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Appendix A Preliminaries

Appendix A.1 Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is an efficient recognition algorithm which shows a wide range of applications in image

processing, pattern recognition and other fields in recent years [1, 2]. It has a simple structure, few training parameters

and good adaptability and other advantages. The basic structure of CNN includes input, convolution, pooling, hidden, and

output layers as shown in Figure A1.

Evidently, fully connect hidden layers can usually be added before the output layer, and correspondingly after pooling

layer. The convolution layer is used for extracting local features in images and then the pooling layer is applied to reduce

the location sensitivity of the features which are extracted from convolution layer. Usually, the convolution layer and the

pooling layer may repeat for several times in the structure of CNNs. In a convolution layer with input o, the j-th channel

is given by

o
⊗

J(j) + b(j) (A1)

where
⊗

is the convolution operation, and
{
J(j), b(j)

}
are the convolution kernels and bias terms, respectively.

Pooling is used to induce invariance to small translations, which is a characteristic of natural images. A pooling layer

does so by splitting each input channel into patches, and replacing each patch with a single representative value in the

output layer. Typical choices the maximal or average value, in max and average pooling, respectively. There exists instinct

superiority that is, for large scale data, more layers and larger quantities of hidden elements are significantly necessary

to be utilized. Then, by constructing such a structure, large-scale inputs can be reduced in size step by step and the

characteristics becomes more obvious during learning process.

Recently, the research of CNNs theory has been extended from real number to hyper-complex number, typically pre-

sented as quaternion for three-dimensional data, such as color image. Since CNNs have proven to be very powerful in

handling images, and quaternion numbers can produce meaningful representations in this domain, then the extension of

real-valued convolutional neural networks to quaternion domain, namely quaternion-valued convolutional neural networks

(QCNNs), have shown great potential in color image processing. Obviously, real-valued CNNs had achieved state-of-the-art

performance when dealing with scalar data, typically as gray-scale image, and leading to some unsatisfying results with

respect to color image in which the color image to be processed was usually separated into three independent color channels

leading to the loss of relationship among three color channels. Then, QCNNs regard each color pixel as a pure quaternion

and process multichannel information in a parallel way, which mimic the human perception of a visual environment and

the inherent color structure can be preserved completely.

However, a series of operations will produce a quaternion containing the real part, which will inevitably lead to the

data redundancy. In addition, the quaternion multiplication is non-commutative, which is not conducive to design a simple

network. Thus, QCNNs lead to a large number of data redundancy and a complicated network.
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Figure A1 The typical basic structure of CNNs.

Appendix A.2 The basics of geometric algebra

This section briefly reviews the basics of Geometric Algebra (GA), which was introduced by William K. Clifford and also

called Clifford Algebra [3, 4, 5, 6, 7, 8, 9, 10,11,12]. Suppose Gn is n-dimensional GA with an orthonormal basis of vectors

, which leads to a basis {
1, {ei} ,

{
eiej

}
, · · · , {e1e2 · · · en}

}
(A2)

Specifically, Gn can be represented by Gp,q , where n = p+ q and p, q are the number of vectors with positive square and

negative square in the basis of the space, respectively. That is

e2i =

{
1, 1 6 i 6 p

−1, p+ 1 6 i 6 n
(A3)

we focus on Gn , in which q = 0. The geometric product of two basis is anti-commutative, and

eiej = eij = −ejei = −eji, i, j = 1, · · · , n, i 6= j (A4)

e2i = 1, i = 1, · · · , n (A5)

eieij = eieiej = ej , i, j = 1, · · · , n, i 6= j (A6)

For vectors ω and z of Gn, the geometric product is defined as:

wz = w · z + w ∧ z (A7)

where w · z denotes the inner product, w ∧ z denotes the outer product. Since the ei vectors are orthogonal, then eiej =

ei · ej + ei ∧ ej = ei ∧ ej .

Take G3 for instance, the orthogonal bases are constructed by vectors with 23 = 8 grades, which is given by: {1,{e1,e2,e3},
{e1e2,e1e3,e2e3},{e1e2e3}} and a simpler form: {1, e1, e2, e3, e12, e13, e23, e123}. For a 2n-dimensional signal, only n basis

are needed. Generally, the outer product of k vectors is called a k-blade. The number k is called the grade of the blade.

