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Abstract Multiple instance learning (MIL) assigns a single class label to a bag of instances tailored for

some real-world applications such as drug activity prediction. Classical MIL methods focus on figuring out

interested instances, that is, region of interests (ROIs). However, owing to the non-differentiable selection

process, these methods are not feasible in deep learning. Thus, we focus on fusing ROIs identification with

deep MILs in this paper. We propose a novel deep MIL framework based on hard selection, that is, deep

multiple instance selection (DMIS), which can automatically figure ROIs out in an end-to-end approach.

To be specific, we propose DMIS-GS for instance selection via gumbel softmax or gumbel top-k, and then

make predictions for this bag without the interference of redundant instances. For balancing exploration and

exploitation of key instances, we apply a cooling down approach to the temperature in DMIS-GS, and propose

a variance normalization method to make this hyper-parameter tuning process much easier. Generally, we

give a theoretical analysis of our framework. The empirical investigations reveal the proposed frameworks’

superiorities against classical MIL methods on generalization ability, positioning ROIs, and comprehensibility

on both synthetic and real-world datasets.

Keywords multiple instance learning, instance selection, gumbel softmax, variance normalization, hard

attention

Citation Li X-C, Zhan D-C, Yang J-Q, et al. Deep multiple instance selection. Sci China Inf Sci, 2021, 64(3):

130102, https://doi.org/10.1007/s11432-020-3117-3

1 Introduction

In common machine learning assumptions, instances and labels can be provided in a pairwise mechanism
as full supervision signals. However, a class label is only provided for a bag of instances in some special
applications, and multiple instance learning (MIL) [1, 2] is tailored for these problems. In MIL, a bag
can be a molecule with different alternative low-energy shapes [1], a document containing many text
segments [3], or an image with small regions [4]. The core difficulty of MIL lies in the missing labels for
instances [5], and many MIL methods focus on mining the region of interests (ROIs).

Some classical methods are not feasible in deep networks, although they can locate ROIs, such as MI-
SVM [6] and KI-SVM [7], mainly owing to the complex optimization strategy and the non-differentiable
selection process. Some instance-level MILs [6, 8, 9] make predictions for each individual instance, which
can be used to mine ROIs according to the predicted instance labels. Similarly, these approaches are
not so easy to be applied to deep models. Also these approaches’ performances are usually worse than
bag-level ones [4] as shown in [5].

In deep MILs, aggregation functions are utilized to aggregate instance predictions or instance embed-
dings. While the max-pooling operator [4,10] is mostly used in MIL, the non-differentiable property limits
the model’s capacity. Thus, the attention based MIL [11] is utilized to weight instances in an end-to-end
approach. Although the learned weights can figure ROIs out and make MIL easier to understand, it is
originally designed for weighting instances and belongs to a kind of post-selection method. Compared
to this soft attention aggregation process, we propose that the hard selection code can filter disturbing
instances out, for example, the negative instances in the positive bag, which fits the essence of MIL
perfectly. Some other similar mehthods utilize a clustering-based instance selection mechanism for MIL
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Figure 1 (Color online) Illustrations for MIL problem and the difference between soft aggregation and hard selection. The

ellipses are the true distributions of positive (red) and negative (blue) instances, whereas the black dotted line is the oracle

classifier. Triangles are instances from a positive bag, whereas diamonds are from a negative bag. (a) Standard assumption in MIL.

(b) Soft aggregation in MIL, the weighted positive and negative bags are plotted, and the positive bag will be wrongly classified

with the interference of negative instances. (c) Hard selection in MIL, the selected instances in each bag are plotted, and the

interference of negative instances in the positive bag can be omitted.

as in [12], which can also select key instances out. However, we focus on the attention-based deep MIL
methods in this paper.

We propose deep multiple instance selection (DMIS) in this study, from which interested instances can
be identified and selected in the learning process. In order to optimize the hard selection process, we
utilize gumbel softmax or gumbel top-k for end-to-end training, and the method is named as DMIS-GS.
For exploring ROIs as much as possible, we initially apply a higher temperature to DMIS-GS, and then,
we gradually decay it for better exploitation. We also propose a variance normalization approach to make
this temperature tuning process much easier and more transferable across tasks. Hence, our work makes
four contributions:

• We enable deep MILs to identify ROIs in the learning process via an end-to-end approach, and this
is the first attempt to explicitly boost deep MILs with hard instance selection process as far as we know.

• Utilizing gumbel softmax or gumbel top-k for optimizing the hard selection process, we propose
a novel deep MIL framework DMIS, and a simple variance normalization trick is also proposed in the
temperature annealing process.

• We give a theoretical analysis of our framework and show that it is universal to be applied to other
set problems.

• Abundant empirical studies are investigated, which verify that the proposed DMIS-GS can obtain
superiorities against classical MIL methods on generalization ability, positioning ROIs, and comprehen-
sibility.

2 Related work

In this section, we introduce some related works, including multiple instance learning, instance selection,
attention mechanism, and gumbel softmax.

2.1 Multiple instance learning and instance selection

MIL [2, 5, 12–14] is a type of weakly supervised task, in which a labeled bag contains several unlabeled
instances. The ROI [7,15] means the most positive instance in a positive bag. The standard assumption [1]
in MIL refers to that a positive bag contains at least one positive instance, and the illustration can be
found in Figure 1(a).

MIL methods contain two categories. Bag-level MILs [16–18] focus on aggregating instance representa-
tions into a single bag representation, in which some irrelevant instances may be disturbing. Instance-level
MILs [6, 8, 19] devote to predicting instances individually, which can be used to identify ROIs, but their
performances are usually worse as shown in [5]. Considering both of the two categories’ ability, we propose
a novel framework DMIS. In DMIS, we first figure key instances out, filtering the disturbing instances,
and then make predictions using the selected instances.

