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Abstract In this study, we consider a crowdsourcing classification problem in which labeling information

from crowds is aggregated to infer latent true labels. We propose a fully Bayesian deep generative crowd-

sourcing model (BayesDGC), which combines the strength of deep neural networks (DNNs) on automatic

representation learning and the interpretable probabilistic structure encoding of probabilistic graphical mod-

els. The model comprises a DNN classifier as a prior for the true labels and a probabilistic model for the

annotation generation process. The DNN classifier and annotation generation process share the latent true

label variables. To address the inference challenge, we developed a natural-gradient stochastic variational

inference, which combines variational message passing for conjugate parameters and stochastic gradient de-

scent for DNN and learns the distribution of latent true labels and workers’ confusion matrix via end-to-end

training. We illustrated the effectiveness of the proposed model using empirical results on 22 real-world

datasets.
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1 Introduction

Typical supervised learning requires training labels. However, for many real-world tasks, acquiring the
gold standard in terms of labeling is not possible or too expensive. In recent years, however, crowdsourc-
ing [1, 2] has been established as a reliable solution for collecting data annotations. With the advent of
crowdsourcing services such as Amazon Mechanical Turk1) and Crowdflower2), crowdsourcing has been
used for collecting vast annotated datasets in a time period in numerous fields such as natural language
understanding [3], medical diagnosis [4], vision image tagging [5], and entity resolution [6].

Although crowdsourcing is sufficiently scalable, the annotations provided by annotators are inherently
subjective and there can be a substantial degree of disagreement among different annotators. The noise
associated with annotations can lead to limiting the performance of conventional learning algorithms.
Consequently, a core task in crowdsourcing is estimating the hidden ground truth labels from collected
annotations. Several methods have been proposed for this purpose. In this study, these methods are
based on whether they use only the annotation information or data feature information and, as such, are
categorized into two groups. Among the methods based only on annotation information, majority voting
is the simplest and most common technique, which treats annotators as equally reliable and grants workers
equal votes. To consider the annotators’ skills and data difficulty variation, probabilistic models have been
developed. As an early study in this context, Dawid and Skene [7] parameterized annotators’ reliability
using their error rates and modeled the annotations as noisy observations of the latent ground truth.
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By extending [7] with advanced levels of annotation generation processes and optimization techniques,
additional studies were conducted [8–10].

Because the data features include complementary information, different approach proceeds by inte-
grating these features into a learning model [4, 11–15]. Work conducted by Raykar et al. [4] serves as
among the most prominent in this regard and extends [7] to enable joint learning of the worker param-
eters and a logistic regression classifier. Treating the classifier as a prior of the ground truth label, the
optimization naturally follows the expectation-maximization (EM) procedure of [7]. This idea was later
extended to other types of classifier models such as Gaussian process classifiers [11] and recently to deep
neural networks, known as deep crowd learning (DCL). The studies of [12, 14, 15] are three examples of
DCL. Ref. [12] exploited a convolutional neural network as a classifier and used the EM optimization
procedure. To avoid the computational overhead of iterative EM in [12], Refs. [14, 15] distinguished
themselves from [12] by proposing treatment of the latent true labels as a single hidden layer of the deep
neural network (DNN) and adopting crowd annotations as the output layer. The entire DNN was directly
trained end-to-end using noisy labels and backpropagation.

While [14, 15] combated the computational issue of EM-style algorithms, their heuristic optimization
implementation cannot guarantee the maximization of specific lower bounds of the original learning
objective, unlike EM-based algorithms. Moreover, they lose the probabilistic structure interpretation of
the DNN classifier output and worker parameterization. In this study, to retain the strength of the DNN
in automatic representation learning and the flexibility of probabilistic graphical models for encoding
interpretable probabilistic structures, we propose a fully Bayesian deep generative crowdsourcing model
(BayesDGC).