The complete mathematical correlation between two vectors has been provided by GA. As the extension of vectors to

higher dimensions, multivectors are the basic components in GA. Any multivectors M ∈ Gn can be described by

M = E0 +
∑

16i6n

Ei(M)ei +
∑

16i<j6n

Eij(M)eij + · · ·+ E1···n(M)e1···n (A8)

where E(M) ∈ R.

Appendix A.3 Reduced Geometric Algebra (RGA)

Appendix A.3.1 The basics of RGA

The definition of the reduced geometric algebra (RGA) [13] is given as follows:

εi =
1

2
(1 + eien+i) ∈ GR

n , i = 1, 2, · · · , n (A9)

According to (A4), the geometric product of and can be obtained by:

εiεj = εjεi, i 6= j (A10)
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Moreover, we define:

ε2i = εiεj =

{
εi+1, i = 1, 2, · · · , n− 1

ε1, i = n
(A11)

Take n = 3 for instance, ε21 = ε2, ε22 = ε3, ε23 = ε1. Thinking together (A10) and (A11), it is clearly that the multiplication

of εi is commutative. Specifically, RGA is denoted as GR
n and can be seen as the space that is generated by the collection

of
{
{ε1, ε2, · · · , εn} , {εij = εiεj , 1 6 i 6= j 6 n}

}
. The element k in GR

2 has the following form:

k = a1ε1 + a2ε2 + a3ε12, a
1, a2, a3 ∈ R (A12)

The addition and subtraction operations in GR
2 are almost the same as GA, here we present the multiplication operation

only. ∀k, l ∈ GR
2 , suppose k = a1ε1 + a2ε2 + a3ε12 and l = b1ε1 + b2ε2 + b3ε12, then the multiplication in GR

2 are given as

kl =
(
a1ε1 + a2ε2 + a3ε12

) (
b1ε1 + b2ε2 + b3ε12

)
=
(
a1b3 + a2b2 + a3b1

)
ε1 +

(
a1b1 + a2b3 + a3b2

)
ε2 +

(
a1b2 + a2b1 + a3b3

)
ε12

(A13)

where ε12ε1 = ε1ε2ε1 = ε1ε1ε2 = ε21ε2 = ε2ε2 = ε1, similarly, ε12ε2 = ε2. Moreover, ε12ε12 = ε1ε2ε1ε2 = ε1ε1ε2ε2 =

ε21ε
2
2 = ε2ε1 = ε12
It can be seen from (A13) that no superfluous components are produced in the results of the multiplication of k and l,

which only contain ε1, ε2 and ε12 components. In this way, it successfully overcomes the data redundancy existed in the

operations for color image based on quaternion.

We then define the norm of the elements in GR
2 as

‖k‖ = aε1 + bε2 + cε12 = |a+ b+ c| =
√
a2 + b2 + c2 (A14)

The conjugate of k is defined as

k∗ = a′ε1 + b′ε2 + c′ε12 (A15)

Then
kk∗ = (aε1 + bε2 + cε12)

(
a′ε1 + b′ε2 + c′ε12

)
=
(
ca′ + bb′ + ac′

)
ε1 +

(
aa′ + cb′ + bc′

)
ε2 +

(
ba′ + ab′ + cc′

)
ε12 = ‖k‖2

(A16)

According to (A16), the following equations are obtained
ca′ + bb′ + ac′ = 0

aa′ + cb′ + bc′ = 0

ba′ + ab′ + cc′ = ‖k‖2
(A17)

When solving the equations in (A17), the values of the individual components in (A15) are correspondingly yielded, but

not all the elements of GR
2 are conjugate.

Thus, the inverse of element k in GR
2 can be defined as

k−1 =
k∗

‖k‖2
(A18)

In RGA, multivectors, which are the extension of vectors to higher dimensions, are the basic units. Each multivector

K ∈ GR
2 is so described by

K = K1ε1 +K2ε2 +K3ε12 (A19)

where K1,K2,K3 ∈ R.

Appendix A.3.2 Convolution in RGA

Refer to the definition of convolution for multivectors in GA space [8], we give the convolution of two multivectors in GR
2 .