Classical Instance selection [20] methods devote to filtering useless instances in a training set to reduce
the sample complexity. In computer vision, instance selection methods such as AdaptIS [21] generates an
object mask with the input of the whole image and a local point position. The instance selection process
in MIL mainly focuses on mining key instances from a bag. Some traditional MIL methods [7, 15, 19,
22, 23] focus on detecting key instances or promoting bag-level classification accuracy via instance level
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information. However, these methods cannot be directly applied to deep networks owing to the complex
optimization strategies and the non-differentiable selection process. We apply a differentiable instance
selection process to the deep MILs, which can be trained in an end-to-end mechanism.

2.2 Attention mechanism

Attention mechanism with deep learning was first applied to the neural machine translation task [24],
and it has been used in MIL [11] as a permutation-invariant pooling operator to aggregate instance
representations. The weights of instances are generated using a feed-forward fully-connected network,
based on which the important instances can be determined. However, this is a post-selection mechanism
and the continuous weights are not so comprehensible when compared with discrete codes.

As shown in [25], hard attention can obtain superiorities toward soft alignment, both on model perfor-
mance and comprehensibility. However, hard attention is not so easy to train in an end-to-end framework,
and some possible strategies based on reinforcement learning [25] or variational inference [26] are pro-
posed. Recently, Ref. [27] introduces a new approach for hard attention in computer vision based on the
magnitudes of the feature vectors and achieves a better performance. To obtain more precise ROIs and
enhance the comprehensibility of MIL, we propose DMIS, utilizing hard attention to select key ROIs.

2.3 Gumbel softmax

In ROI analysis of MIL, we aim to sample the instance with the largest score, which corresponds to the
standard assumption in MIL [1]. The classical approaches, such as the inverse transform sampling, can
sample a one-hot code from the categorical distribution obtained by normalizing these scores. However,
these sampling approaches are not differentiable and cannot be integrated into the neural network. Gum-
bel softmax [28, 29] is proposed to solve this problem, enabling the end-to-end training of discrete code
in deep networks.

Under the framework of DMIS, we propose DMIS-GS based on gumbel softmax to generate categorical
selection code for instance selection. As shown in discrete representation learning [30] and the binary
activation gate in LSTM [31], categorical variables can be more precise and explainable than continuous
ones. Considering the sampled one-hot codes may not be enough to completely figure ROIs out, we also
utilize the gumbel top-k [32] to select several instances.

The temperature in gumbel softmax needs to be finely adjusted, and the normal method is an annealing
process with decaying step by step. We find that normalizing the instance scores with the variance can
make this hyper-parameter tuning process much easier.

3 Proposed methods

In this section, we will introduce the proposed framework DMIS and the method DMIS-GS.

3.1 Problem statements

In MIL, a dataset is denoted as X = {(Xi, yi)}
N
i=1, containing N bags. Each bag Xi is represented as

Xi = {Xij}
Ni

j=1, containing Ni instances, and the bag-level label is yi ∈ {0, 1}. The jth instance in the
ith bag is a d-dimensional vector denoted as Xij . For simplicity, we sometimes omit the bag index and
denote a bag as X = {xi}

K
i=1 with K instances.

3.2 Hard selection vs. soft aggregation

In this subsection, we will show that in MIL with the standard assumption [1], hard selection can be
much more appropriate for soft aggregation from both qualitative analysis and theoretical explanations.

Soft attention based MIL assigns a group of continuous weights to the instances, including weights
for negative instances in the positive bag, which will result in an inaccurate aggregation for this positive
bag. In some classification tasks, we expect that the sample representation should be far away from the
oracle classification boundary as much as possible. If the aggregation process is inaccurate, the estimated
positive bag representation will be more closer to the negative one, leading to a wrong decision, which
is shown in Figure 1(b). However, hard selection can filter out the interference brought by negative
instances, which is shown in Figure 1(c).

In order to give a theoretical explanation for hard selection, we make two assumptions as follows:
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Assumption 1. First, both the positive and negative instances (embeddings) are distributed as clusters,
for example, Gaussian distributions. Second, for a positive bag, the attention based MIL can always put
more attention on the positive instances, and focus equally on negative instances.

The first assumption is a rational assumption in deep learning based methods, especially in deep
metric learning [33, 34], where the between-class distances are maximized and the inner-class distances
are minimized. The second one can introduce a simple attention weight formula which will be used in
the following remark and corresponding theoretical analysis.

Remark 1 (Hard selection in standard MIL). With the standard assumption considered in MIL, hard
selection can be more appropriate compared with soft aggregation, both in promoting performance and
in enhancing comprehensibility.

In attention based MIL, we denote the attention weights for Xij as αij satisfying
∑Ni

j=1 αij = 1, and
the true label for this instance as yij ∈ {0, 1} (although inaccessible in training), while yi ∈ {0, 1} denotes

the obtainable bag label. We first aggregate instances in a bag as
∑Ni

j=1 αijXij , and then we empirically
estimate the positive center as follows:

ĉ+ =
1

∑N

i=1 yi

N
∑

i=1

yi





Ni
∑

j=1

αijXij



 , (1)

in which ĉ+ denotes the positive class center estimated from the aggregated bag-level representations.
∑N

i=1 yi is the number of positive bags.
It is obvious that we can get different estimated class centers with different attention weights αij , which

will determine the quality of classifier boundary. We first give the oracle positive class center, which can
be estimated from positive instances:

ĉ+o =
1

∑N

i=1

∑Ni

j=1 yij





N
∑

i=1

Ni
∑

j=1

yijXij



 , (2)

where ĉ+o refers to the oracle estimation for the positive class center using the instance labels yij . The

total number of positive instances is
∑N

i=1

∑Ni

j=1 yij .
We can also get the estimated negative class center using oracle instance labels as follows:

ĉ−o =
1

∑N

i=1

∑Ni

j=1(1− yij)





N
∑

i=1

Ni
∑

j=1

(1− yij)Xij



 . (3)

With the second assumption in Assumption 1, we define a simple αij for positive bags as follows:

αij = yij
µ

N+
i

+ (1 − yij)
1− µ

Ni −N+
i

, (4)

in which µ is the total weight assigned to the N+
i positive instances in the ith positive bag. Then we

analyze the decomposition of ĉ+ by replacing the αij in (1) with (4):

ĉ+ =
1

∑N

i=1 yi

N
∑

i=1

yi





Ni
∑

j=1

µ

N+
i

yijXij +

Ni
∑

j=1

1− µ

Ni −N+
i

(1− yij)Xij





= µ ·
1

∑N

i=1 yi

N
∑

i=1

Ni
∑

j=1

yi

N+
i

yijXij + (1 − µ) ·
1

∑N

i=1 yi

N
∑

i=1

Ni
∑

j=1

yi

Ni −N+
i

(1 − yij)Xij

, µ · part1 + (1− µ) · part2, (5)

in which “part1” and “part2” are related to positive and negative centers (that is, (2) and (3)) respec-
tively. If we assume Ni and N

+
i in each positive bag nearly equal to one another, then we can get the

following decomposition:
ĉ+ ∝ λ1µĉ

+
o + λ2(1− µ)ĉ−o , (6)



Li X-C, et al. Sci China Inf Sci March 2021 Vol. 64 130102:5

…

Instance classifier

…

g

a

…

g
a

Classifier

…

Instance selection

Classifier

(a) (b) (c)

Figure 2 (Color online) Comparisons of our proposed DMIS with instance-level and bag-level frameworks in MIL. The “a” with

a circle refers to the attention, and the dotted lines mean that the attention aggregation is optional. (a) Instance-level MILs first

make predictions for instances, and then aggregate all predictions. (b) Bag-level MILs first aggregate instances together, and then

make predictions. (c) Our proposed DMIS will first figure ROIs out, and then make predictions without the influence of disturbing

instances.

in which λ1 and λ2 are constant values.
Following the aforementioned decomposition, we can find that a higher µ can make the estimated

positive class center closer to the oracle one, which implies that in MIL, a distribution with smaller entropy
(that is, from which hard selection codes can be sampled) will be more suitable for weighting instances.
According to this phenomenon, we replace the soft attention based MIL with a hard one. Specifically,
we can use a softer attention to explore instance relationships in the beginning, and ultimately we use a
harder or even one-hot code to omit interference as much as possible.

3.3 Deep multiple instance selection (DMIS)

There are two classical frameworks for MIL, that is, the instance-level and bag-level MIL as categorized
in [5, 11], which are illustrated in Figures 2(a) and (b). The two core components in MIL, namely the
transformation and aggregation function, construct the general formulation for MIL:

F (X) = fθ (gφ (fψ (X))) , (7)

in which fθ(·) and fψ(·) are transformation functions and gφ(·) is the aggregation function.
We propose a novel framework DMIS different from the two classical frameworks. First, we transform

instances to a low-dimensional space via fψ(·). Then we select key instances and aggregate them via
gφ(·), through which the disturbing instances can be filtered out. In the end, we apply a classifier fθ(·) to
make predictions for the bag. The whole framework is shown in Figure 2(c). It is worth mentioning that
DMIS will first figure key instances out via the learned hard selection code and this process can be done
in an end-to-end manner, which is the most different aspect from the bag and instance level methods.

Although we have demonstrated that in MIL with standard assumption, hard selection can be more
appropriate than soft aggregation, there still exsit two core problems in utilizing hard selection for ROIs
identification: how to optimize the instance selection process and how to precisely identify ROIs as much
as possible. One possible way to solve the first problem is utilizing reinforcement learning (RL), such
as REINFORCE for optimizing hard attention [25]. However, RL based methods need large amounts of
episodes for exploration and it is more suitable for sequential decision making tasks. Hence, we select
a neural reparametrization method, that is, DMIS-GS, for end-to-end training. We find DMIS-GS can
inherently solve the second problem to some extent, which will be introduced in the next subsection.

3.4 DMIS-GS

We introduce the proposed DMIS-GS method for both simple and complex MILs in this subsection, which
utilizes gumbel softmax and gumbel top-k respectively. Then we propose the variance normalization trick.
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3.4.1 For simple MIL

DMIS-GS utilizes gumbel softmax [28, 29] to select instances in an end-to-end approach. For a bag of
instances X = {xi}

K
i=1, we apply the MIL framework as introduced in (7). For formula simplicity, we

omit the instance mapping step, that is, fψ(·) is an identity function.
In order to select the interested instances, we first obtain the importance scores for each instance via a

pseudo score function. Also for formula simplicity, we use a linear score function with a sigmoid activation
function as an example (while in practice, we can use a more complex score function):

si = Sigmoid
(

wTxi + b
)

, (8)

where w and b are the parameters of the score function. With the obtained pseudo scores s = (s1, s2, . . . ,
sK), we use the Gumbel-Max trick as a reparametrization process

ui =
exp ((log si + gi)/λ)

∑K

j=1 exp ((log sj + gj)/λ)
, (9)

where gi is drawn from Gumbel(0, 1) = − log(− log(z)), z ∼ Uniform(0, 1), and u = (u1, u2, . . . , uK) is
the obtained selection code. It is worth mentioning that the λ ∈ (0,∞) is the temperature deciding the
approximation degree of the obtained u toward the one-hot code. A higher λ can make u smoother,
which can be used for exploration in the beginning, whereas a smaller λ can lead to a harder u.

With the obtained u, we can get a one-hot code as follows:

j⋆ = argmax
j

{uj}, e = OneHot(j⋆), (10)

where j⋆ is the sampled index which satisfies p (j⋆ = k) ∝ sk, and e is the one-hot code with the j⋆th
element being 1 while others being 0. Then the selected instance is (here we denote X ∈ RK×d as a
matrix contains all instance representations)

gφ(X) = XTe. (11)

With the selected instance gφ(X), we can apply a classifier fθ(·) to get the bag-level predictions, and
the posterior distribution of bag label y can be obtained

fθ (gφ(X)) = pθ (y|gφ(X)) . (12)

The optimization target for MIL dataset {(Xi, yi)}
N
i=1 with N bags is

θ⋆,φ⋆ = argmax
θ,φ

1

N

N
∑

i=1

log pθ (yi|gφ(Xi)) . (13)

With the gumbel reparametrization trick, the whole framework can be trained end-to-end via gradient
backpropagation. The gradients can be propagated via straight-through gradient estimator as introduced
in [35] for the discrete code in (10), and the score function parameters φ = {w, b} can be updated.