In particular, we exploit the principle idea of considering the DNN classifier as a prior for the true
labels and parameterize each worker’s reliability using a confusion matrix. The latent true label variables
are shared among the DNN classifier and the annotation generation process. Unlike the work of [14, 15],
which heuristically learned uninterpretable deterministic parameters and required human tuning, our
model was fully Bayesian. The BayesDGC performs distribution inference for the latent true labels and
the worker’s confusion matrix, thus automatically providing a trade-off between the model complexity and
data fitting. To address the inference challenge, we developed a natural-gradient stochastic variational
inference algorithm that combined variational message passing for conjugate structures and the SGD
(stochastic gradient descent) of the DNN and conducted all parameter training in an end-to-end manner
using backpropagation. The optimization process guaranteed to maximizing a variational lower bound
of the observed annotations’ likelihood.

In this study, while the modeling of the independent worker confusion matrix is basic, we note that
the proposed deep Bayesian inference is sufficiently general for application to more sophisticated param-
eterizations, provided that the parameter conjugate structures can be exploited. In future, we aim to
adopt deep Bayesian crowdsourcing involving more sophisticated annotation generation process such as
correlated workers [10, 16].

2 Related work

In the last few years, several methods have been proposed for crowd aggregation to address annotation
noise and trustworthiness issues. Among them, majority voting (MV) is the most straightforward and
extensively used and conducts simple voting involving all workers. Because MV ignores quality differences
in worker annotations, [17] and [18], respectively, proposed strategies considering certainty information
of the majority and minority classes, as well as quality differences of workers over different instances.
Probabilistic approaches modeling the workers’ expertise and instances’ difficulties are another exploration
line. The DS (Dawid & Skene) model [7] is a key early contribution in this regard. To address the
clinical diagnostics problem, the DS model proposes using error rates to parameterize worker labels as
conditioned on the item’s true label, and proposes an EM algorithm to estimate error rates and latent
true labels. The generative annotation modeling idea has served as a basis for many other variants that
model the annotation generation process in more detailed levels using different optimization techniques.
For example, Refs. [5, 8] considered item difficulty and proposed an EM algorithm to infer the most
probable label. Ref. [9] used a confusion matrix for each item and estimated the latent true labels via a
minimax entropy principle, thus promoting the true label distribution close to empirical worker annotation
distributions. Ref. [19] conducted optimization in crowdsourcing from a variational inference perspective
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and proposed variational inference methods including belief propagation and mean-field models. Bayesian
extensions of DS were explored in [20–22], which generalized DS to being fully Bayesian by introducing
Dirichlet priors and conducting inference, respectively, through Gibbs sampling, variational Bayesian
inference, and EM. Recently, rather than independently treating the workers, modeling correlations
between workers has attracted considerable attention. In [23], a non-parametric Dirichlet process is used
to explicitly model workers in clusters within which confusion matrices are possibly similar. Ref. [16]
derived a minimax error rate for general confusion-matrix-based models and proposed a worker-clustering
model. Ref. [10] proposed a mixture model for classes and created links between worker correlation and
annotation tensor decomposition.

Rather than relying purely on annotations to infer the truth, work on using data feature information
to help improve true label estimation have been conducted. Ref. [4] was one of the pioneers in this area
by extending DS using a logistic regression classifier as the true label prior. Moreover, other types of
classifier models such as a Gaussian process classifier and supervised latent Dirichlet allocation [11, 24]
were proposed. These methods primarily work by integrating a supervised learning model as a prior of
true labels and adding it to the probabilistic annotation generation model. Ref. [25] proposed constructing
local linear neighborhood graph in the feature space and conducting annotation distribution propagation
in the label space.

With the success of DNN that allow for flexible data representations to be learned [26], deep crowd
learning attempting to combine DNN with crowdsourcing was performed [12–15, 27]. Ref. [12] used a
convolutional neural network (CNN) classifier as a label prior and applied the EM optimization procedure.
Refs. [14, 15] avoided the computational overhead of the EM by heuristically conducting direct loss
minimization on noisy annotations, thereby applying DNN SGD optimization. Technically, our work is
inspired by [13, 27] who exploited deep generative models and conducted the inference using end-to-end
backpropagation. Our study differs in terms of problem scenario and implementation. Ref. [13] considered
semi-supervised crowd classification based on the inference technique of a non-Bayesian semi-supervised
variational autoencoder [28]. However, Ref. [27] considered the clustering problem. Accordingly, model
construction and inference implementations are entirely different.