Now, let K = K1ε1 + K2ε2 + K3ε12 and L = L1ε1 + L2ε2 + L3ε12 be a multivector field a multivector-valued filter,

respectively. The RGA convolution is defined as

c(x, y) =

∫∫
GR
2

K(x, y)L(x− u, y − v)dudv (A20)

where (x, y) indicates the coordinate. For discrete multivector space, the convolution has to be discretized and can be

deduced as follows

c(x, y) =
1

MN

∞∑
i=0

∞∑
j=0

K(x, y)L(x− i, y − j) (A21)

Clearly, each color image pixel is represented as a RGA multivector, the convolution can be performed referring to (A21).

Since the multiplication in GR
2 is commutative (KL = LK), the right-side and the left-side convolutions can be quite the

same.

Suppose f(x, y) ∈ GR
2 and g(x, y) ∈ GR

2 are a color image and a filter in RGA space respectively. Consequently, we

propose the definition of convolution in RGA for color image as follows

f(x, y)
⊗

g(x, y) =
1

MN

M−1∑
i=0

N−1∑
j=0

f(x− i, y − j)g(i, j) (A22)

where M and N denote the size of convolution window.
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Figure B1 The structure of the proposed RGA-CNNs. Figure B2 The structure of RGA neuron model.

Appendix B Convolutional Neural Networks based on Reduced Geometric Algebra

Appendix B.1 The structure of RGA-CNNs

Since existing CNNs treat each color image pixel as a scalar with scalar input and scalar convolution kernels which loses

some color structures, or a pure quaternion with high data redundancy and a complicated network.

In this section, we propose a novel convolutional neural networks based on RGA, namely RGA-CNNs, which extend

both the input color image pixels and convolution kernels as RGA multivectors, and all the operations are extended into

the RGA domain, to capture the inherent color structures, simplify the network and remove data redundancy. The basic

structure of the proposed RGA-CNNs, in which each representation and operation are based on RGA, is shown in Figure

B1, including input layer, convolution layer, pooling layer, multilayer perceptron (MLP) and output layer.

Appendix B.2 RGA neuron model

Compared with conventional neuron model, RGA neuron extends all the operators, especially input, output and convolution

kernels, as RGA multivectors. Figure B2 shows the structure of the proposed RGA neuron model. For the input RGA

signal x ∈ GR
2 , the output y ∈ GR

2 is represented as

y = f(s) (B1)

and

s =
ωx

‖ω‖
− ϕ =

(
ω1ε1 + ω2ε2 + ω3ε12

) (
x1ε1 + x2ε2 + x3ε12

)√
(ω1)2 + (ω2)2 + (ω3)2

− ϕ =


(
ω1x3 + ω2x2 + ω3x1

)
ε1(

ω1x1 + ω2x3 + ω3x2
)
ε2(

ω1x2 + ω2x1 + ω3x3
)
ε12


√

(ω1)2 + (ω2)2 + (ω3)2
− ϕ

(B2)

where ω ∈ GR
2 denotes the weight of the connections between neurons, ϕ is the internal state of the RGA neuron and also

called bias.

The output of the neuron is determined by the output of the activation function f(·), which is defined by

f(s) = f(s1)ε1 + f(s2)ε2 + f(s3)ε12 (B3)

where s = s1ε1 + s2ε2 + s3ε12 ∈ GR
2 , s1, s2, s3 ∈ R and f(u) = 1

1+e−u , u ∈ R.

Obviously, a left-side (right-side) weight association neuron is generally inferior to a spinor one in terms of learning

ability in some tasks. However, the computational complexity of the network with spinor neuron is more complicated than

that of the single-side one due to the two-side weight association. Fortunately, RGA is commutative (ωx = xω), that is to

say the single-side weight association neuron can achieve almost the same learning ability as spinor neuron while removing

the data redundancy and simplifying the network.

Appendix B.3 RGA multilayer perceptron (RGA-MLP) and its learning algorithm

In this subsection, we extend conventional multilayer perceptron (MLP) from real number to RGA, in which all the signals,

weights and activation values are substituted for RGA numbers taken from a given RGA, to accommodate color image

processing. Figure B3 shows the basic structure of RGA-MLP with 3 fully connect hidden layers.

