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Abstract A modified supervised learning rule which is suitable for training photonic spiking neural net-

works (SNN) is proposed for the first time. The proposed learning rule is independent of the time intervals

between actual spike and desired spike or between presynaptic spike and postsynaptic spike. Based on the

proposed supervised learning rule, 10 digital images are learned in photonic neural network which consists

of 30 presynaptic neurons and 10 postsynaptic neurons. Presynaptic and postsynaptic neurons are photonic

neurons based on vertical-cavity surface-emitting lasers with an embedded saturable absorber (VCSEL-SA).

The results show that 10 digital images are recognized correctly in photonic SNN after enough training.

Additionally, the effects of learning rate, the jitters of learning rate, initial weights distribution of SNN and

bias current of postsynaptic neurons (VCSELs-SA) on the recognized error are examined carefully based on

the proposed learning rule. To the best of our knowledge, such modified supervised learning rule has not

yet been reported, which would contribute to training photonic neural networks, and hence is interesting for

neuromorphic photonic systems and pattern recognition.
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1 Introduction

Tasks such as learning, computing and recognition of patterns, are naturally achieved in the human brain
with efficient energy [1]. Brain-inspired neural networks are also expected to achieve these tasks with
high-speed and energy-efficient way. In neuromorphic systems, a number of different implementations
have been proposed in electrical domain [2–6]. Many traditional devices and circuits require excessive
power consumption in electrical domain. Alternative methods are therefore desired for high-performance
learning, recognition, and neuromorphic computing systems. By combining the high bandwidth and
energy-efficiency of photonic devices, photonic neural networks have the potential to be faster than
conventional neural networks while consuming less energy [7–17].

Supervised learning and unsupervised learning are two ways for neural network learning [18–20]. Spike
timing dependent plasticity (STDP) is one of unsupervised learning rules, which strengths connected
weights based on the precise temporal relations of presynaptic spike and postsynaptic spike [21]. In
photonic neural network, STDP was realized firstly in a system consisting of a semiconductor optical
amplifier (SOA) and an electro-absorption modulator [22]. STDP was also achieved in different ways and
devices including a single SOA, two SOAs and a single VCSOA [8, 23, 24]. Based on photonic STDP,
many tasks such as learning and recognition are achieved in photonic neural network [8, 13, 23, 25]. For
instance, in 2015, Ren et al. achieved desired outputs through training the photonic neural network based
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on STDP [8]. In 2019, first spike timing of the pattern was recognized in the photonic neural network
equipped with STDP, which consists of three presynaptic neurons and one postsynaptic neuron [13].
However, STDP requires the time intervals even the high precision of time intervals between presynaptic
and postsynaptic spikes. In addition, STDP characterizes synaptic changes solely in terms of the temporal
contiguity of the presynaptic and postsynaptic spikes. To get the convergence of learning with STDP, a
suitable balance of many parameters is needed. On the other hand, the supervised learning rule needs the
relationship between desired output signal and actual output signals. For instance, the comparation of the
number of spikes between the actual output spike train and the desired spike train is needed in ReSuMe
rule [20]. In addition, the time intervals of actual output spikes and desired spikes are further required.
For example, in photonic neural network, spike sequence learning is achieved based on supervised learning
rule which needs time difference between actual output spike train and the desired spike train [14,26,27].
In both of unsupervised learning rules and supervised learning rules, the comparation of spike timing
or numbers is necessary. However, in optics, it is difficult to modify weights directly based on the time
intervals or the difference number of spikes. Therefore, a modified learning rule is required for training
photonic neural networks.

The main contributions of this paper: First, the modified supervised learning rule which is suitable
for the photonic neural network is proposed for the first time. Second, 10 digital images are learned and
recognized in photonic neural network which is trained by the proposed modified supervised learning rule.
The rest of this paper is organized as follows. In Section 2, the architecture of photonic neural network
for digital images learning and recognition is shown. Based on the photonic neural network, the modified
supervised learning rule is described. In addition, the theoretical model of photonic spiking neuron based
on vertical-cavity surface-emitting lasers with an embedded saturable absorber (VCSEL-SA) is presented.
In Section 3, the process of pattern learning and recognition is clarified in detail based on the photonic
neural network that is trained by the proposed modified learning rule. The effects of learning rate, jitters
of the learning rate, initial weights distribution and VCSELs-SA bias current on the recognized error are
examined carefully. Finally, conclusion is drawn in Section 4.

