Wearable Ubiquitous Energy System

Fang Deng¹,², Ning Ding¹,², Ziman Ye¹,², Yeyun Cai¹,² & Jie Chen¹,²

¹School of Automation, Beijing Institute of Technology, Beijing 100081, China;
²Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing 100081, China
Contents

1. Introduction
2. Ubiquitous energy harvesting
3. Ubiquitous energy control
4. Ubiquitous energy storage
5. Conclusion
1. Introduction

Background

- In recent years, intelligent wearable devices have developed rapidly. They have been widely applied in aviation, medical, military, entertainment and other fields.

- However, on the one hand, wearable devices are restricted by the requirements of comfort, portability, and miniaturization. On the other hand, traditional batteries also have problems such as large weight, large volume, short battery life, and limited power supply life.

- Energy supply has been a bottleneck restricting the further development of wearable devices.
1. Introduction

- This paper proposes a **wearable ubiquitous energy system**.
- Through **wearable clothes and devices**, **ubiquitous energy** such as solar energy, thermal energy and mechanical energy generated by human movement can be efficiently harvested, which can be converted into **electric energy** for comprehensive utilization.
- This is a **powerful means** to solve the energy supply problem of smart wearable devices.
2. Ubiquitous energy harvesting

- Different types of ubiquitous energy have very different harvesting mechanisms.

Ubiquitous energy

- **Solar energy**
- **Thermal energy**
- **Mechanical energy**
- **Other energy**

Sunlight

- Temperature difference

Others

- Tread

Wearable ubiquitous energy system
2. Ubiquitous energy harvesting

(1) Solar energy

- Solar energy is widely found in nature and contains huge energy.
- Solar energy can be converted into electric energy by utilizing the **photovoltaic conversion characteristics** of semiconductor materials.

![Photovoltaic cell realizing photoelectric conversion process](image-url)
2. Ubiquitous energy harvesting

(1) Solar energy

- The most effective combination of solar harvesting and wearable concept is to make solar clothes.
- Multiple flexible solar cells are connected by wires to form a flexible solar array that is placed on the back of clothes.
- The wearable solar clothes can convert the continuous solar energy into electric energy to supply portable devices.
2. Ubiquitous energy harvesting

(2) Thermal energy

- Using temperature differences to generate electricity is the most efficient way to harvest wearable thermal energy.
- The principle is the Seebeck effect.
- When the two ends of the thermoelectric generator (TEG) are at different temperatures, the voltage difference will be generated.
(2) Thermal energy

- TEGs are arranged on flexible circuit to form thermoelectric modules. Thermoelectric modules are arranged on the front of sports tights to make thermoelectric clothes.

- The design of tights can avoid the loss of power generation efficiency caused by poor contact and use the potential thermal energy reasonably and efficiently.
2. Ubiquitous energy harvesting

(2) Thermal energy

- The ordinary kettle is improved to make **wearable thermoelectric kettle**.
- The TEGs are placed on the kettle base, which is connected with the kettle body by screws. The hot source is the fire for heating water, the cold source is the cold water in the kettle.
- In the process of boiling water, the kettle can convert the **temperature difference** into **electric energy**.

The temperature field contours of heating water[2]

Wearable thermoelectric kettle
2. Ubiquitous energy harvesting

(3) Mechanical energy

- Considerable mechanical energy can be harvested from normal human activities.

- The efficient conversion of mechanical energy into electrical energy can improve the utilization of human energy, and this passive way of harvesting mechanical energy does not affect human normal activities.

- According to the principle of electromagnetic power generation, the human foot mechanical energy harvesting devices driven by inertia and driven by pressure are designed.
2. Ubiquitous energy harvesting

(3) Mechanical energy

- **Inertial driven type** uses the inertia of the foot when the human body is walking to drive the mover, thus cutting the magnetic induction line and generating the induced current to generate electricity.

- **Pressure driven type** takes the small dc motor as the main body of power generation, and uses the pressure of foot stepping to drive the transmission shaft, so that the motor generates electricity.

![Foot mechanical energy harvesting device]

- **Iron core mover**
- **Coil mover**
- **Pressure driven type**
- **Foot mechanical energy harvesting device**
3. Ubiquitous energy control

- The movement process and temperature changes are dynamic and complex. The power generated by ubiquitous energy is closely related to the external environment and human body state.

- In order to improve the energy conversion efficiency, it is necessary to track the maximum power point and make the output voltage work at the corresponding position of the maximum power point.
3. Ubiquitous energy control

- The solar energy harvesting system uses voltage band control algorithm to make the solar cells work at the maximum power point.
- The thermal energy harvesting system adopts modified perturb and observe algorithm to achieve the maximum output power.
- These MPPT algorithms can provide a stable maximum power output under any light intensity and temperature conditions.

The MPPT searching region limited to a smaller range \[3\]

The output power of thermoelectric generator with MPPT\[4\]

4. Ubiquitous energy storage

- Traditional batteries have many problems, such as large weight, large volume, limited energy supply life, regular replacement, material waste and environmental pollution.

- The Supercapacitor is an energy storage device between ordinary capacitor and accumulator, and has large capacity, high power density, good effect of storing low power energy.
4. Ubiquitous energy storage

- The **flexible solid-state Supercapacitor** has the same performance as the ordinary supercapacitor. Its shape is similar to that of cloth. It is very flexible and suitable for wearable systems.
- The obtained ubiquitous energy can be stably and efficiently stored in flexible solid-state supercapacitors.

Flexible supercapacitor arranged on the thermoelectric clothes [1]

Charging characteristic curve of the flexible supercapacitor [1]

5. Conclusion

- In this paper, we propose **wearable ubiquitous energy system**.
- For the three most promising ubiquitous energy sources: **solar**, **thermal** and **mechanical energy**, we discussed the harvesting equipment, control methods and storage methods.
- The key technologies of **ultra-low power conversion control and flexible storage** of wearable ubiquitous energy under dynamic conditions were studied, which improve the conversion efficiency of ubiquitous energy and wearable comfort.
- In the future, the **links** between various ubiquitous energy will be further strengthened to realize the integration of multiple ubiquitous energy.
THANK YOU!