithm models and measurement characteristics can be used to solve the problem
of code smell detection in software projects. It is used to help maintenance personnel quickly find change
barriers that appear in programs and restore good and clean code. As a result, the maintenance time
and cost could be reduced.

7 Related work

This section introduces the related work on the development of code smell detection techniques and
machine learning based approaches.

7.1 Development of code smell detection

In recent years, code smell detection techniques evolve rapidly. Since 2005, numerous automated detection
tools have been proposed such as iPlasma [13] and DECOR [24]. Some tools like JDeodorant [25] even
support the reconstruction of code smells. However, the precision of these tools is different, and many
false positives are reported. Since 2008, many search-based techniques have been investigated like parallel
evolutionary algorithm (P-EA) [3], competitive co-evolutionary algorithm (CCEA) [26], hybrid particle
swarm optimisation with mutation (HPSOM) [27], and genetic programming (GP) [28]. They are widely
used in code reconstruction and code smell detection. To some extent, it slightly compensates for the
poor precision in previous work. In recent years, machine learning, as the main technology leading the
trend of the times, has become one of the most important means of code smell detection. Khomh et
al. [29] studied a Bayesian approach and verified that it can identify all bad smells faster than existing
methods. Importantly, there are very few instances of false positives. Amorim et al. [21] evaluated the
effectiveness of C5.0 in identifying code smells. Kaur et al. [9] researched SVM to detect some common
smells.

Nowadays, more and more researchers pay attention to machine learning. They try to use machine
learning to solve the problem of code smell detection, which has achieved great success. Subsection 7.2
focuses on the related work of machine learning in the field of code smell detection.

7.2 Machine learning based approaches

In 2005, Kreimer [10] first proposed a combination of machine learning mechanism and metric-based
design defect detection method to solve the problem of design flaws in software development. Since then,
a new field of machine learning-based code smell detection has been opened.
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Fontana et al. [8] compared 16 different machine learning algorithms in order to find the best algorithm
model for four common bad smells. They calculated six quality dimensions and custom metrics including
size, complexity, cohesion, coupling, encapsulation, and inheritance. They built code smell detection
rules that can evaluate new candidates through a sampling learning process. Dario et al. [30] conducted
an empirical study. They compared different dataset settings with a previous study [8]. They discussed
some potential limitations of current machine learning detection methods. Maneerat et al. [31] used seven
machine learning algorithms to predict seven bad smells from a software design model. They extracted
27 different model metrics like Diagrams, Class Employment, Model size, Complexity, Relationship,
Inheritance, MOOD, and others. They studied several statistical significance tests including the predictive
value of tests and prediction accuracy. Khomh et al. [29] proposed a Bayesian belief network method
based on the goal question metric (GQM) to detect anti-patterns. They presented three levels of the
model, namely conceptual goals, operational problems, and quantitative measures, designed to retrieve
anti-patterns that have symptoms of the problem in a given context.

Most previous work has focused on several smells that are structurally simple and repetitive in software
projects. Kaur et al. [9] and Vaucher et al. [11] focused on one or several common bad smells: God Class,
Data Class, Feature Envy, Long Method. Khomh et al. [29] and Hassaine et al. [32] studied the detection
of anti-patterns, which means poor solutions occur repeatedly in design patterns. The difference between
this paper and the existing research work is that we focus on the change barrier type of code smell, and
detect the code smell with the object-oriented software quality metric and concern metrics. We evaluate
the effectiveness of our approach in predicting this type of smell. On this basis, we also try to analyze
the correlation and importance of metrics and observe the influence of metrics on smell recognition.

8 Conclusion

In this paper, we use Logistic Regression and metrics related to smell characteristics to detect three
kinds of change barrier code smells on 17 projects. We conduct two comparative experiments. The
first experiment compares the computation time and performance between our model and other machine
learning algorithms. The second experiment compares the metrics in the literature with those in this
paper. In addition, we systematically analyze the correlation and importance of metrics. We also observe
the most important metrics for the detection of three code smells. Finally, we conduct a cross-project
experimental evaluation to verify the effectiveness of our experiment.

The experimental results show that our method achieves higher performance in change barrier de-
tection. Our experimental results are superior to other algorithms in terms of precision, recall, and
F-measure. Moreover, our algorithm with domain-specific metrics is better than the algorithm trained
on the existing metrics, which proves that our metrics are indeed effective for smell detection. Finally,
we also evaluate our method with a cross-project experiment. The result of the cross-project experiment
is lower within a reasonable range, indicating the future work for change barrier detection.

Acknowledgements This work was supported by National Key Research and Development Program of China (Grant No.

2018YFB1003900) and in part by National Natural Science Foundation of China (Grant Nos. 61722202, 61772107).

References

1 Fowler M. Refactoring: Improving the Design of Existing Code. Hoboken: Addison-Wesley Professional, 2018

2 Fontana F A, Ferme V, Zanoni M, et al. Automatic metric thresholds derivation for code smell detection. In: Proceedings of

the 6th International Workshop on Emerging Trends in Software Metrics, Florence, 2015. 44–53

3 Ouni A, Kessentini M, Inoue K, et al. Search-based web service antipatterns detection. IEEE Trans Serv Comput, 2017, 10:

603–617

4 Palomba F. Textual analysis for code smell detection. In: Proceedings of the 37th International Conference on Software

Engineering-Volume 2, 2015. 769–771

5 Deng C W, Huang G B, Xu J, et al. Extreme learning machines: new trends and applications. Sci China Inf Sci, 2015, 58:

020301

6 Zhou Z-H. Abductive learning: towards bridging machine learning and logical reasoning. Sci China Inf Sci, 2019, 62: 076101
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