2 Theory and model

In this section, photonic spiking neural network (SNN) for 10 digital images learning and recognition is
presented. Then the proposed supervised learning rule is described. Besides, the model of VCSEL-SA
neuron for the photonic SNN is introduced.

2.1 Architecture of photonic SNN

The schematic diagram of photonic SNN for learning and recognition is presented in Figure 1(a). The
network consists of 30 presynaptic neurons (N1–N30) and 10 postsynaptic neurons (N31–N40). The inputs
of presynaptic neurons are rectanglar pulses which represent the digital image. To fit the shape of digital
image, 30 presynaptic neurons are putted into six rows and five columns as Figure 1(b) shown. Ten
postsynaptic neurons show the results of the pattern learning and recognition. In our photonic neural
network, VCSELs-SA are employed to mimic all presynaptic neurons and postsynaptic neurons. As shown
in Figure 1(a), all presynaptic neurons are connected to all postsynaptic neurons through weighting
devices (Wi,j , i = 1, 2, . . . , 30, j = 31, 32, . . . , 40, where subscripts i and j represent the presynaptic
neurons and postsynaptic neurons, respectively). Wi,j is connected with the presynaptic neuron Ni

and postsynaptic neuron Nj . The connected weights (ωi,j) of Wi,j are variable, which are controlled
by weight control unit (WCU). Here, weighting device can be performed using gain/loss medium, i.e.,
amplifier and attenuator. We use an external circuit to control the gain/loss medium. It is better to have a
simple photonic synaptic device. The weight of photonic synaptic device can be changed directly based on
photonic spikes. And the synaptic device is non-volatile. We assume that the WCU can control all variable
weight devices according the proposed modified supervised learning rule. For example, in Figure 1(c),
WCU can collect output states of presynaptic neuron N1, postsynaptic neuron N31 and desired output of
N31. Then, based on the proposed learning rule and the collected states, ω1,31 can be changed by WCU.

2.2 The proposed supervised learning rule

The proposed supervised learning rule is similar to other supervised learning rules that adjust weights of
photonic neural network iteratively to make the actual output near the desired output. We derive the
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Figure 1 (Color online) Schematic diagram of photonic SNN. (a) The photonic SNN consists of 30 presynaptic neurons and 10

postsynaptic neurons with all-to-all connection. N1–N30: photonic presynaptic neurons; N31–N40: photonic postsynaptic neuron;

W1,31: the weight device between N1 and N31; W2,31–W30,40 : the weight devices are similar to W1,31 ; WCU can control all weights

in the red dashed box. (b) Thirty presynaptic neurons are putted as a rectangle. (c) An example of the connection between N1

and N31. The red signals “s”, “+”, and “−” donate the learning rule simply. (d) Flowchart of learning process.

proposed learning rule from the simplified Widrow-Hoff rule [18]

∆ωi,j = ξxij(yd − ya) = ξxij∆y, (1)

