New Automatic Tool for finding Impossible Differentials and Zero-Correlation Linear Approximations

Tingting CUI ${ }^{1}$, Shiyao CHEN ${ }^{2}$, Kai FU 4, Meiqin WANG ${ }^{2}$ \& Keting JIA ${ }^{3}$
${ }^{1}$ School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China;
${ }^{2}$ Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan 250100, China;
${ }^{3}$ Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
${ }^{4}$ China Academy of Information and Communications Technology, Beijing 100191, China

Appendix A Algorithm to Verify the IDs and ZCLAs

We propose a method to search impossible differentials (IDs) and zero-correlation linear approximations (ZCLAs) by judging whether the model is infeasible or not. However, with this method, we can not directly find out the contradictory place, even we can not judge whether infeasible status is caused by writing wrong code or not. What's more, the contradictions found by this method are often not traditional contradiction between 0 and 1 on a certain bit, but two sets of differences on some bits calculated from input and output differences respectively which have no intersection. So in this section, we propose an algorithm to verify the corretness of IDs and ZCLAs searched by our new tools.

The idea of our new search method for IDs and ZCLAs based on MILP is that the differential propagation on cipher can be exactly described by inequalities system. Specifically, we first set variables on both sides of each operation in the cipher to represent the possible differences, then link them with suitable inequalities system so that the solutions' set of this system is exactly the set of all possible differential patterns. Without loss of generality, assume that there is a R-round impossible differential for the target cipher. Obviously, if we remove some inequalities from its MILP model such that the infeasible model becomes feasible, the contradiction must be happened on the variables existed in those removed inequalities. In our method, we find the contradiction between the $\left\lceil\frac{R}{2}\right\rceil$-th and $\left\lceil\frac{R}{2}\right\rceil+1$-th rounds ${ }^{1}$, i.e. that consider the contradiction on the input difference of $\left\lceil\frac{R}{2}\right\rceil+1$-th round. Based on such observation, we propose a method to verify the IDs and ZCLAs. Take the verification process of an impossible differential as an example, see algorithm 1. So does the verification process for the ZCLA.

To search the related-key impossible differential of a target cipher, the process is similar to that under single key setting, except that the key schedule and conditions on master key should be described into the MILP model. However, note that in the phase of finding out sets A and B, the set of linear inequalities for whole key schedule and constraints on master key must be put into two small models for rounds $1 \sim\left\lceil\frac{R}{2}\right\rceil$ and rounds $\left\lceil\frac{R}{2}\right\rceil+1 \sim R$ simultaneously.

