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Dear editor,

To satisfy the increasing requirements for safety and qual-

ity in industrial processes, process monitoring has been ac-

tively investigated in the past decade. The most critical

aspects of this approach are the detection of faults in real-

time and the diagnosis of fault types. Redundancy and cou-

pling among these variables make it difficult to identify ex-

isting correlations between faults and variables, which hin-

ders the quick detection of faults. Furthermore, the large

amount of available monitoring data often obscures infor-

mation about abnormalities and faults. Effective dimension

reduction and feature extraction are imperative to address

this challenge [1, 2].

Traditional multivariate statistical methods such as prin-

cipal component analysis (PCA), partial least squares

(PLS), and independent component analysis (ICA), have

been widely used in process monitoring. These dimension

reduction methods commonly extract features based on the

assumption that the data follow a particular distribution.

As such, noise and measurement error in the practical pro-

cess usually result that data do not strictly follow the ex-

pected distribution. Correspondingly, the accuracy of fault

detection and diagnosis is significantly degraded. To solve

this problem, some modifications and improvements are pro-

posed, including kernel techniques and recursive methods

that lead to kernel PCA, kernel PLS, and recursive PCA.

Sparse techniques perform well in facilitating more interpre-

tative results and excluding redundancy [3].

However, the aforementioned methods only preserve the

global structure of the dataset but ignore the local neighbor-

hood relations. Huang et al. [4] combined the mean of the

dataset with local preserving projection (GLPP) to simul-

taneously preserve the local and global structures. The re-

sults for 6 datasets validated the effectiveness of the method.

Zhan et al. [5] proposed a novel ensemble global-local pre-

serving projection (GLPP) method, which introduced the

Bayesian inference and weighted sum strategies to combine

the separated GLPP models. The validity and effective-

ness were verified by applying the approach to the Tennessee

Eastman (TE) process.

This investigation focuses on a quick and accurate

method to detect faults and identify fault types. Because

the sparse approach can effectively exclude redundancy and

allow more interpretative features to be obtained, the inte-

gration of sparse techniques and local preserving projection

can preserve both local and global structures of the sample

data.

As stated in [3], sparse representation was initially pro-

posed by Wright et al. and is currently widely used in com-

puter vision and pattern recognition. This technique not

only affords high-fidelity representation of the observed sig-

nal in a more concise form, but also facilitates the mining

of latent information in the data samples. In this study, the

dataset is denoted as a matrix X (X ∈ R
m×n), in which m

and n are the number of variables and samples, respectively.

It consists of K classes.

For the data sample x, the sample can be represented by

the learned dictionary and sparse coefficient as follows:

x = Ay, (1)

where A is an over-complete dictionary of the samples. This

means that all the samples in X can be represented by

A with an appropriate sparse coefficient. There are many

methods for learning dictionaries such as KSVD (K-singular

value decomposition), MOD (method of optimal directions),

and sparseNet. In this study, we utilize the locality preserv-

ing projection (LPP) method to train the dictionary. The

sparse coefficient y is learned by relaxing the L0 norm to

L1 norm optimization because solving the L0 norm is an

NP-hard problem. The object function is

J(ŷ) = argmin
y

{||x− Ay||22 + λ||y||1}, (2)
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where ||·||2 is the L2 norm, ||·||1 is the L1 norm, and λ is the

sparsity penalty to balance the significance of sparsity and

accuracy of the reconstructed signal. Then, the raw data

can be represented as

x = Aŷ + e, (3)

where e is the reconstruction error, and ŷ is the sparse co-

efficient.

LPP is a representative manifold-based dimension reduc-

tion method proposed by He [6]. The main advantage of

this approach over traditional dimension reduction meth-

ods, such as PCA and linear discriminant analysis (LDA),

is that it does not impose any sample distribution assump-

tions and can handle nonlinear cases. The LPP approach

seeks to project the samples into another space with a lower

dimension, in which the manifold structure of the samples

is preserved. The objective function is described as follows:

Y = DTX, (4)

where D = [d1, d2, . . . , dl] ∈ R
m×l is the preserving projec-

tion matrix, which is solved by the objective function defined

as

J(d) = argmin
d







∑

i,j

(yi − yj)
2wij







, (5)

in which yi is the projection of xi by yi = DTxi, wij is the

i, jth entry of the adjacency weight matrix W , so that the

projections can preserve the local structure of the dataset.

wij is defined as follows:

wij =







e−
||xi−xj ||

2

σ , if xj ∈ Ωk(xi) or xi ∈ Ωk(xj),

0, otherwise,
(6)

where σ is a constant parameter, and Ωk(x) is the neighbor-

hood of x that is defined by the k nearest neighbors. Eq.