In Figure B3, the input and output signals of each neuron, the weights between two neurons of adjacent two layers are

all RGA multivectors, that is y, ω ∈ GR
2 . yl−1

j denotes the output of the neuron j of the (l − 1)-th layer and ωl−1
jr means

the connection weight between neuron j in the (l − 1)-th layer and neuron r in the (l)-th layer, that is the output layer.

Suppose xli =
(
x1ε1 + x2ε2 + x3ε12

)l
i
∈ GR

2 is the input of neuron i of the (l)-th layer in RGA-MLP, yli ∈ GR
2 and ϕl

i ∈ GR
2
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Figure B3 The structure of RGA-MLP containing 3 hid-

den layers.

Figure B4 The convolution layer of RGA-CNNs.

are output and bias of this neuron. ωl−1
ji =

(
ω1ε1 + ω2ε2 + ω3ε12

)l−1

ji
∈ GR

2 denotes the weight between neuron j in the

(l − 1)-th layer and neuron i in the (l)-th layer, then

xli = ϕl
i +

k∑
j=1

ωl−1
ji yl−1

j (B4)

yli = f(xli) (B5)

As a normally and effective updating algorithm, back propagation (BP) is utilized to minimize the output error, which

can be calculated by outputs of neurons in the output layer and the desired output signals. In this subsection, BP algorithm

has been extended to the RGA domain and then adopted to train the proposed RGA-CNNs scheme.

Suppose gi is the desired output of the neuron r in the output layer, and it is represented as a RGA multivector. As for

a series of input multi-dimensional data, the output data are determined firmly by the connection weights, we define the

error E as a form of square error function.

E = E(yl1, · · · , ylt, · · · , ylr) =
1

2

r∑
t=1

(
ylt − gt

)2
=

1

2

r∑
t=1

((
y1ε1 + y2ε2 + y3ε12

)l
t
−
(
g1ε1 + g2ε2 + g3ε12

)
t

)2
=

1

2

r∑
t=1

((
(y1)lt − (g1)t

)2
+
(

(y2)lt − (g2)t
)2

+
(

(y3)lt − (g3)t
)2) (B6)

where the l-th layer is the output layer, and gt is the desired response of neuron t in the output layer.

Specifically, the goal of training is to acquire minimal error, usually accompanied by the adjustment of weights, and the

adjusting orientation of weight parameters can be denoted as

∆ωl
ji = −η

∂E

∂ωl
ji

= −η
∂E

∂(ω1ε1 + ω2ε2 + ω3ε12)lji
= −η(

∂E

∂(ω1)lji
ε1 +

∂E

∂(ω2)lji
ε2 +

∂E

∂(ω3)lji
ε12) (B7)

Similarly, that of bias can be obtained by

∆ϕl
i = −η

∂E

∂ϕl
i

= −η
∂E

∂(ϕ1ε1 + ϕ2ε2 + ϕ3ε12)li
= −η(

∂E

∂(ϕ1)li
ε1 +

∂E

∂(ϕ2)li
ε2 +

∂E

∂(ϕ3)li
ε12) (B8)

Then, we give
∂E

∂ωl
ji

= Γl
ji(y

l−1)∗ (B9)

∂E

∂ϕl
i

= Γl
i (B10)

where ∗ is set as the conjugation, η is a constant denoting the learning coefficient and Γ denotes the residual error, also

called sensitivity. In the update of neuron i in the output layer, Γ is given by

Γl
i =

(
f ′(s1)

(
(y1)li − (g1)i

))
ε1 +

(
f ′(s2)

(
(y2)li − (g2)i

))
ε2 +

(
f ′(s3)

(
(y3)li − (g3)i

))
ε12 (B11)
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while Γ of neuron i in the l-th hidden layer is given by

Γl
i =

f ′(s1)

∑
j

(ω1)l+1
ji

∗ (Γ1)l+1
i

 ε1 +

f ′(s2)

∑
j

(ω2)l+1
ji

∗ (Γ2)l+1
i

 ε2

+

f ′(s3)

∑
j

(ω3)l+1
ji

∗ (Γ3)l+1
i

 ε12

(B12)

where

f ′(s) = f ′(s1)ε1 + f ′(s2)ε2 + f ′(s3)ε12 =
∂f(s1)