3.4.2 For complex MIL

The proposed DMIS-GS earlier can only select one instance from a bag, which is not competent for
complex MIL problems. For example, the collective assumption [5] in MIL assumes that only the definite
combinations of instances can decide which class the bag belongs to. For example, only an image contains
both sea and sand segments can be categorized as beach.

We enhance our methods with the ability of selecting k instances from bags to combine several instances
together. As to DMIS-GS, we can use the gumbel top-k method as proposed in [32], which directly selects
the instances with the top-k scores similar to (10). The process can be formed as follows:

j⋆1 , j
⋆
2 , . . . , j

⋆
k = arg top-kj{uj}. (14)

Then we can get k one-hot codes as E = (e1, e2, . . . , ek) ∈ RK×k. Finally, we can select these instances
out and use a mean pooling operator to get instance combinations:

gθ(X) = mean
(

XTE, dim = 1
)

. (15)

Finally, we apply a classifier to make predictions for the whole bag as before, and we denote this
proposed method as DMIS-GS-K, where K is the number of selected instances.
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3.4.3 Variance normalization

As proposed in Subsection 3.3, one of the core problems for instance selection is how to figure out ROIs
in a precise way as much as possible. At the beginning of the training, an exploration strategy should be
used for searching key instances, and then the obtained key instances should be maximally exploited.

We propose that the temperature of DMIS-GS can inherently work for mining the key instances. A
common method is using an annealing process for the temperature in (9). To be specific, the temperature
is initialized as T0 and then is decayed with a multiplier γ for every epoch. The lowest temperature is
set as Tmin. These are important hyper-parameters for DMIS-GS. The hyper-parameters are not so easy
to determine, and the best ones used in one task cannot be directly transferred to another task, which
is due to the varying distributions of the obtained scores in (8). In our studies, we propose a variance
normalization process as follows:

si =
1

K

K
∑

k=1

si, ŝi =
si

√

∑K

i=1 (si − si)
2
/K

. (16)

The normalization process is similar to batch normalization [36] and instance normalization [37] meth-
ods in deep models, which can bring out more flat optimization regions as shown in [38]. With the
normalized instance scores, we find that the hyper-parameters are much easier to determine and the best
ones can be transferred among tasks, which is conformed to the explanation in [36] and will be verified
in Subsection 4.2.3.

Therefore, the hyper-parameters matter a lot in our proposed DMIS-GS, and the variance normalization
process can make it easier. We give Remark 2.

Remark 2 (Variance normalization). A variance normalization process as shown in (16) can make the
temperature tuning process much easier, that is, the determination of hyper-parameters (T0, γ, Tmin) can
be shared among tasks, leading to a better balance of exploration and exploitation in mining ROIs.

3.5 Theoretical analysis

As characterized in [39], the permutation invariant function family has a special structure which provides
insight into designing deep network architectures that can operate on sets. The MIL problems can be
considered as the set problems, in which the bags and instances are sets and elements correspondingly.
We first display the theorem in [39], and then under which we can analyze our framework in a theoretical
way and get a better understanding of our framework.

Theorem 1 (Permutation invariant functions [39]). A function f(X) operating on a set X having
elements from a countable universe, is a valid set function, that is, invariant to the permutation of
instances in X, iff it can be decomposed in the form ρ(

∑

x∈X(ψ(x)), for suitable transformations ρ(·)
and ψ(·).

The theorem implies that the set problem can be divided into three steps. First, a basic function ψ(·)
is applied to each instance, and the output can be low-dimensional representations. Second, a summation
operator is applied to aggregate all the representations. Third, another transformation function ρ(·) is
applied to the aggregated representation. As further illustrated in [10], the summation operator is replaced
with a maximization operator, and the max-pooling is utilized to aggregate instance embeddings in point
cloud tasks. Both of them agree well with (7).

Being different from the aforementioned two set function formulas, our framework can be declared as
Remark 3.

Remark 3 (Permutation invariant DMIS). Our proposed DMIS can be formulated as ρ(
∑

x∈X(ψ(x))),
in which ψ(x) = 1

K
s(x) · x. s(x) is a selection function which returns a discrete value in {0, 1}, and K

is the number of selected instances.

Hence, our framework can also be applied to other set problems to obtain better performance and
better comprehensibility, which shows that our framework is universal. However, we only focus on MIL
problems in this paper.
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Figure 3 (Color online) Comparisons of classification performance and positioning ROIs with different aggregation weights in

synthetic MIL dataset. (a) Classification accuracy. MI-Mu1.0 uses the oracle hard selection weights. DMIS-GS can get better

performance than MI-Soft. (b) Comparison of positioning ROIs. DMIS-GS can identify ROIs more accurately than MI-Soft.

4 Experimental studies

In this section, we show that our proposed DMIS can obtain superiorities toward other MIL methods
on both generalization ability, positioning ROIs, and comprehensibility using hard selection. We verify
these through synthetic data, classical MIL datasets and sentiment classification datasets.

4.1 Synthetic data

4.1.1 Details

In order to demonstrate why hard selection facilitates MIL learning process, we construct a synthetic
dataset with accessible instance labels. We can first show that soft weights for aggregation may inevitably
introduce some interfering elements, and then we can compare hard selection and soft attention in the
aspect of positioning ROIs quantitatively.