(5) can be rewritten as

J(d) = argmin
d
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d

{2(dTX(H −W )XTd)}

= argmin
d

{2(dTXMXTd)}, (7)

where H is a diagonal matrix consisting of Hii =
∑

j wij ,

and M = H − W is the Laplacian matrix. Furthermore, a

constraint is imposed on LPP for normalization. The objec-

tive function of LPP is then defined as

J(d) = argmin
d

{dTXMXTd)},

s.t. dTXDXTd = 1.
(8)

The optimization problem is then transformed to a general-

ized eigenvalue problem as follows:

dTXMXTd = λXDXTd. (9)

The optimal LPP projection matrix D consisting of the

eigenvectors d1, d2, . . . , dl is sorted by the corresponding

eigenvalues λ1 < λ2 < · · · < λl. Sparse LPP (SLPP)

based process monitoring and fault diagnosis is described

as follows. Let X = [x1, x2, . . . , xn] ∈ R
m×n denote a nor-

malized training dataset. The SLPP method involves deter-

mining the optimal transform matrix Di = [d1, d2, . . . , dl],

which is regarded as the learned dictionary. Because

there are K classes, the entire structured dictionary is

Dall = [D1, D2, . . . ,DK ], which reconstructs the samples

with sparse representation. This method integrates sparse

representation and LPP, thereby preserving both the local

and global structures of the dataset. The monitoring model

is then constructed as follows:

y = DTX, x = D+Ty + e. (10)

Reconstructing the samples with d1, d2, . . . , dl, respectively,

the class with the least reconstruction error e is the fault

type of the samples. In this study, we introduce T 2 and

SPE to detect the appearance of faults. The T 2 measures

the variations in the model subspace, and SPE measures the

variations in the residual subspace. They are defined as

SPE = ||e||2 = ||x−D+Ty||2,

T 2 = yTS−1y.
(11)

The proposed method for fault diagnosis is applied to

the Tennessee Eastman process, which is an industrial pro-

cess with 12 manipulated variables, 19 composition measure-

ments, and 22 continuous measurements. Normal datasets

are generated under typical operating conditions, and 21

fault datasets are generated under the 21 faulty operat-

ing conditions. Sparse discriminant analysis [7] (SDA) and

sparse exponential discriminant analysis [8] (SEDA) are in-

troduced to facilitate a comparison with the improved sparse

local preserving projection (ISLPP). The evaluation indexes

of the diagnosis performance in this study are defined by the

classification accuracy as follows:

Acc(i) =
nT
i

ni

× 100%,

anvA =
1

K
×

K
∑

i=1

Acc(i),

(12)

where Acc(i) is the classification accuracy of the ith class,

nT
i and ni are the number of correctly classified samples and

the total number of samples in the ith class, respectively,

anvA is the average classification accuracy of all types of

faults, and K is the number of fault types.

Experiments based on the ISLPP method are performed

with 15 types of faults, which include sticking, step, random,

slow draft and unknown faults. The classification accuracy

is shown in Table 1. It is seen that the accuracy of the

ISLPP approach is higher than that of the SDA and SEDA

methods. Moreover, most of the results show significant im-

provement. For example, the diagnosis accuracy of SDA for

faults #4 and #19 are only 13.02% and 7.5%, respectively.

Using the proposed method, it represents an enhancement of

72.7083% and 67.0833%, respectively. The local preserving

projection maintains the local structure of the dataset and

the sparsity constraint precludes coupling among variables

and preserves the global structure of the data.
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Table 1 Classification accuracy (%) of 15 faults in TE process

with different methods

ISLPP SDA SEDA

Fault #1 82.71 81.67 81.46

Fault #2 82.08 79.37 80.42

Fault #3 17.71 8.54 11.46

Fault #4 72.71 13.02 20.21

Fault #5 82.08 57.6 35.63

Fault #6 83.33 75.42 77.19

Fault #7 83.33 80.10 76.98

Fault #8 43.96 29.48 29.27

Fault #12 37.92 19.27 20.21

Fault #13 34.79 27.81 25.62

Fault #15 17.71 15.42 13.44

Fault #17 51.67 44.79 46.98

Fault #18 70.42 38.33 62.40

Fault #19 67.08 7.5 21.67

Fault #20 57.29 40.21 34.79

In this investigation, ISLPP is proposed by integrating

the sparsity constraint with the local preserving projection

method, and dictionary learning is invoked to solve the

project matrix. The simulation is implemented in a MAT-

LAB 2016a environment using a personal computer with

an i5-6500 core CPU operating at 3.20 GHz, with 8 GB of

RAM. The total time to train the project matrix and iden-

tify fault types was 267 s.
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