3 The proposed model

We denote the set of N examples’ observations by X = {x1, . . . ,xN}, where xi ∈ R
d shows the d-

dimensional feature values of the i-th example. The collected annotations provided by W workers are
denoted as L ∈ {0, 1, . . . ,K}N×W , with Lij representing the label assignment of example i given by the
worker j. When Lij = k (k 6= 0), the i-th example is categorized as a k-th class by the j-th worker.
When Lij = 0, it indicates that the annotations of worker j for example i is not observed. Our target is
to estimate the latent true labels Y = {y1, . . . ,yN} for X, thereby making the best use of feature and
crowd annotations.

3.1 Fully Bayesian deep generative crowdsourcing (BayesDGC)

Figure 1 shows the graphical model of the proposed approach. The model comprises two main parts: the
annotation generation process p(Lij |yi;Vj) and the prior model for latent true labels p(yi|xi,π).

For the annotation generation part, we adopted classic independent confusion matrix parameterization
for each worker. In particular, the confusion matrix of the j-th worker can be characterized by parameters
Vj = {νj1, . . . ,νjK}, with vector νjk = {νjk1, . . . , νjkK}. Given the true label yi of one example xi, the
generation likelihood of annotation Lij is as follows:

p(Lij = l|yi = k,Vj) = νjkl. (1)

Assuming the examples are independent and the annotations for each example are independently gener-
ated by different workers, the total likelihood of the annotations can be written as

P (L|Y ,V ) =
N∏

i=1

W∏

j=1

I[Lij 6= 0]p(Lij |yi,Vj). (2)

For the latent true labels’ prior model, we exploit two priors, i.e., one data invariant prior p(yi;π) and
one feature dependent neural network classifier prior p(yi|xi;γ) parameterized by γ, respectively, and
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Figure 1 The plate notation for our proposed BayesDGC.

defined as follows:

p(yi,π) =

K∏

k=1

πk, p(yi|xi,γ) = Categorical(τ (xi;γ)). (3)

Assuming that the examples are independent, the prior of Y can be written as follows:

p(Y |X,π,γ) = p(Y |X,γ)p(Y |π) =

N∏

i=1

p(yi,π)p(yi|xi,γ). (4)

In addition to the above annotation generation process and true label prior, we assume conjugate
Dirichlet priors over the global parameters Θ = {V ,π}, which are defined as follows:

p(π) = Dir(π|α), p(V ) =

W∏

j=1

K∏

k=1

p(νjk) = Dir(νjk|βjk). (5)

Thus the overall joint distribution of the observed annotations L, the latent true labels Y , and global
parameters Θ = {V ,π} can be represented as follows:

p(L,Y ,Θ|X,γ) = p(π)p(Y |π)p(Y |X,γ)p(L|Y ,V )p(V ). (6)

Our aim is to estimate the posterior distribution of global parameters p(Θ|L,X) and true labels p(Y |L,
X), by maximizing the likelihood of observed annotations p(L).

In the case without the DNN classifier prior, our model degenerated to the Bayesian extension to
the DS model, which was independently implemented using optimization procedures such as Gibbs sam-
pling [20], mean-field variational Bayes [21], and EM [22]. However, in our deep crowd model, when
combined with nonlinear DNN classifier p(Y |X,γ), Gibbs sampling and EM are too slow, because they
involved expensive sampling loops for data or an iterative procedure per epoch. Variational mean-field
message passing is quite efficient, but it depends on conjugate exponential family likelihood to preserve
tractable structures, which does not hold for general data models such as neural networks. In the next
subsection, we build on recent advances in structured variational autoencoders (SVAE), and develop a
stochastic variational inference algorithm for our model, that can conduct efficient end-to-end training
of all parameters and guaranteed to maximize selected variational lower bounds of the log-likelihood of
annotations log p(L).