We construct a synthetic dataset as shown in Figure 1(a). First, we select two oracle gaussian distri-
butions for positive and negative instances correspondingly, for example, µ1 = (1.0, 2.0), µ2 = (2.0, 1.0)
and the Σ1, Σ2 are set to the diagonal matrix with definite value, for example, 0.1. Then we sample
both positive and negative bags according to the standard assumption in MIL [1]. Specifically, we sample
5000 positive bags and 5000 negative bags as train set, 1000 positive bags and 1000 negative bags as the
test set. For convenience, each bag contains 10 instances, and only the first instance is positive in the
positive bag, while the instances in the negative bag are all negative.

We utilize a two-layer MLP with a hidden size of 32 to make predictions for the synthetic dataset.
We use another two-layer MLP and sigmoid activation to generate instance scores for DMIS-GS. We
can set the instance aggregation weights from an oracle view to make comparisons among different
aggregation methods. Specifically, for the positive instance in the positive bag, we set its weight as
µ ∈ {0.1, 0.3, 0.5, 0.7, 1.0}, while the other negative instances with weight (1 − µ)/(K − 1). For the
aforementioned synthetic data, we set instance aggregation weights with an oracle K-dim vector as
[µ, (1− µ)/(K − 1), . . . , (1− µ)/(K − 1)], and the model is referred as MI-Mu0.1 to MI-Mu1.0. We focus
on comparing with MI-Soft [11], whose aggregation weights are learned in an end-to-end approach. We
can use a larger batch size of 64 owing to that the synthetic data has the same number of instances in
each bag. The optimizer is Adam with a learning rate of 0.001, and all of the networks use the same
initialization.

As to the hyper-parameters in DMIS-GS, we initialize the temperature at T0 = 10.0 at first and then
multiply it by γ = 0.98 for every mini-batch. The minimal value of temperature is set as Tmin = 0.1.
Also, we utilize the proposed variance normalization trick.

4.1.2 Results and analysis

In the aspect of model performance, we record the classification accuracy on the test set for every
15 mini-batches, and the plotted curves is shown in Figure 3(a). From this figure, we can observe
that MI-Mu1.0 can get the best classification accuracy 0.998, which means that there is absolutely no
disturbing information in the aggregation process of positive bags owing to the oracle selection code.
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However, with the µ decreasing, such as MI-Mu0.7 and MI-Mu0.3, the classification performance drops
a lot. At another extreme, the classification accuracy of MI-Mu0.1 is only about 0.75 when the weights
in positive bags are uniform.

MI-Soft learns a group of soft aggregation weights, and can get a better performance than MI-Mu0.3,
while worse than MI-Mu0.5. DMIS-GS can classify bags more accurately as shown in Figure 3(a), which
tends to approach MI-Mu0.5 and MI-Mu0.7. We also find that DMIS-GS will almost always get a lower
accuracy in the beginning training process with multiple trials, which is resulted from the exploration
process with a higher temperature.

In order to determine whether DMIS-GS can focus on the ROIs more precisely or not when compared
to soft aggregation, we investigate the identification of the positive instances in the 1000 test positive
bags. We get the instance weights in each positive bag and calculate the mean values. For DMIS-GS,
we first apply a softmax for the instance scores. The plotted mean weights of MI-Soft and DMIS-GS are
shown in Figure 3(b), in which we only plot the weights of the first five instances for aesthetics. With
the accessible instance labels in positive bags, we know that the first instance is positive while the others
are negative ones. For MI-Soft, the mean weight assigned to the positive instance is about 0.68, while in
DMIS-GS, the weight is almost 0.92, which verifies that DMIS-GS can locate ROIs more accurately. This
also explains the performance in Figure 3(a), in which DMIS-GS can get classification accuracy higher
than 0.9 in several batches while MI-Soft is much worse.

4.2 Classical MIL data

4.2.1 Details

In order to compare our methods with the classical MIL methods, we verify our proposed DMIS on
classical MIL datasets. MUSK1 and MUSK2 [1] are drug activity prediction datasets, in which a bag is
a molecule with multiple shapes. There are a total of 92 bags, 476 instances in MUSK1 and 102 bags,
6598 instances in MUSK2. TIGER, ELEPHANT and FOX [6] are the extracted image features, in which
a bag is positive if only it contains the target animal features. There are total 1220, 1391, and 1320
instances in them correspondingly. There are 200 bags in each of them.

We compare our methods with both shallow and deep MILs. For shallow MILs, we select SVM
based methods mi-SVM and MI-SVM [6], graph based method mi-Graph [40], descriptor based methods
miVLAD and miFV [41]. For deep MILs, we compare with MI-Net and its variants MI-Net-DS, MI-Net-
RC [42]. Specially, different aggregation methods, such as mean aggregation (that is, MI-Mean), max
aggregation (that is, MI-Max), and attention aggregation (that is, MI-Soft [11]) are also compared.

We select the network and hyper-parameters as reported by MI-Net [42], and all of our experiments
are repeated 10 times. The average results are reported. For DMIS-GS, we utilize the proposed variance
normalization trick, and we initialize the temperature as T0 = 5.0 at first and then multiply it by γ = 0.9
for every epoch, and the minimal value of temperature is set as Tmin = 0.1. And also, a two-layer MLP
with sigmoid activation is utilized to generate instance scores.

4.2.2 Results and analysis

The classification accuracies can be found in Table 1. Our methods can obtain superiorities toward both
classical methods and network-based MILs on image feature datasets, while a bit lower than classical
methods on drug datasets. However, our methods can always get higher accuracies than MI-Soft in all
datasets, which verifies the finding that hard selection can be more appropriate in MIL again.