∂s1
ε1 +

∂f(s2)

∂s2
ε2 +

∂f(s3)

∂s3
ε12 (B13)

Appendix B.4 RGA-CNNs

As mentioned above, the basic structure of our proposed RGA-CNNs in the RGA domain is generally composed of an input

layer, a convolution layer, a pooling layer, a RGA-MLP, and an output layer. Specifically, the RGA-MLP can be added

between the last pooling layer and the output layer, that is to say it exists before the output layer, and correspondingly

after the pooling layer. The convolution layer is utilized to extracted local feature of images, and the pooling layer is used

to reduce the location sensitivity of features extracted from the convolution layer. Usually, a CNN can contain several

convolution layers and pooling layers.

The process of our proposed RGA-CNNs can be summarized as follows.

we extend conventional convolution kernel in real domain to RGA domain. As shown in Figure B4, the input matrix

and the convolution kernel are represented as RGA multivectors A ∈
(
GR

2

)M×M
and K ∈

(
GR

2

)N×N
, respectively.

In the convolution layer, the output B ∈
(
GR

2

)(M−N+1)×(M−N+1)
is generated by convolution of input with convolution

kernel K as follows

b = f

(∑ ka

|k|
+ ϕ

)
(B14)

where k, a, b stand for each pixel of K,A,B respectively, and b = f(·) has been defined by (A3). Then a feature matrix B is

obtained and so called feature map. Since the convolution layer is composed of several feature maps, that is to say, p feature

maps B1, B2, · · · , Bp can be generated through convolution of input A with p RGA convolution kernels K1,K2, · · · ,Kp.

The output B is fed to the pooling layer, which aims to reduce the position sensitivity of the features extracted by

convolution layer. Here, we extend the conventional max pooling method in the real domain to RGA domain, and specifically

it is denoted as

cij = max
(k,l)∈Cij

bkl (B15)

where Cij is the local patch in the output of pooling layer C, cij is the pixel of Cij , and b is the pixel of the output of

convolution layer B.

Appendix C Simulation results

Appendix C.1 Data sets

Appendix C.1.1 3D geometrical shapes data sets

To form the 3D geometrical shapes data sets, we generate 4 classes of 3D geometrical shapes, in which 4000 patterns are

contained in each of class. In terms of our 3D geometrical shapes data sets, different shapes belong to different classes and

different patterns of the same class are generated by the rotation of the first pattern with different angles, around the origin

and by the translation with different vectors. Figure C1 shows the example 3D geometrical shapes with 4 classes and 4

patterns for each of class, used in the classification experiments.

Appendix C.1.2 Color image data sets

we include the CIFAR-10 dataset for color image classification experiments. The CIFAR-10 dataset comprises totally 60000

natural color images with 10 different classes and 6000 images for each of class, in which 50000 images are acted as the

training set and the rest 1000 images are applied as the testing set. All the images in the dataset consists of 32 × 32 (=

1024 pixels), each of which has its color values represented by 24 bits (Red, Green and Blue components are represented

by 8 bits). More details of the CIFAR-10 dataset can be found at http://www.cs.toronto.edu/ kriz/cifar.html.

Appendix C.2 Experimental Setup

The architectures of real-valued CNNs, QCNNs and the proposed RGA-CNNs are mainly similar and composed of an input

layer, a convolution layer, a pooling layer, a MLP and an output layer, respectively. The number of convolution kernels in

the convolution layer is set to 12 with the size of 5× 5 and pooling size is 2× 2. Specifically, the input data of size 32× 32

becomes 28 × 28 after convolution with a 5 × 5 convolution kernel. After max pooling of 4 × 4, output of pooling layer

becomes 6 × 6. For k class problem, output layer has k neurons. Outputs of pooling layer are converted to quaternion or

RGA numbers for QCNNs and RGA-CNNs, respectively. We initialize the learning rate η to 0.1 for the three networks. All
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Figure C1 Four classes of plane curves.

the experiments in this paper are performed by using MATLAB on a computer with Intel(R) Core(TM) i5-3470 3.20GHz

CPU and 4 GB memory. We choose sigmoid as the activation function, and max pooling by magnitude. The training error

and the test accuracy are evaluated on the three networks for comparison experiments.