3.2 Natural-gradient stochastic variational inference algorithm

To perform efficient inference in deep probabilistic graphical models, the variational autoencoder
(VAE) [29] used a reparameterization technique and proposed using a recognition network to fit mapping
from the data to the distribution parameters involved. Thus, the posterior distribution can be inferred
through end-to-end optimization over the entire neural network. Using structured VAE (SVAE) [30], the
authors extended VAE using the notion of natural gradient stochastic variation inference (SVI) [31] for
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conditional conjugate models. This idea is straightforward, rather than using the recognition network to
output the posterior distribution’s parameters, the authors used the recognition network to output the
conjugate graphical model potentials, which were then used for mean-field variational message passing
and natural gradient computation. The advantage of SVAE is that, it can leverage a conjugate structure
to efficiently compute natural gradients of variational parameters, which enables effective second-order
optimization.

In this study, we follow the optimization procedure of SVAE and implement the natural gradient
stochastic variational inference algorithm for our BayesDGC. In the following, we provide the details of
this implementation. As in VAE [29], the variational evidence lower bound (ELBO) is derived as follows:

log p(L) > L(Y ,Θ,γ) , Eq(Θ,Y )

[
log

p(L,Y ,Θ|X,γ)

q(Y )q(Θ)

]
. (7)

Here, we exploit a mean-field variational family, i.e., q(Θ,Y ) = q(Θ)q(Y ). To use the conjugate structure
of our model, we rewrite the distribution of p(π), p(V ), p(Y |π) defined in Eqs. (4) and (5), in their
exponential family form:

p(π) = exp {〈ηπ, t(π)〉 − logZ(ηπ)}, (8)

p(νjk) = exp {〈ηνjk
, t(νjk)〉 − logZ(ηνjk

)}, (9)

p(y|π) = exp {〈ηy(π), t(y)〉 − logZ(ηy(π))} = exp{〈t(π), (t(y),1)〉}. (10)

Here η denotes the natural parameters, t(·) denotes the sufficient statistics, and logZ(·) denotes the log
partition function. For Eqs. (8)–(10), their expressions are as follows:

ηπ =




α1 − 1
...

αK − 1


 , ηνjk

=




βjk1 − 1
...

βjkK − 1


 , ηy(π) =




logπ1

...

logπK


 ,

t(π) =




logπ1

...

logπK


 , t(νjk) =




log νjk1

...

log νjkK


 , t(y) =




y1

...

yK


 ,

logZ(ηπ) =
K∑

k=1

log Γ(αk)− log Γ

(
K∑

k=1

αk

)
,

logZ(ηνjk
) =

K∑

l=1

log Γ(βjkl)− log Γ

(
K∑

k=1

βjkl

)
,

logZ(ηy(π)) = 0.

Here, Γ is the Gamma function. Similarly, rewriting the posterior distribution in its exponential family
form q(θ) = exp{〈ηθ, t(θ)〉 − logZ(θ)}, θ ∈ Θ∪Y . Substituting the above mentioned exponential family
expressions for distributions, the ELBO L(Y ,Θ;γ,α,β) in Eq. (7) becomes L(ηY ,ηΘ;γ,α,β), with η

as parameters:

L(ηY ,ηΘ,γ) , Eq(Θ,Y )

[
log

p(L,Y ,Θ|X,γ)

q(Y )q(Θ)

]
. (11)

To leverage the conjugate structure of our model, as in SVAE [30], we use the DNN classifier to create
conjugate graphical model potentials:

ψ(yi|xi,γ) , 〈γ(xi), t(yi)〉. (12)

Replacing p(Y |X,γ) with the conjugate term defined by ψ(yi|xi,γ), we get the following surrogate
objective L̂:

L̂(ηY ,ηΘ,γ) , Eq(Θ,Y )

[
log

p(L,Y ,Θ) exp{ψ(Y |X,γ)}

q(Y )q(Θ)