where ∆ωi,j is the updated synaptic weight. ξ corresponds a positive learning rate. xij is the input of
weight device. yd and ya are the desired output and actual output of postsynaptic neurons, respectively.
∆y = yd − ya is the difference between the desired output and the actual output of the postsynaptic
neuron, which is usually used to adjust the weight of weight device. Many learning rules include time
interval in ∆y. However, in optics, time interval is difficult to achieve. And time interval is also difficult
to change the weight of connected device directly. Hence, a modified supervised learning rule for photonic
SNN is proposed. In the modified supervised learning rule, we assume that the output of presynaptic
neuron, the desired output and actual output have active (generate a spike, represented by “1”) and
inactive states (dose not generate a spike, represented by “0”). Based on these states and (1), the
proposed modified supervised rule can be written as ∆ωi,j = −ξ, 0, ξ. In a iteration of photonic SNN,
∆ωi,j is decided by three steps. First step, we consider that presynaptic neuron is the switch of the
weight adjustment. If the presynaptic neuron is in inactive state, the weight of the synapsis cannot be
adjusted and go to the next iteration. If the presynaptic neuron is in active state, the weight needs to
be changed and go to the second step. Second step, observe the actual output, if the actual output is in
active state, the weight will be decreased. If the postsynaptic is in inactive state, the weight will stay
the same. After the second step, go to the third step. Third step, observe desired output, if desired
output is in active state, the weight will be increased. If desired output is in inactive state, the weight
will stay the same. After three steps, the adjustment of weight is decided and then go to next iteration.
In addition, we assume that the increased and decreased values of weight are the same. In learning
process, only the states of presynaptic neuron, the desired output and actual output are needed, the
timings of presynaptic spike, desired output and actual output are not needed. Thus, the proposed
learning rule is independent of the time interval between presynaptic spike and actual output spike or
between actual output spike and desired output spike. The outputs of presynaptic neuron, desired output
and actual output are collected by WCU directly as Figure 1(c) shown. The weights are adjusted by
WCU according to the proposed learning rule. The results of proposed modified rule in one iteration are
summarized in Table 1. “

√
” represents active state, “×” donates inactive state. During the learning

process, ωij(ite + 1) = ωij(ite) + ∆ωij , where ite is one iteration in the learning process and ite + 1 is
next iteration. Based on the proposed learning rule, the flowchart of learning process is presented in
Figure 1(d).
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Table 1 The adjustment of weight based on the proposed modified supervised learning rule in one iteration

Presynaptic output Actual output Desired output ∆ωi,j

Case 1
√ √ √

0

Case 2
√ √ × −ξ

Case 3
√ × √

+ξ

Case 4
√ × × 0

Case 5 × – – 0

2.3 Model of neuron: rate equations of VCSEL-SA

The typical two-section rate equation model of VCSELs-SA is used for presynaptic neurons and post-
synaptic neurons in photonic neural network. In the model, nph(t) is the photon density in the cavity,
na(t)(ns(t)) is the carrier density in the gain (absorber) region. The rate equations of nph(t), na(t), and
ns(t) can be written as [12, 28, 29]

dnphi,phj

dt
= Γaga(nia,ja − n0ia,0ja)nphi,phj + Γsgs(nis,js − n0is,0js)nphi,phj

−

(

nphi,phj

τph
− ϕphi,phj

)

+ βBrn
2
ia,ja, (2)

dnis,js

dt
= −Γsgs(nis,js − n0is,0js)nphi,phj −

nis,js

τs
+

Is
eVs

, (3)

dnia,ja

dt
= −Γaga(nia,ja − n0ia,0ja)(nphi,phj − ϕia,ja)−

nia,ja

τa
+

Ia
eVa

, (4)

where subscripts a and s stand for the gain and absorber regions, respectively. Terms ϕphi and ϕia in
Eqs. (2) and (4) represent respectively the coherent and incoherent optical perturbations of one pixel for

presynaptic neurons. ϕphi is kie
Pie(t,∆τ)λie

hcVa
, ϕia is kie

Pie(t,∆τ)τphλie

hcVa
, where kie(∆τ) is the input strength

(temporal duration). Terms ϕphj and ϕja in Eqs. (2) and (4) donate respectively the coherent and
incoherent optical inputs of postsynaptic neurons, which includes the sum of all presynaptic neurons

outputs with weight ωij and time delay T . ϕphj is
∑30

i=1 ωij
Pie(t,∆τ)λie

hcVa
and ϕja is

∑30
i=1 ωij

Pie(t,∆τ)τphλie

hcVa
.