Appendix C.3 3D Geometrical Shapes Classification

Based on the 3D geometrical shapes database described above, we focus on analyzing the influence on the network perfor-

mance, including the network depth, the convolution kernel size and the convolution kernel number. We choose 16000 3D

geometrical shapes from 4 classes (where 3000 shapes and 1000 of each class are selected to construct the training dataset

and the test dataset, respectively).

Appendix C.3.1 The size of convolution kernels

In order to explore the relationship between the performance of the proposed RGA-CNNs and the size of convolution kernels

in the convolution layer, we conduct 3D geometrical shapes classification experiments in which the size of convolution kernels

are set to 3× 3 , 5× 5, 7× 7, 9× 9 and 11× 11. The training loss achieved by the proposed RGA-CNNs with different size

of convolution kernels is depicted in Figure C2. And Table C1 shows the average training time of QCNNs and the proposed

RGA-CNNs with different size of kernels.

However, much more pixel data are correspondingly read while processing the whole feature image with the increasing

size of convolution kernels, which inevitably leads to higher training time of the network, and the lager the size of convolution

kernel is, the higher training time it takes. And it is obvious that the average training time of the proposed RGA-CNNs

is much lower than QCNNs, for the reason that RGA is commutative while quaternion is noncommutative. Thus, combine

the effects of training errors and training times, we choose 5× 5 as the most reasonable size of convolution kernels.
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Figure C2 The training loss curves achieved by the pro-

posed RGA-CNNs with different size of convolution kernels.

Figure C3 The training loss curves achieved by the real-

valued CNNs, QCNNs and the proposed RGA-CNNs.

Table C1 Average training time (s) of QCNNs and the proposed RGA-CNNs with different size of convolution kernels.

The size of convolution kernels 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11

QCNNs[14] 2509.9803 2773.0203 3110.7038 3519.2984 3921.6121

RGA-CNNs 1527.4333 1677.9276 1828.0485 1999.1379 2176.4174

Appendix C.3.2 Comparisons of real-valued CNNs, QCNNs and the proposed RGA-CNNs

The training loss curves achieved by real-valued CNNs and the proposed RGA-CNNs based on 3D geometrical shapes

database are depicted in Figure C3 for comparison, in which the convolution kernels are all set to 5× 5. We trained both

the networks for 6000 iterations with a batch size of 10. As shown in Figure C3, it is clearly that the proposed RGA-CNNs

achieve faster and more stable converge rate compared to real-valued CNNs and QCNNs. Furthermore, under the same

iterations, the traditional real-valued CNNs shows a little bit higher training errors in contrast to QCNNs, and then the

training errors achieved by the proposed RGA-CNNs achieve are lower than QCNNs.

To give a more precise comparison between the proposed RGA-CNNs, QCNNs and the traditional real-valued CNNs,

the training errors with respect to the number of training iterations, and the results are listed in Table C2. As can be

indicated in Table C2, when the number of training iterations go up from 1 to 400, the corresponding training errors of

the traditional real-valued CNNs go down from 0.1626 to 0.0507 with reduction of nearly 0.1119, and the training errors of

QCNNs decrease from 0.1192 to 0.0146 with reduction of nearly 0.1046, while that of the proposed RGA-CNNs decrease

from 0.1261 to 0.0038 with reduction of nearly 0.1223. That is to say, with the first 400 iterations of training, the training

errors of the proposed RGA-CNNs exhibit an extremely steeper downward trend compared with real-valued CNNs and

QCNNs, commonly shown as a faster convergence rate. And as the iterations range from 1000 to 6000, the real-valued

CNNs and QCNNs show approximately 0.0124 and 0.0040 decrease of training errors while the proposed RGA-CNNs reveal

a nearly 0.0002 decrease, usually presented to be more stable.

Appendix C.4 Color Image Classification

In this experiment, 4 classes of color images in CIFAR-10 are used, 6000 color images of each class in training database

are selected to form the training set and the test set is composed of 2000 color images of each class in test database. The

Table C2 The training errors of the proposed RGA-CNNs, QCNNs and real-valued CNNs with respect to training

iterations.