]
. (13)
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Then, similar to SVI [31], we can conduct the natural gradient stochastic variational inference. With
the global variational parameters ηΘ fixed, the optimal solution for q∗(Y ) factorizes over examples,

q∗(Y ) =
∏N

i=1 q
∗(yi). Each q

∗(yi) is then derived in the closed form:

log q∗(yi) = Eq(π) log p(yi|π) + 〈γ(xi), t(yi)〉+ Eq(V ) log p(L|Y ,V ) + const,

η∗
yi

= Eq(π)t(π) + γ(xi) +

N∑

i=1

W∑

j=1

I(Lij 6= 0)Eq(νjLij
)νjLij

.
(14)

Note that in νjLij
, the Lij acts as the second dimension index of ν, i.e., when Lij = k, νjLij

becomes
νjk. By plugging η∗

Y back into L, we can define the final optimization objective as follows:

J (ηΘ,γ) , L(η∗
Y ,ηΘ,γ). (15)

It is proved by the SVAE [30] that J (ηΘ,γ) lower bounds the partially optimized mean field objective,
i.e., maxηY

L(ηY ,ηΘ,γ) > J (ηΘ,γ); thus, J can serve as the variational lower bound of L. As per [30],
the natural gradient of J with respect to ηΘ is derived as follows:

▽̃ηΘ
J = [η0

Θ + Eq∗(Y )(t(Y ,X,L),1)− ηΘ] + (▽η(Y )L(η
∗
Y ,ηΘ,γ),0). (16)

Here η0
Θ is the prior natural parameter value of Θ set by users. For our problem, the natural gradients

for ▽̃ηπ
J and ▽̃ηνjk

J are, respectively, derived as follows:

▽̃ηπ
J = η0

π
+

N∑

i=1

Eq∗(yi)t(yi)− ηπ, (17)

▽̃ηνjk
J = η0

νjk
+

N∑

i=1

I(Lij 6= 0)Eq∗(yi)t(yi)⊗ L̄ij − ηνjk
. (18)

Here, L̄ij is the one-hot vector representation of Lij and for parameters γ, their gradient ▽γJ can be
directly computed in the DNN backpropagation framework. The complete optimization process of our
BayesDGC is shown in Algorithm 1.

Algorithm 1 Bayesian deep generative crowdsourcing (BayesDGC)

Input: example features X = {x1, . . . ,xN}, crowd annotations L ∈ {0, 1, . . . ,K}N×W , initial value for the global variational

parameters ηΘ and neural network parameters γ.

1: Repeat:

2: Given ηΘ,γ, update the true label’s natural parameter η∗

yi
for each example using Eq. (14);

3: Given estimated η∗

yi
, compute the gradient of ηΘ using Eqs. (17) and (18) and γ via DNN back propagation, then conduct

SGD updating for them;

4: Until the lower bound J (ηΘ,γ) converges or the maximum number of epochs is reached.

Once the training finished, we estimated each example’s true label assignment and each worker’s
confusion matrix using their respective expected sufficient statistics.

Eq(y)t(y) =




π1

...

πK


 , Eq(νjk)t(νjk) =




ϕ(βjk1)
...

ϕ(βjkK )


− ϕ

(
K∑

l=1

βjkl

)
. (19)

Here ϕ is the digamma function. For our classification problem, the DNN model with parameter γ can
act as a learned classifier. For new data with features as input, their label probability can be predicted
by applying the softmax function the output of the DNN model.

4 Experiments

In this section, we compare the proposed approach with several baseline methods on real-world crowd-
sourcing datasets.
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Figure 2 (Color online) The positive instance fraction of each label for (a) dataset1 and (b) dataset2.

Data sets. We use two image crowdsourcing datasets that we previously collected for the multi-label
crowdsourcing study [32]. These are labeled dataset1 and dataset2, which, respectively, comprises 6, 16
candidate labels and 700, 1495 images, with ground truth labels annotated by human volunteers. The
data analysis in [32] shows that the crowds’ macro F1 scores vary primarily approximately [0.70, 0.80],
which indicates the reliability of the majority of workers and establishes the basis of learning feasibility.