We also show the ability to position ROIs in DMIS-GS. Because the instance labels are not obtainable,
we use the entropy of instance aggregation weights as an alternative criterion. For DMIS-GS, we apply
a softmax to the score as in (8) and calculate the mean entropy of learned aggregation weights. For
MI-Soft, the attention weights are already processed via a softmax operator, and so that we can calculate
the entropy directly. We select MUSK1 and ELEPHANT as examples and the changes of entropy on the
test set in the learning process are plotted in Figure 4. We find that DMIS-GS tends to assign smoother
weights for exploration at first and turns to harder ones sharply, while the entropy obtained by MI-Soft
drops slower. Through this finding, we can know that DMIS-GS will explore a lot in the beginning,
and then can locate ROIs quickly with a sharper instance selection distribution. Notably, the entropy
is calculated on the test set and the instance weights of DMIS-GS are obtained directly from the scores
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Table 1 Comparison results on five classical MIL datasets, and the classification accuracy is reported. “K” in “DMIS-GS-K”

means the number of selected instances. DMIS-GS and DMIS-GS-K can get better results than most compared methods

MUSK1 MUSK2 FOX TIGER ELEPHANT

mi-SVM 87.4 83.6 58.2 78.4 82.2

MI-SVM 77.9 84.3 57.8 84.0 84.3

mi-Graph 88.9 90.3 62.0 86.0 86.9

miVLAD 87.1 87.2 62.0 81.1 85.0

miFV 90.9 88.4 62.1 81.3 85.2

MI-Net 88.7 85.9 62.2 83.0 86.2

MI-Net-DS 85.9 87.4 63.0 84.5 87.2

MI-Net-RC 89.8 87.3 61.9 83.6 85.7

MI-Mean 89.1 89.6 60.2 83.5 86.9

MI-Max 87.6 84.7 58.1 81.2 85.7

MI-Soft 89.2 85.8 61.5 83.9 86.8

DMIS-GS 90.4 90.2 62.7 86.6 87.9

DMIS-GS-2 90.2 90.2 63.9 85.7 86.0

DMIS-GS-3 90.3 90.7 62.8 85.9 87.6
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Figure 4 (Color online) The change of weight entropy on the test sets of MUSK1 (a) and ELEPHANT (b) in the learning process.

DMIS-GS can obtain much lower entropy in the learning process.

before reparametrization, showing that the balance of exploration and exploitation also generalizes to
test data.

4.2.3 Ablation studies

The temperature matters a lot in DMIS-GS as illustrated in Subsection 3.4.3. Hence, we investigate the
influence of these hyper-parameters including the initial temperature T0, the decaying multiplier γ, and
the minimal temperature Tmin.

We guess that the instance scores in different datasets may have uneven distributions, which makes the
adjusting process harder and cannot be shared. The following will present an experimental verification.
First, we record instance scores (before sigmoid) of all bags without variance normalization in different
datasets and plot their distributions as shown in Figure 5(a), It is obvious that the scores vary a lot
across datasets, leading to the hardness of hyper-parameter selection. To be specific, the ELEPHANT
instance scores vary in [−1.64, 3.79], the FOX scores lie in [−1.01, 0.96], while the TIGER scores vary in
[−0.95, 1.23]. And also, the magnitude and skewness vary a lot too. However, with the normalization
process applied, the score distributions become more similar across datasets as shown in Figure 5(b),
which will make the knowledge of hyper-parameter selection more transferable.

Then, in order to show this in detail, we compare DMIS-GS with different settings of (T0, γ, Tmin),
and the compared results are listed in Table 2, in which the first column shows whether use the variance
normalization or not.

From the listed results, we find that the performances on different tasks tend to be consistent with
the variance normalization. For example, as shown in the left part of Table 2, the best hyper-parameters
in all of the three datasets contain γ = 0.9 and Tmin = 0.1, and a much faster decaying method with
a smaller γ = 0.5 will make the performance drops a lot. However, in the right part of Table 2, there
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Figure 5 (Color online) The comparisons of instance score distributions before (a) and after (b) variance normalization. With

variance normalization, the score distributions are more similar.

Table 2 Comparison results on different hyper-parameters of the temperature in DMIS-GS. With variance normalization, the

best hyper-parameters in different datasets tend to have the same values

With VarNorm Without VarNorm

(T0, γ, Tmin) FOX TIGER ELEPHANT FOX TIGER ELEPHANT

(5.0, 0.9, 0.1) 62.7 86.6 87.9 60.3 84.5 85.9

(1.0, 0.9, 0.1) 60.3 85.5 83.2 60.8 84.7 86.3

(10.0, 0.9, 0.1) 62.1 86.2 87.7 61.2 85.5 83.2

(5.0, 0.5, 0.1) 54.3 79.7 82.2 59.8 85.8 84.7

(5.0, 0.95, 0.1) 61.4 85.3 85.8 61.5 83.6 85.4

(5.0, 0.9, 0.5) 61.5 84.5 86.5 60.5 84.1 85.2

(5.0, 0.9, 0.01) 58.7 83.2 83.8 61.9 84.8 84.5

is basically nothing in common among the best hyper-parameters without the normalization process,
implying that we need to search the best hyper-parameters for each dataset from scratch. The above
experiments verify that the variance normalization trick could make the hyper-parameter determination
process much more general across tasks.

4.2.4 ROIs detection

In order to show the ability of detecting ROIs, we apply DMIS-GS to some classical MIL datasets with
accessible instance labels. We select Reuters text classification datasets used in [40] and report the
precision in Table 3. The compared methods are mi-SVM [6], KI-SVM [7], VF, and VFr [23]. Note that
our proposed DMIS-GS is mainly devoted to boosting the performance of MIL classification via selecting
important instances, and it does not search out all key instances, so we only focus on the detection
precision. From this table, we can find that our DMIS-GS can get a better ROIs detection performance,
which will make the bag classification more accurate.

4.3 Sentiment classification data

4.3.1 Details

Sentiment classification [43, 44] aims to mine the emotions from texts. Especially with the rapid de-
velopment of online business, mining the opinions and emotions from consumer reviews can facilitate
consumers to quickly have a comprehensive understanding of specific products or services. Usually, the
whole review (that is, the bag) contains multiple text segments (that is, instances) with varying emotions,
which means that the MIL framework can be applied for sentiment analysis [3].