Iterations 1 400 1000 2000 4000 6000

Real-valued CNNs[10] 0.1626 0.0507 0.0193 0.0124 0.0093 0.0069

QCNNs[14] 0.1192 0.0146 0.0060 0.0036 0.0024 0.0020

RGA-CNNs 0.1261 0.0038 2.4937×10−4 6.1066×10−5 2.0599×10−5 1.3382×10−6
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Figure C4 The training loss curves achieved by the pro-

posed RGA-CNNs with different learning rate η.

Figure C5 The training loss curves achieved by the real-

valued CNNs, QCNNs and the proposed RGA-CNNs.

Table C3 The test accuracy of the real-valued CNNs, QCNNs and the proposed RGA-CNNs (%).

Methods The first class The second class The third class The fourth class Total

Real-valued CNNs[10] 75.9 76.4 80.6 77.3 77.51

QCNNs[14] 85.8 87.0 88.3 88.4 87.4

RGA-CNNs 85.7 88.4 90.5 89.0 88.9

networks are trained so that the original input should be reconstructed at the output layer.

Appendix C.4.1 Learning rate

We conducted an experiment to discuss the effect of the learning rate η on the performance of the proposed RGA-CNNs.

We correspondingly set the learning rate η to 0.0001, 0.001, and 0.01. As indicated in Figure C4, the proposed RGA-CNNs

can achieves good convergence and the lowest training loss with different learning rates. When the learning rate η is set to

0.01, the proposed RGA-CNNs can achieve the best convergence. It is easily indicated that by adjusting the learning rate,

the approximately optimal solution with respect to the optimization problem of training loss function can be obtained.

Appendix C.4.2 Comparisons of real-valued CNNs, QCNNs and the proposed RGA-CNNs

We evaluate the training error and the test accuracy on real-valued CNNs and the proposed RGA-CNNs for comparison

experiments. For real-valued CNNs the learning rate is fixed at 0.1, for QCNNs and RGA-CNNs, the learning rate is 0.01.

We trained both the networks for 6000 iterations with a batch size of 10, and the curves of training loss are shown in Figure

C5.

As seen in the training loss in Figure C5, we conclude that both QCNNs and the proposed RGA-CNNs converged faster

to less training loss than real-valued CNNs. The training loss curves of QCNNs and the proposed RGA-CNNs show stable

convergence while real-valued CNNs fluctuates greatly and is very unstable during the training process.

Moreover, less training errors are achieved by QCNNs and the proposed RGA-CNNs compared with real-valued CNNs

under the same iterations because of the holistically processing ways provided by quaternion and RGA frameworks. The

traning loss curves of QCNNs and the proposed RGA-CNNs exhibit that the convergence and stability are almostly similar.

With the increasing number of training iterations from about 200 to 1200, the corresponding training errors of QCNNs are

a bit lower than the proposed RGA-CNNs. However, after 1200 iterations, the proposed RGA-CNNs achieve much lower

training errors coampared to QCNNs.

For a more objective comparison, we list the test accuracy for CIFAR-10 color image datasets with real-valued CNNs,

QCNNs and the proposed RGA-CNNs, in which the test accuracies of 4 classes are presented in Table C3. As indicated in

Table C3, the most high test accuracy of real-valued CNNs reaches 80.6% with respect to the third class while that of the

proposed RGA-CNNs goes to 90.5% also with regard to the third class. More generally, the total test accuracy obtained

by RGA-CNNs is approximately 88.9 % while that of real-valued CNNs is only 74.3%. Moreover, it should be noted that

the proposed RGA-CNNs shows a bit higher test accuracy than QCNNs, though the test accuracy of the first class is 0.1%

lower. That is to say, the experimental results show that the proposed method achieves nearly the highest test accuracy,

which verify the advantages of the proposed RGA-based CNNs.
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Appendix C.5 Complexity Analysis

In this subsection, we will evaluate the efficiency of QCNNs and the proposed RGA-CNNs with respect to the computation

time. The approximate computation time is calculated by using MATLAB on a computer with Intel(R) Core(TM) i5-

3470 3.20GHz CPU and 4 GB memory. The results are shown in Table C4 with the computation time of QCNNs and the

proposed RGA-CNNs based on 3D geometrical shapes and color images databsets. As shown in Table C4, the proposed

RGA-CNNs efficiently achieves less computation time, which is nearly the half of QCNNs, for the reason that the RGA

framework provides a powerful way to represent a color image as a multivector and process it in a holistic manner. In this

way, the relationship of different channels in color image can be completely preserved and the network has been simplified

due to the communicative multiplication of RGA.