In this study, we conducted experiments on each label independently; accordingly, we derived 22 binary
datasets. Originally, in [32], the annotations of 18 and 15 workers were maintained for experiments.
Observation of the results in [32] and our experiments show that the performance of most methods
converges when the number of workers exceeds 10. In this study, for experiment efficiency, we maintained
the annotations of 9 workers who annotated the most data and conducted aggregation. The original
1248-dim Fisher vector features were used.

Comparison methods. We compared four representative state-of-the-art crowdsourcing methods,
i.e., MV, DS [7], MaxEn [9], and Yutc [4]. Furthermore, for our proposed BayesDGCmodel, we implement
the non-deep Bayesian variant, BayesGC, for which the DNN classifier prior is not used.

For the proposed BayesDGC and BayesGC, the Dirichlet prior Dir(π|α0) with α0 = 1.1 is used for π.
For νjk, one similar prior is used for all workers and Dir(νjk|β

0) with β0
kk = 5, β0

kk′ = 2, k 6= k′ is used
to encode that workers are better compared with random guessing. For BayesDGC, a single hidden layer
(with 100 nodes) multilayer perceptron is exploited as the deep neural network classifier. The Adam
optimizer with 0.001 learning rate is used. For the baselines, we use codes provided by their authors and
the default parameter suggested for each is used. Except for DS, the two-coin model implemented by [19]
is used.

To test the performance of the approaches’ dependence on the number of annotations, we vary the
observed fraction of annotations p from 10% to 100% in a uniformly random manner and report the
average and standard deviation results for 10 times repetitions. As the datasets were originally for
multi-label tasks, the 22 binary data were significantly imbalanced, the positive instance fractions of
which are shown in Figure 2. Most labels were extremely imbalanced; thus, to conduct evaluation of
the results, we treated the top k ranked labels of each method as its positive prediction and the rest as
negative predictions. Here, k is the number of true positive labels for each label. The accuracy and F1
score results are reported. In future, we aim to design algorithms that consider the imbalance factor for
crowdsourcing learning.

4.1 Results

For the 22 datasets, we use l to denote the corresponding binary classification task for the l-th label of
dataset1 and dataset2. Figure 3 shows the accuracy results. It is shown that the proposed BayesDGC
significantly outperforms other methods in most cases, whereas BayesGC is inferior. For all approaches,
an overall monotonically increasing performance is observed as the number of annotations increases. Note
that the four annotation-only exploitation methods, i.e., MV, DS, MaxEn, and BayesGC, often achieve
very similar performances and exhibit an obvious gap compared to when using BayesDGC, particularly
when the number of annotations is limited. This indicates that as an essential information source,
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Figure 3 (Color online) Accuracy results of all methods on 22 real-word datasets.

data features should not be ignored. We then considered the performance of Yutc, which exploited the
feature information through a logistic regression classifier. On some datasets such as dataset1 l = 3, 6
and dataset2 l = 3, 6, 16, Yutc achieves comparable results or even better. However, these results are
not stable and in certain cases even show the worst performance, e.g., dataset1 l = 1, 2 and dataset2
l = 1, 2, 8, 11, which may have been attributed to linear model inefficiency or improper parameter setting.
This indicates that for specific applications, careful parameter tuning must be effected. However, for
our fully Bayesian deep model, the DNN learning feature provides sufficient model capacity and the
parameter tuning is automatically conducted.
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Figure 4 (Color online) F1 score results of all methods on 22 real-word datasets.

Figure 4 shows the results for F1 score. The comparison is similar to the accuracy result, but with
much lower performance, indicating the class imbalance challenge for crowdsourcing learning.

5 Conclusion

In this study, we propose a BayesDGC model for classification problem. The model comprises a prob-
abilistic annotation generation process, and a deep neural network model for effective representational
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learning. To address the inference challenge, we implement an efficient end-to-end natural gradient
stochastic variational inference algorithm, that avoids the computational overhead of EM and sampling
approaches and concurrently retains the interpretable probabilistic structure. Experiments indicated the
superiority of the proposed approach. In future, we aim to extend the sufficiently general inference algo-
rithm to more sophisticated crowdsourcing aggregation problems such as annotation correlation modeling
and extension to multi-label tasks.
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