In this experiment, we evaluate our framework on three sentiment classification datasets, including
Yelp13, Yelp14, and IMDB, in which the goal is to predict score ranks of product reviews. We declare that
our framework can get higher or comparable results than other methods while keeping a comprehensive
decision process. We use corresponding datasets which are smaller than the datasets reported in [43,44],
and the preprocessing steps can be found in [43]. The descriptions of these datasets are listed as follows:
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Table 3 The precision of detecting ROIs on some Reuters text datasets

mi-SVM KI-SVM VF VFr DMIS-GS

alt.atheism 0.53 0.37 0.73 0.58 0.78

comp.graphics 0.61 0.38 0.66 0.95 0.93

comp.os.ms-windows.misc 0.55 0.39 0.79 0.55 0.86

comp.sys.ibm.pc 0.62 0.39 0.85 0.68 0.86

comp.sys.mac.hardware 0.78 0.32 0.78 0.70 0.81

comp.windows.x 0.55 0.40 0.69 0.27 0.72

misc.forsale 0.59 0.03 0.66 0.85 0.73

rec.autos 0.43 0.39 0.78 0.79 0.82

rec.motorcycles 0.40 0.71 0.70 0.42 0.74

rec.sport.baseball 0.46 0.63 0.73 0.84 0.79

rec.sport.hockey 0.45 0.83 0.79 0.83 0.82

sci.crypt 0.63 0.36 0.79 0.40 0.85

sci.electronics 0.95 0.39 0.96 0.90 0.96

sci.med 0.56 0.57 0.73 0.54 0.83

sci.space 0.37 0.30 0.86 0.76 0.91

soc.religion.christian 0.34 0.39 0.84 0.64 0.80

talk.politics.guns 0.52 0.36 0.53 0.66 0.73

talk.politics.mideast 0.73 0.66 0.72 0.58 0.71

talk.politics.misc 0.65 0.54 0.72 0.65 0.66

talk.religion.misc 0.30 0.38 0.67 0.49 0.70

Table 4 Comparison results on sentiment classification. ACC is classification accuracy, the higher the better, and MSE is the

mean squared error, the lower the better. “K” in “DMIS-GS-K” means the number of selected instances

Yelp13 Yelp14 IMDB

ACC MSE ACC MSE ACC MSE

MILNET 63.8 0.477 63.7 0.465 45.8 2.12

HN-Mean 63.7 0.475 63.5 0.473 46.4 2.16

HN-Max 63.2 0.502 63.6 0.463 46.6 2.14

HAN 64.0 0.470 64.0 0.455 46.5 1.95

DMIS-GS 63.8 0.471 63.9 0.473 46.6 1.88

DMIS-GS-2 64.8 0.462 63.8 0.460 46.9 1.86

DMIS-GS-3 64.0 0.460 64.5 0.465 46.7 1.88

• Yelp13 is the restaurant review dataset from Yelp Dataset Challenge in 2013, containing five levels
of ratings and 78966 reviews in total.

• Yelp14 is the restaurant review dataset from Yelp Dataset Challenge in 2014, containing five levels
of ratings and 231163 reviews in total.

• IMDB is the movie review dataset, containing ten levels of ratings and 84919 reviews in total.
We apply DMIS-GS to the HAN [44] framework, selecting interested words or sentences in a hierar-

chical manner. To be specific, we use glove embeddings [45] and then feed the words representations into
the network. First, at the sentence level, interested words are selected via DMIS-GS and the sentence
representations can be obtained. Second, the sentence representations are fed into the document-level pro-
cessing networks and similarly DMIS-GS is utilized for selecting interested sentences. Last, the document
classification can be made.

We compare our methods to instance-level MILNET [3], HAN [44], variations of HAN with mean-
pooling (HN-Mean) or max-pooling (HN-Max). The specific architecture and parameter settings can be
found in HAN [44]. For DMIS-GS, we utilize the proposed variance normalization trick, and we initialize
the temperature as T0 = 20.0 at first and then multiply it by γ = 0.95 for every epoch, and the minimal
value of temperature is set as Tmin = 0.1. And also, a two-layer MLP with sigmoid activation is utilized
to generate scores for both words and sentences.

4.3.2 Results and analysis

Sentiment classification is much more complex for DMIS-GS, while it can still obtain comparable or a bit
better performance compared with other methods as shown in Table 4. The best results are obtained via
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selection of words or sentences in DMIS-GS-2, and the purple rectangle shows the weights learned from MI-Soft. DMIS-GS-2 can

provide a clearer explanation for the final decision.

DMIS-GS-2 or DMIS-GS-3, which shows that some instance combinations should be considered in this
task.

We further study the decision process of DMIS-GS-2 compared with HAN. It is notable that DMIS-
GS-2 utilizes a hard selection code while HAN uses soft weights. For example, a randomly selected
negative review (the score rank is one) is classified in the process shown in Figure 6, in which both the
continuous codes of HAN (that is, MI-Soft) and discrete codes of DMIS-GS-2 are displayed. Although
both models classify the review correctly (the plotted bars in Figure 6), it is obvious that DMIS-GS
can provide discrete selection codes which makes the predictions much more comprehensible. From the
decision process, we can locate the most emotional words or sentences quickly such as the displayed word
“worse” and “shame”.

5 Conclusion

We enabled deep MIL to figure ROIs out in an end-to-end approach automatically. In particular, we
proposed a novel deep MIL framework DMIS, making predictions based on the selected instances, which
is different from both of the bag and instance level MILs. We proposed DMIS-GS with gumbel softmax or
gumbel top-k to better explore ROIs for optimizing the hard selection process, making the identified ROIs
more accurate. In order to capture the knowledge across datasets better and make the hyper-parameter
tuning process much easier, we proposed a variance normalization method in the adjusting process of
the temperature. Some theoretical results were provided to show that our framework is general. Both
theoretical analysis and abundant experiments verified that our proposed DMIS could get superiorities
toward other MIL methods, both on model performance, positioning ROIs and comprehensibility. From
another point of view, we also presented some cases (that is, MILs with standard assumption) in which
hard attention can be more suitable than soft attention. Future work should focus on how to set the
number of selected instances adaptively.
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20 Olvera-López J A, Carrasco-Ochoa J A, Mart́ınez-Trinidad J F, et al. A review of instance selection methods. Artif Intell

Rev, 2010, 34: 133–143

21 Sofiiuk K, Barinova O, Konushin A. Adaptis: adaptive instance selection network. In: Proceedings of IEEE/CVF International

Conference on Computer Vision, 2019. 7354–7362

22 Li Z, Geng G H, Feng J, et al. Multiple instance learning based on positive instance selection and bag structure construction.