For simplicity, we consider that all injected coherent wavelengths of presynaptic neurons and postsynaptic
neurons are same with λie,je = 845.58 nm [13]. For the incoherent perturbations, the wavelengths of
presynaptic neurons are λie = 1550 nm, and the wavelengths of postsynaptic neurons are λje = 845.58 nm.
In presynaptic neurons, we consider Pie = 1 mW. The output power of presynaptic and postsynaptic
VCSELs-SA can be expressed as

Pi,j(t) = ηcΓanphi,phj(t)Va
hc

τphλie,je
, (5)

where h is Planck constant and h = 6.63× 10−34 J·s. The rest parameters are the same for presynaptic
and postsynaptic neurons. The bias current of absorber region for incoherent and coherent perturbation
is 2 mA and 2.15 mA, respectively. In simulation, we use typical parameters for the VCSELs-SA, which
are summarized in Table 2.

3 Numerical results

In this section, the result of recognition is presented firstly after training based on the proposed learning
rule in photonic neural network which consists of 30 VCSELs-SA presynaptic neurons and 10 VCSELs-
SA postsynaptic neurons. Then the weights and error of recognition in the training process are shown
carefully. The effects of learning rate, the jitters of learning rate, bias current of VCSELs-SA postsy-
naptic neurons and initial weights distribution in photonic neural network on the error of recognition are
examined numerically.

Based on the proposed supervised learning rule, the network is trained to learn and recognize 10 digital
images. The digital images are black and white images with the size of 5×6 pixels as presented in Figure 2.
Because only two states are used in the learning rule, gray-scale images or the color images cannot be
recognized based on the proposed learning rule. In photonic neural network, one pixel is encoded by one
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Table 2 VCSEL-SA parameters [12, 28, 29]

Parameter Gain region Absorber region

Cavity volume Va,s 2.4 × 10−18 m3 2.4 × 10−18 m3

Confinement factor Γa,s 0.06 0.05

Carrier lifetime τa,s 1 ns 100 ps

Differential gain/loss ga,s 2.9 × 10−12 m3s−1 1.45 × 10−12 m3s−1

Transparency carrier density n0a,s 1.1 × 1024 m3 0.89 × 1024 m3

Bias current Ia,s 0 mA 2 mA/2.15 mA

Speed of light c 3 × 108 m/s

Spontaneous emission coupling factor β 10−4

Bimolecular recombination term Br 10 × 10−16 m3s−1

Output power coupling coefficient ηc 0.4

Photon lifetime τph 4.8 × 10−12 s

Figure 2 Ten digital images of size 5 × 6 pixels.

presynaptic neuron in Figure 1(b). Thirty pixels are encoded together. One black pixel is represented
by a rectangular pulse that is injected into one presynaptic neuron. The rectangular pulse is encoded
into a spike by a presynaptic neuron both for coherent and incoherent perturbations [12,28]. No pulse is
injected into presynaptic neuron which corresponds to the white pixel in digital images. Here, because
the aim of the proposed supervised learning rule is independent of timing or time interval, the binary
coding as mentioned above is used and the temporal coding is not used. Ten digital images are injected
into the photonic coherent or incoherent neural network in turn. Pattern recognition in our photonic
neural network means that one digital image can make only one postsynaptic neuron to generate a spike
according to the desired output of postsynaptic neurons. For instance, the image represented digital “1”
is injected into photonic neural network. The desired output of N31 is a spike. The desired outputs of
N32–N40 are no spike. When the outputs of N31–N40 are same to the desired outputs, we think the
digital “1” image is recognized. In the learning process, the WCU adjusts the weight of corresponding
weight device according to the proposed learning rule, until all postsynaptic neurons generate the desired
outputs for all images.