Table C4 Computation time(s) of QCNNs and the proposed RGA-CNNs.

Datasets QCNNs RGA-CNNs

3D Geometrical Shapes 2772.5113 1678.2767

Color Images 3144.7837 1681.9981

References

1 Li Q, Peng Q, Yan C. Multiple VLAD Encoding of CNNs for Image Classification. Computing in Science Engineering,

2018, (99): 1–1

2 Zhang X, Zou J, He K, et al. Accelerating Very Deep Convolutional Networks for Classification and Detection. IEEE

Transactions on Pattern Analysis Machine Intelligence, 2015, 38(10): 1943–1955

3 Gunn C G. A new approach to euclidean plane geometry based on projective geometric algebra. Mathematics, 2015,

704(4): 41–58

4 Wareham R J, Cameron J, Lasenby. Applications of conformal geometric algebra in computer vision and graphics.

LNCS 3519, 2004: 329–349

5 Wang R , Shen M , Wang T , et al. L1-Norm Minimization for Multi-dimensional Signals Based on Geometric Algebra.

Advances in Applied Clifford Algebras, 2019, 29(2).

6 Ebling J, Scheuermann G. Clifford Fourier Transform on Vector Fields. IEEE Transactions on Visualization Computer

Graphics, 2005

7 Wang R, Zhou Y X, Jin Y L, et al. Sparse fast Clifford Fourier transform. Frontiers of Information Technology

Electronic Engineering, 2017, 18(8): 1131–1141

8 Li Y, Liu W, Li X, et al. GA-SIFT: A new scale invariant feature transform for multispectral image using geometric

algebra. Information Sciences, 2014: 559–572

9 Li H B, Cao Y. On Geometric Theorem Proving with Null Geometric Algebra. Guide to Geometric Algebra in Practice,

2011: 195–215

10 Li H B. Symbolic Geometric Reasonong with Advanced Invariant Algebra. International Conference on Mathematical

Aspects of Computer and Information Sciences, 2015: 35–49

11 Wang R, Shen M M, Cao W M, Multivector Sparse Representation for Multispectral Images Using Geometric Algebra.

IEEE Access. 2019, 7: 12755 - 12767

12 Wang R, Shi Y J, Cao W M. GA-SURF: A new Speeded-Up robust feature extraction algorithm for multispectral

images based on geometric algebra. Pattern Recognition Letters, 2018.

13 Shen M M, Wang R, Cao W M, Joint sparse representation model for multi-channel image based on reduced geometric

algebra. IEEE Access. Image Process, 2018, 6: 24213–24223

14 Zhang F, Cai N, Wu J, et al. Image denoising method based on a deep convolution neural network. Iet Image

Processing, 2018, 12(4): 485–493

15 Kominami Y, Ogawa H, and Murase K. Convolutional neural networks with multi-valued neurons. International Joint

Conference on Neural Networks IEEE, 2017: 2673–2678


	Preliminaries
	Convolutional Neural Network (CNN)
	The basics of geometric algebra
	Reduced Geometric Algebra (RGA)
	The basics of RGA
	Convolution in RGA


	Convolutional Neural Networks based on Reduced Geometric Algebra
	The structure of RGA-CNNs
	RGA neuron model
	RGA multilayer perceptron (RGA-MLP) and its learning algorithm
	RGA-CNNs

	Simulation results
	Data sets
	3D geometrical shapes data sets
	Color image data sets

	Experimental Setup
	3D Geometrical Shapes Classification
	The size of convolution kernels
	Comparisons of real-valued CNNs, QCNNs and the proposed RGA-CNNs

	Color Image Classification
	Learning rate
	Comparisons of real-valued CNNs, QCNNs and the proposed RGA-CNNs

	Complexity Analysis