Pattern Recogn Lett, 2014, 40: 19–26

23 Liu G Q, Wu J X, Zhou Z H. Key instance detection in multi-instance learning. In: Proceedings of the 4th Asian Conference

on Machine Learning, 2012. 253–268

24 Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In: Proceedings of the

3rd International Conference on Learning Representations, 2015

25 Xu K, Ba J, Kiros R, et al. Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of

the 32nd International Conference on Machine Learning, 2015. 2048–2057

26 Deng Y T, Kim Y, Chiu J, et al. Latent alignment and variational attention. In: Proceedings of Advances in Neural

Information Processing Systems, 2018. 9735–9747

27 Malinowski M, Doersch C, Santoro A, et al. Learning visual question answering by bootstrapping hard attention. In: Pro-

ceedings of the 15th European Conference on Computer Vision, 2018. 3–20

28 Jang E, Gu S, Poole B. Categorical reparameterization with gumbel-softmax. In: Proceedings of the 5th International

Conference on Learning Representations, 2017

29 Maddison C J, Mnih A, Teh Y W. The concrete distribution: a continuous relaxation of discrete random variables.

In: Proceedings of the 5th International Conference on Learning Representations, 2017

30 van den Oord A, Vinyals O, Kavukcuoglu K. Neural discrete representation learning. In: Proceedings of Advances in Neural

Information Processing Systems, 2017. 6306–6315

31 Li Z H, He D, Tian F, et al. Towards binary-valued gates for robust LSTM training. In: Proceedings of the 35th International

Conference on Machine Learning, 2018. 3001–3010

32 Kool W, van Hoof H, Welling M. Stochastic beams and where to find them: the gumbel-top-k trick for sampling sequences

without replacement. In: Proceedings of the 36th International Conference on Machine Learning, 2019. 3499–3508

33 Do T T, Tran T, Reid I D, et al. A theoretically sound upper bound on the triplet loss for improving the efficiency of deep

distance metric learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Long Beach,

2019. 10404–10413

https://doi.org/10.1016/j.patcog.2017.10.009
https://doi.org/10.1016/j.patcog.2016.03.035
https://doi.org/10.1109/TPAMI.2018.2876304
https://doi.org/10.1016/j.ins.2019.07.071
https://doi.org/10.1109/TPAMI.2006.248
https://doi.org/10.1007/s10115-006-0029-3
https://doi.org/10.1007/s10462-010-9165-y
https://doi.org/10.1016/j.patrec.2013.11.013


Li X-C, et al. Sci China Inf Sci March 2021 Vol. 64 130102:15

34 Qian Q, Shang L, Sun B G, et al. Softtriple loss: deep metric learning without triplet sampling. In: Proceedings of IEEE/CVF

International Conference on Computer Vision, 2019. 6449–6457

35 Bengio Y, L’eonard N, Courville A C. Estimating or propagating gradients through stochastic neurons for conditional com-

putation. 2013. ArXiv:1308.3432

36 Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceed-

ings of the 32nd International Conference on Machine Learning, 2015. 448–456

37 Ulyanov D, Vedaldi A, Lempitsky V S. Instance normalization: the missing ingredient for fast stylization. 2016.

ArXiv:1607.08022

38 Santurkar S, Tsipras D, Ilyas A, et al. How does batch normalization help optimization? In: Proceedings of Advances in

Neural Information Processing Systems, 2018. 2488–2498

39 Zaheer M, Kottur S, Ravanbakhsh S, et al. Deep sets. In: Proceedings of Advances in Neural Information Processing Systems,

2017. 3391–3401

40 Zhou Z H, Sun Y Y, Li Y F. Multi-instance learning by treating instances as non-i.i.d. samples. In: Proceedings of the 26th

International Conference on Machine Learning, 2009. 1249–1256

41 Wei X S, Wu J X, Zhou Z H. Scalable algorithms for multi-instance learning. IEEE Trans Neural Netw Learn Syst, 2017, 28:

975–987

42 Wang X G, Yan Y L, Tang P, et al. Revisiting multiple instance neural networks. Pattern Recogn, 2018, 74: 15–24

43 Tang D Y, Qin B, Liu T. Document modeling with gated recurrent neural network for sentiment classification. In: Proceedings

of Conference on Empirical Methods in Natural Language Processing, 2015. 1422–1432

44 Yang Z C, Yang D Y, Dyer C, et al. Hierarchical attention networks for document classification. In: Proceedings of Conference

of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016. 1480–

1489

45 Pennington J, Socher R, Manning C D. Glove: global vectors for word representation. In: Proceedings of Conference on

Empirical Methods in Natural Language Processing, 2014. 1532–1543

https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1607.08022
https://doi.org/10.1109/TNNLS.2016.2519102
https://doi.org/10.1016/j.patcog.2017.08.026

	Introduction
	Related work
	Multiple instance learning and instance selection
	Attention mechanism
	Gumbel softmax

	Proposed methods
	Problem statements
	Hard selection vs. soft aggregation
	Deep multiple instance selection (DMIS)
	DMIS-GS
	For simple MIL
	For complex MIL
	Variance normalization

	Theoretical analysis

	Experimental studies
	Synthetic data
	Details
	Results and analysis

	Classical MIL data
	Details
	Results and analysis
	Ablation studies
	ROIs detection

	Sentiment classification data
	Details
	Results and analysis


	Conclusion