After training 1500 iterations, 10 digital images are injected into the photonic coherent and incoherent
neural systems for test. The results are same for both coherent and incoherent systems. It is because that
for both coherent and incoherent perturbations, all neurons have active and inactive states with suitable
working parameters. We only use neuronal states, the results thus are hardly affected by coherent and
incoherent perturbations. For simplicity, only results about incoherent perturbations are analyzed. The
tested results for incoherent perturbations are presented in Figure 3. It can be seen that when digital “5”
image is injected into the network, only postsynaptic neuron N35 has a red rectangle, which means only
N35 generates a spike, all postsynaptic neurons generate the desired outputs. The detail of postsynaptic
neurons outputs is illustrated in the insets of Figure 3 for digital “5” image. It can be seen clearly that
only the postsynaptic neuron N35 generates a spike. It is the same results to Figure 3. The results
of recognition for other nine digital images are same to the desired outputs. That is to say, 10 digital
images are recognized by 10 postsynaptic neurons after enough training based on our proposed supervised
learning rule.

The basic principle of training network is that the adjustable weights of synapses are modified to



Zhang Y H, et al. Sci China Inf Sci February 2021 Vol. 64 122403:6

1 2 3 4 5 6 7 8 9 0

10 digits

0 10
0

1

2

P
3

1
−

3
5
 (

m
W

)

P
3

6
−

4
0
 (

m
W

)

0 10 0 10

Time (ns)

0 10 0 10

0 10
0

1

2

0 10 0 10

Time (ns)

0 10 0 10

(e)(d)(c)(b)(a)

(j)(h)(g)(f) (i)

N
40

N
39

N
38

N
37

N
36

N
34

N
33

N
32

N
31

N
35

P
o
st

sy
n
ap

ti
c 

n
eu

ro
n
s

Figure 3 (Color online) The result of recognition after training. The insets are responses of 10 postsynaptic neurons for digital

“5” image. (a)–(j) The detail of postsynaptic neurons outputs for digital “5” image.
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Figure 4 (Color online) The weights in the learning process. (a) Representative weights in learning process; (b) all weights of

synapses connected with N35 in the learning process.

minimize the error between the desired output and actual output. Here, the weights of synapses which
are connected with N35 are analyzed carefully. Weights of some representative synapses are presented in
Figure 4(a). It can be seen that weight ω1,35 is increased in the training process, while weight ω16,35 is
decreased in the learning. It is because there are only three different pixels between digital “5” image
and digital “6” image, which are injected into N1, N16, and N21. To guarantee a spike generated with
digital “5” image not generated with digital “6” images, the weights connect with black pixels of digital
“5” image such as ω1,35 (white pixels of digital “5” image such as ω16,35) need increasing (decreasing)
with random initial weights. In learning process, ω4,35 decreases firstly and then fluctuates until N35

accomplishes learning. Because there are many images using N4 including digital “5” image, N35 only
need to generate a spike with digital “5” image. ω7,35 remains unchanged in the training. No digital
images use N7, the value of ω7,35 therefore cannot influence the recognition. Figure 4(b) presents all
weights of synapses which are connected with N35. In Figure 4(b), after 420 iterations training, all
weights became stable. That is to say, for N35, the training is accomplished, which generates a spike only
for digital “5” image.

The error in the training process for each image during each iteration is shown in Figure 5. Here the
error is defined as Ee = nepost/npost where nepost is the number of postsynaptic neurons which have
error state for test digital image, and npost is the number of postsynaptic neurons. It can be seen from
Figure 5(a), Ee becomes zero after 771 iterations. It means that digital “1” image can be recognized
correctly in the photonic SNN after 771 iterations training. Similarly, in Figures 5(b)–(j), it can been
seen that digital “2”–“9” and “0” images are recognized correctly after 772, 533, 204, 515, 1356, 507,
1356, 1356, and 1350 iterations training, respectively. For observing only one Ee in learning process,
we use digital images in turn for test. For instance, in one iteration, digital “5” image is used for test.
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In the next iteration, digital “6” image is used for test. Ee with test digital images injected in turn is
presented in Figure 5(k). It can be seen that after 1357 iterations, Ee turns to zero. The system is trained
successfully for recognizing 10 digital images. Compared with Figures 5(a)–(j), it is found that the turned
test digital images injection is a good test for the error of the photonic spiking neuronal network.

