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Dear editor,

SAR tomography (TomoSAR) [1] as an adavnced technique

forms an elevation aperture along the elevation direction.

Therefore, it has the ability of resolving layovers, which

are common in urban environments. For the moment, To-

moSAR is broadly applied to map the urban areas with ex-

istence of large quantities of layovers. Let y = [y1, . . . , yM ]T

be the measurement vector with M elements, R be the

M × N mapping matrix with Rmn = exp (−j2πεmsn)

(εm = 2b⊥m

/

λR0 is the spatial frequency with b⊥m the

spatial perpendicular baseline of the m-th acquisition with

reference to the master acquisition, λ be wavelength, R0 be

the center slant range), γ = [γ1, . . . , γN ]T be the discretized

reflectivity profile with s denoting the discrete elevation po-

sitions, w = [w1, . . . , wM ]T be the M×1 vector representing

noise, the signal model of TomoSAR for SAR acquisitions

can be represented as y = Rγ +w.

For TomoSAR, scatterer detection is one of the main re-

search interests nowadays. It is essentially a spectral esti-

mation problem including two aspects: (1) scatterer number

determination; (2) scatterer location estimation. Owing to

the tight orbit tube of modern SAR sensors like TerraSAR-

X, the elevation aperture is normally short. It means that

traditional TomoSAR imaging methods have low Rayleigh

resolution and high sidelobe interference, which is far from

enough to resolve the closely spaced layovers. This requires

algorithms with good super resolution (SR) capability in the

elevation direction. Considering few scatterers, assumed as

K, are existed in a given resolution cell, the vector γ to

be reconstructed can actually be regarded as sparse along

elevation. For the moment, compressed sensing (CS) as a fa-

vorable sparse reconstruction technique has gathered much

attention and has been widely applied for TomoSAR imag-

ing owing to its outstanding SR capability.

In 2012, Ref. [2] proposed that γ can be reconstructed by

finding the solution of the L1-norm minimization problem:

γ̂ = argmin
γ

{

‖y −Rγ‖22 + λK‖γ‖1

}

, (1)

where λK represents the regularization parameter which

serves as the trade-off between the reconstruction error

‖y −Rγ‖22 and signal sparsity ‖γ‖1.

Once CS reconstruction is performed, parameters of the

scatterer number and each scatterer’s amplitude are esti-

mated from the reconstructed reflectivity profile. The work-

flow of the classic CS framework [2] for scatterer detection

can be concluded as the following three steps.

Step 1: Scale down by CS. CS is utilized for sparse

recovery of the reflectivity γ̂ by solving (1). Then the map-

ping matrix R is scaled down by only selecting the columns

corresponding to non-zero elements of γ̂.

Step 2: Scatterer number determination. Gener-

alized likelihood ratio test (GLRT)-based [3–5] or model se-

lection (MS)-based [2] method is performed for determining

the scatterer number K̂ in each resolution cell. At the same

time, the elevation ŝk of the kth scatterer can be obtained

in this step.

Step 3: Amplitude refinement. Because the ampli-

tudes of scatterers are systematically underestimated by CS,

NLS estimator is used to refine the amplitude information

for γ̂ (s) = [γ̂1, . . . , γ̂K̂ ]T with the scatterer number prelim-

inarily determined in Step 2.

It worths to mention that the continuous searching space

needs to be discretized into a finite set of dense grid points

before CS reconstruction is performed. Nevertheless, dis-

crete sampling of the searching space along elevation re-

quired in CS will bring about the off-grid problem [6]. Con-

sequently, the scatterer location will systematically be de-

viated owing to the mismatch between each scatterer’s real

location and the discretized grid point locations. This typi-

cally requires sampling the searching space as finely as pos-

sible. However, the fine sampling in the whole searching
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Figure 1 (Color online) Theory of proposed method for off-

grid correction. The red solid line represents the real location

of the kth scatterer in one resolution cell. The yellow solid line

represents the estimated location via classic CS framework. The

green solid line represents the estimated location with proposed

method.

spacing makes it harder to guarantee perfect CS reconstruc-

tion and gives rise to much heavier memory and computation

burden [7].

In this study, a new method is proposed for solving the

off-grid problem posed by classic CS framework for scatterer

detection. The proposed method is conducted by correcting

the off-grid error for each dominant scatterer in its neigh-

borhood elevation space. The basic theory is that the neigh-

borhood of each significant scatterer is oversampled at first

and then the optimum estimation is conducted in the over-

sampled neighborhood to minimize the off-grid effect, which

allows a better performance for scatterer localization. As

illustrated in Figure 1, the proposed method as an add-on

to classic CS framework is consist of two following steps.

(1) Oversample the neighborhood of each dom-

inant scatterer. For the purpose of solving the off-grid

problem, the kth scatterer’s neighborhood space to be over-

sampled can be given as [ŝk − ∆s
2
, ŝk + ∆s

2
], assuming the

preliminarily estimated scatterer number be K̂ and the ele-

vation location of the kth scatterer be ŝk (1 6 k 6 K̂) with

classic CS framework. The oversampled neighborhood ele-

vation space of the kth scatterer is given as

s̃k =

[

ŝk −
∆s

2
, . . . ,

(

ŝk −
∆s

2

)

+ i
∆s

η
, . . . , ŝk +

∆s

2

]

,

(2)

where η represents the oversampling factor. Through this

procedure, the off-grid distance can be minimized to be no

larger than ∆s
2η

.

(2) Refine the location of each scatterer. After

oversampling the neighborhood of the kth dominant scat-

terer, a much slimmer mapping matrix R̃k can be built up:

R̃k = exp (−j2πεs̃k) , (3)

where ε = [ε1, . . . , εM ]T is the spatial frequency vector. In

Gaussian white noise case, non-linear least squares (NLS) [8]

as a maximum likelihood estimator is the best estimator if

the estimated model number K̂ is correct. At each possible

elevation location s̃k (p), NLS is utilized to acquire the max-

imum likelihood estimation of the kth scatterer’s amplitude:

γ̃k (p) =
(

R̃k(p)
TR̃k (p)

)−1
R̃k(p)

Tỹk, (4)

where R̃k (p) = exp (−j2πεs̃k (p)) denotes the pth

(1 6 p 6 P ) column of R̃k. ỹk = y−
∑

i6=k γ̂i exp (−j2πεŝi)

denotes the measurement component only including the

signal contribution of the kth dominant scatterer with

1 6 i 6 K̂. Owing to R̃k is much slimmer than R, the com-

putational cost for the NLS operation is low here.

Lastly, the refined estimation of the kth scatterer’s lo-

cation is the one with least squares error. The optimum

estimation ŝrefine,k of the kth scatterer’s location is given as

ŝrefine,k = argmin
ŝk(p)

∥

∥

∥
ỹk − γ̃k (p) · R̃k (p)

∥

∥

∥

2

2
. (5)
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