Appendix B Applications on HIGHT, SHACAL-2, LEA and LBlock

[^0]```
Algorithm 1: Verification process of an impossible differential
Input: The MILP model of this impossible differential. Assume that the input and output
 differences are \(\Delta x_{\text {in }}\) and \(\Delta x_{\text {out }}\) respectively;
Output: The detailed contradiction.
Collect all inequalities linking the \(\left\lceil\frac{R}{2}\right\rceil\)-th and \(\left\lceil\frac{R}{2}\right\rceil+1\)-th rounds, then put those into a set \(\mathbb{I}_{\text {mid }}\);
for Each inequality in \(\mathbb{I}_{\text {mid }}\) do
 Remove the same inequality from the MILP model;
 Solve the new model;
 if The model is infeasible then
 Delete this inequality from set \(\mathbb{I}_{\text {mid }}\);
 Continue;
 else
 Put this inequality back to MILP model;
Extract all variables corresponding to the input difference of \(\left\lceil\frac{R}{2}\right\rceil+1\)-th round from remained set
 \(\mathbb{I}_{\text {mid }}\), and put them into a set \(V a r_{\text {contradiction }}\);
// The contradiction happens on Var \(_{\text {contradiction }}\).
Output Var contradiction;
Set two empty set \(A\) and \(B\);
for Each possible difference value \(\Delta x_{\text {contradiction }}\) on Var \(_{\text {contradiction }}\) do
 if \(\Delta x_{i n} \rightarrow \Delta x_{\text {contradiction }}\) is possible then
 put \(\Delta x_{\text {contradiction }}\) into set \(A\);
 if \(\Delta x_{\text {contradiction }} \rightarrow \Delta x_{\text {out }}\) is possible then
 put \(\Delta x_{\text {contradiction }}\) into set \(B\);
Output sets \(A\) and \(B\).
```

| Round 1 | $e_{7}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Round 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $e_{7}$ |
| Round 3 | 0 | 0 | 0 | 0 | 0 | $n z b$ | $e_{7}$ | 0 |
| Round 4 | 0 | 0 | 0 | $n z b$ | $n z b$ | $e_{7}$ | 0 | 0 |
| Round 5 | 0 | $n z b$ | $n z b$ | $n z b$ | $e_{7}$ | 0 | 0 | 0 |
| Round 6 | $n z b$ | $?$ | $n z b$ | $e_{7}$ | 0 | 0 | 0 | $n z b$ |
| Round 7 | $?$ | $n z b$ | $e_{7}$ | 0 | 0 | $n z b$ | $n z b$ | $?$ |
| Round 8 | $n z b$ | $e_{7}$ | 0 | $n z b$ | $n z b$ | $?$ | $?$ | $?$ |
| Round 9 | $e_{7}$ | $n z b$ | $n z b$ | $?$ | $?$ | $?$ | $?$ | $n z b$ |
| Round 10 | $n z b$ | $?$ | $?$ | $?$ | $?$ | $?$ | $n z b$ | $\neq e_{7}$ |
| Round 10 | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $n z b$ | $e_{7}$ |
| Round 11 | $?$ | $?$ | $?$ | $?$ | $?$ | $n z b$ | $e_{7}$ | 0 |
| Round 12 | $?$ | $?$ | $?$ | $?$ | $n z b$ | $e_{7}$ | 0 | 0 |
| Round 13 | $?$ | $?$ | $?$ | $n z b$ | $e_{7}$ | 0 | 0 | 0 |
| Round 14 | $?$ | $n z b$ | $n z b$ | $e_{7}$ | 0 | 0 | 0 | 0 |
| Round 15 | $n z b$ | $n z b$ | $e_{7}$ | 0 | 0 | 0 | 0 | 0 |
| Round 16 | $n z b$ | $e_{7}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| Round 17 | $e_{7}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Round 18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $e_{7}$ |

Table B1 17-round impossible differential of HIGHT, where $e_{7}, n z b$ and ? denote $0 x 80$, nonzero byte and unknown byte respectively. The byte with red color on the input of round 10 is the contradiction point.

| Round 1 | 0 | $e_{0}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Round 2 | $e_{0}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Round 3 | $n z b$ | 0 | 0 | 0 | 0 | 0 | 0 | $e_{0}$ |
| Round 4 | $n z b$ | 0 | 0 | 0 | 0 | 0 | $e_{0}$ | $n z b$ |
| Round 5 | $n z b$ | 0 | 0 | 0 | 0 | $e_{0}$ | $?$ | $n z b$ |
| Round 6 | $n z b$ | 0 | 0 | 0 | $e_{0}$ | $?$ | $?$ | $n z b$ |
| Round 7 | $n z b$ | 0 | 0 | $e_{0}$ | $?$ | $?$ | $?$ | $n z b$ |
| Round 8 | $n z b$ | 0 | $e_{0}$ | $?$ | $?$ | $?$ | $?$ | $n z b$ |
| Round 9 | $n z b$ | $e_{0}$ | $?$ | $?$ | $?$ | $?$ | $?$ | $n z b$ |
| Round 10 | $\neq e_{0}$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $n z b$ |
| Round 10 | $e_{0}$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |
| Round 11 | $?$ | $?$ | $?$ | $?$ | $?$ | $?$ | 0 | $e_{0}$ |
| Round 12 | $?$ | $?$ | $?$ | $?$ | 0 | 0 | $e_{0}$ | $?$ |
| Round 13 | $?$ | $?$ | 0 | 0 | 0 | $e_{0}$ | $?$ | $?$ |
| Round 14 | 0 | 0 | 0 | 0 | $e_{0}$ | $?$ | $?$ | $?$ |
| Round 15 | 0 | 0 | 0 | $e_{0}$ | $n z b$ | $n z b$ | 0 | 0 |
| Round 16 | 0 | 0 | $e_{0}$ | $n z b$ | 0 | 0 | 0 | 0 |