Figures 6(a1)–(a3) present Ee in learning process with different ∆ω when test digital images is injected
in turn. It can be seen that the number of iterations for corrected pattern recognition is 681, 168, and
100 with ∆ω = 0.005, 0.025, and 0.05, respectively. Compared with Figure 5(k), the number of iterations
is large with a small ∆ω. It means that if the learning rate is too small, the system needs many iterations
to achieve corrected pattern recognition. If the learning rate is too large, the system can overshoot the
weights, which leads to the system cannot recognize patterns correctly. In our proposed learning rule and
photonic neural network, the range of ∆ω is ∆ω<0.25. Moreover, in photonic neural network, considering
the effects of the precision of adjustment and device variations, Ee in learning process with different jitters
of ∆ω are presented in Figures 6(b1)–(b3). It can be seen that the numbers of iteration for successful
learning are similar with 10%, 20%, and 40% jitters. That is to say, our proposed modified learning rule
and photonic SNN are robust to noise of adjustment and device to some extent.

Ee in learning process with different ω0 is presented in Figure 7. Compared with Figure 5(k), Fig-
ures 7(a1) and (a2) have the same range and different distribution of ω0. It can be seen that, with
stochastic different distribution, the pattern recognitions are achieved (We also test many times with
stochastic distribution, all results are good). Figures 7(b1) and (b2) have different sizes of the ω0 range.
It can be seen from Figure 7(b1) with small range of ω0, Ee is 0.1 in first 238 iterations. No spike is
generated by all postsynaptic neurons. Thus, all weights need some iterations to increase for pattern
recognition. In a large range ω0 (in Figure 7(b2)), the pattern recognition also can be achieved after
enough learning. The ω0 of Figures 7(c1) and (c2) have the same size and different values range. Ee

are 0.9 in first 70 and 240 iterations in Figures 7(c1) and (c2), respectively. For larger value of the ω0
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(c) I = 2.2 mA, △ω = 0.0025.

range, firstly, the weights need to be decreased. In all random distribution of ω0, pattern recognition is
achieved after enough training based on the proposed modified learning rule. That is to say, the pattern
recognition is hardly effected by the initial weights distribution based on the proposed learning rule.

The threshold of postsynaptic neurons for generating spikes can be affected by current. Ee in learning
process with different postsynaptic neurons I is presented in Figure 8. It can be seen that 2812, 1231, and
1099 iterations are needed for the corrected pattern recognition with I = 1.9 mA, ∆ω = 0.5, I = 2.1 mA,
∆ω = 0.0025, and I = 2.2 mA, ∆ω = 0.0025, respectively. In Figure 8(a), I = 1.9 mA which far away
the threshold of generating spikes in VCSELs-SA neurons. In this case, weights are needed to increase
largely. There are 1595 iterations for system to increase the weight with ∆ω = 0.5 in Figure 8(a). For a
large current, such as I = 2.2 mA, Ee = 0.9 in first 71 iterations, all postsynaptic neurons generate spikes.
It means that with a larger current, the neuron near the threshold and a smaller weight are needed for
pattern recognition. In Figure 8, pattern recognition is achieved with different I based on our proposed
supervised learning rule. Thus, in learning process, even if initial weights, learning rate and current of
postsynaptic neurons have noise, based on the proposed learning rule, the system can achieve pattern
recognition. But in our optical neural network, timing information of spike and inhibitory neurons are not
used, only simple recognition tasks can be achieved in our optical neural network. The recognition rate
of noisy image or handwritten digits is low. A powerful optical neural network thus deserves additional
innovations.
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4 Conclusion

To the best of our knowledge, such modified supervised learning rule has not yet been reported, which
is suitable for training spiking photonic neural networks. The proposed learning rule is independent of
time interval between presynaptic spike and postsynaptic spike or between teacher spike and postsynaptic
spike. Moreover, based on the proposed learning rule, the pattern recognition is achieved after enough
training. Besides, the proposed supervised learning rule is robust to the learning rate, the jitter of
learning rate, initial weight distribution and current of postsynaptic neurons in the photonic neural
network. The proposed modified supervised learning rule is expected to contribute a step of training and
pattern recognition in fast photonic neural network.
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