| Round 17 | 0 | $e_{0}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| Round 18 | $e_{0}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Table B2 17-round zero-correlation linear approximation of HIGHT, where $e_{0}, n z b$ and ? denote $0 x 01$, nonzero byte and unknown byte respectively. The byte with red color on the input of round 10 is the contradiction point.

| Round 1 | 0 | 0 | 0 | $e_{31}$ | 0 | 0 | 0 | $e_{31}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Round 2 | $e_{31}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Round 3 | $e_{9 \sim}$ | $e_{31}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| Round 4 | - | $e_{9 \sim}$ | $e_{31}$ | 0 | 0 | 0 | 0 | 0 |
| Round 5 | - | - | $e_{9 \sim}$ | $e_{31}$ | 0 | 0 | 0 | 0 |
| Round 6 | - | - | - | $e_{9 \sim}$ | $e_{31}$ | 0 | 0 | 0 |
| Round 7 | - | - | - | - | $e_{6 \sim}$ | $e_{31}$ | 0 | 0 |
| Round 8 | - | - | - | - | - | $e_{6 \sim}$ | $e_{31}$ | 0 |
| Round 8 | - | - | - | - | - | $e_{9 \sim}$ | - | - |
| Round 9 | - | - | - | - | - | - | $e_{9 \sim}$ | - |
| Round 10 | $e_{31}$ | $*_{31}$ | $*_{31}$ | $e_{9 \sim}$ | 0 | $*_{31}$ | $*_{31}$ | $e_{9 \sim}$ |
| Round 11 | 0 | $e_{31}$ | $*_{31}$ | $*_{31}$ | 0 | 0 | $*_{31}$ | $*_{31}$ |
| Round 12 | 0 | 0 | $e_{31}$ | $*_{31}$ | 0 | 0 | 0 | $*_{31}$ |
| Round 13 | 0 | 0 | 0 | $e_{31}$ | 0 | 0 | 0 | 0 |
| Round 14 | 0 | 0 | 0 | 0 | $e_{31}$ | 0 | 0 | 0 |

Table B3 13-round impossible differential of SHACAL-2, where $e_{i \sim}$ denotes that the $i$-th bit is 1 and the least significant $i$ bits are all $0, e_{31}\left(*_{31}\right)$ denotes that the most significant bit is 1 (unknown) while other bits are all 0 , and "-" denotes uncertained word. The word with red color on the input of round 8 is the contradiction point.

| Round 0 | 0 | $e_{0}$ | 0 | 0 | Round 5 | $e_{\sim 8}$ | $e_{\sim 15}$ | $e_{\sim 15}$ | $e_{\sim 12}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Round 1 | $e_{9}$ | 0 | 0 | $e_{0}$ | Round 6 | 0 | $e_{\sim 10}$ | $e_{\sim 10}$ | $e_{\sim 8}$ |
| Round 2 | $e_{9}$ | $e_{27}$ | $e_{29}$ | $e_{9,0}$ | Round 7 | 0 | $e_{\sim 5}$ | $e_{\sim 5}$ | 0 |
| Round 3 | - | - | - | $e_{\sim 29}$ | Round 8 | 0 | $e_{0}$ | 0 | 0 |
| Round 4 | - | - | $?^{3} 001 ?^{26}$ | - | Round 9 | $e_{9}$ | 0 | 0 | $e_{0}$ |
| Round 4 | - | - | $e_{\sim 20}$ | $e_{\sim 18}$ | Round 10 | $e_{9}$ | $e_{27}$ | $e_{29}$ | $e_{9,0}$ |

Table B4 10-round zero-correlation linear approximation of LEA. $e_{i, j}$ denotes that only the $i$-th and $j$-th bits are 1 , other bits are all $0 . e_{\sim i}$ denotes the $i$-th bit is 1 while the most significant $31-i$ bits are all 0 . ? denotes $l$ unknown bits. The word with red color on the input of round 4 is the contradiction point.

| Round | Input (left) | Input (right) | Subkey | Round | Input (left) | Input (right) | Subkey |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 00000000 | 00000000 | 00000000 | 9 | ???? ?*?? | ???? ???? | 0*00 0000 |
| 2 | 00000000 | 00000000 | 00000000 | 10 | *?0? ???* | ???? ?*?? | 00000000 |
| 3 | 00000000 | 00000000 | 00000400 | 11 | ?0?***00 | *?0? ???* | 0000 00?* |
| 4 | 0000 *000 | 00000000 | 00000000 | 12 | 0?*0 ? 000 | ? 0 ? * **00 | *000 0000 |
| 5 | 0000 00*0 | 0000 *000 | 00000000 | 13 | ?*00 00?0 | 0?*0 ?000 | 00000000 |
| 6 | 00*0 000* | 0000 00*0 | 00020000 | 14 | 00000000 | ?*00 00?0 | 0000 ??*0 |
| 7 | $0^{*} 0^{* * *} 00$ | $00^{*} 000{ }^{*}$ | 00000000 | 15 | 00000000 | 00000000 | 00000000 |
| 8 | $?^{*} 00$ ***0 | $0 * 0^{*} * * 00$ | 00000000 | 16 | 00000000 | 00000000 | 00000000 |
| 9 | **?* * 0 *? | ?*00 ***0 | 0*00 0000 | 17 | 00000000 | 00000000 | 00000000 |

Table B5 16-round related-key impossible differential of LBlock. "*" and "?" denotes nonzero nibble and unknown nibble respectively. The nibble with red color on the input of round 9 is the contradiction point.


[^0]:    * Corresponding author (email: ktjia@mail.tsinghua.edu.cn)

    1) Actually, we can find out a contradiction between any two adjacent round functions. However, we believe that the contradictions happen between the $\left\lceil\frac{R}{2}\right\rceil$-th and $\left\lceil\frac{R}{2}\right\rceil+1$-th rounds are more intuitive and cover less related bits.
