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Abstract In this paper, a new architecture of optoelectronic convolutional neural networks (CNNs) based

on time-stretch method is proposed. In this loop-shaped structure mainly composed of fiber optical and

electronic devices, computations of data from each layer of CNN which are carried by light pulses with high

repetition rate can be accomplished in a serial way. Therefore, a 5-layer CNN with two convolution layers,

two mean pooling layers and one fully-connected layer are implemented. Under the test of handwriting digit

recognition, its accuracy can reach up to 95% under ideal circumstances. Tests under different relative noise

levels have been conducted and analyzed as well.
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1 Introduction

Convolutional neural networks (CNNs) have been widely adopted in fields of computer vision [1], speech
recognition [2], and autonomous vehicles [3–5]. By adopting convolution layers and pooling layers as
their core layers instead of only fully-connected layers like traditional feed-forward neural networks,
convolutional neural networks have advantages in pattern extraction and generalization. Under most
circumstances, they have better recognition and prediction performances compared with traditional feed-
forward neural networks [6].

Electronic integrated chips (ICs) are the most widely used platform for implementing convolutional
neural networks. Although convolutional neural networks perform better in machine learning tasks com-
pared with feed-forward neural networks, more basic universal linear computing units are required in
order to accomplish hundreds or even thousands of convolution operations between each layer. Tran-
sistors are manufactured smaller and smaller to pursue not only higher computing speed but also lower
energy cost. However, problems will become thorny sooner or later since today’s scale of transistors is so
tiny that Moore’s law will be ineffective in the near future [7]. It means that researchers cannot improve
performances of the chip by rigidly shrinking the scale of transistors like they have always done before.
Although convolutional neural networks which adopt the technique of parameter reuse in convolution and
pooling layers can reduce memory requirements for storage to some extend compared with feed-forward
neural networks with the same scale, it cannot completely address the data exchange problem which will
lower both power efficiency and computing speed.

While researchers have paid much their attention on further improving performances of electronic
implemented CNNs, the technology of optoelectronics may provide another scheme to breakthrough to-
day’s bottleneck of implementing CNNs and other photonic based AI structures with higher computing
speed and lower energy consumption [8–16]. Optical devices are not able to record data, so electronic
counterparts are adopted to store feedback results and better control the whole system. Therefore, both
higher computing speed and lower energy cost can be obtained once adopting the up-to-date technology
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Figure 1 (Color online) Structure of TS-CNN system. Light pulses propagate through the loop-shaped structure to implement

linear computations in CNN. Index in circles represents important nodes whose signals will be shown in Subsection 3.2. Note that

EDFA(s)1 represents one kind of untunable EDFA(s).

of optoelectronics. Time-stretch method [17], which is often used in fields of signal processing [18–21]
and imaging [22–25], provides a way of manipulating pulses in frequency-time plane. These pulses which
have been broadened by adopting time-stretch method can be served as data carriers for serial vector
computations once they were modulated with encoded data. Vector multiplication results can later be ob-
tained by compressing and accumulating the modulated pulses through dispersion fiber and photodetector
(PD) based on the theory of time-stretch [26]. Combined with electronic-assisted signal encoding and
logic controlling, time-stretch method has potential applications in implementing convolutional neural
networks.

In this paper, we propose an optoelectronic structure based on time-stretch method (TS-CNN) to
implement a 5-layer convolutional neural networks. With two convolution layers, two mean pooling layers
and one fully-connected layer, not only can the whole system manage the original digit handwriting task
without the need to conduct picture compression operations, but also let recognition accuracy reach up
to 95%. This serial-computing structure differing from other serial-computing proposals by fully utilizing
both time and frequency information of pulses, once adapted, can not only greatly improve the dimensions
of optoelectronic neural networks, but also combine data computation and tranmission as a whole. The
rest of this paper is developed into three parts. The analysis and proof that the structure of TS-CNN
can implement convolutional neural networks are written in Section 2 while all simulations and results
are shown in Section 3. Other discussions and future work will be developed in conclusion part.

2 Structure and analysis

2.1 Structure of TS-CNN

As is described in Figure 1, TS-CNN is a loop-based system. Each loop implements one basic vector
multiplication of CNN. Two intensity modulators, one pulse compression component, one PD, one dig-
ital signal processor (DSP), one nonlinear component, the signal encoder1 and the arbitrary waveform
generator1 (AWG1) are in the loop. Optical pulses generated by a mode-locked laser enter the loop
and propagate through the optical fiber. After pulses are broadened and flattened by the pulse broaden
component and the waveshaper respectively, intensity modulator1 modulates the encoded results of the
previous layer from signal encoder1 and intensity modulator2 modulates encoded data configurations of
the current layer from signal encoder2 onto the peaks of broadened pulses respectively. Then, the pulse
compression component containing fiber with the opposite dispersion coefficient is used to compress the
modulated broadened pulses. A PD whose bandwidth is narrower than that of the signals is used to
convert optical signals into electronic signals and accumulate the pulse energy. DSP is used to calibrate,
store, process the pulse energy obtained from optoelectronic structures and regroup them into convolution
results. The nonlinear component is used as the final stage to turn linear convolution results into the
feature maps as the input data for the next loop. After all pulses modulated with effective data flow over
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paths of all loops, results of the TS-CNN system will come out after nonlinear component in the final
loop.

2.2 Theoretical analysis

Since basic computations for convolution and mean pooling layers are convolution operations while basic
computations for fully-connected layers are matrix multiplications and accumulations (MACs), proof will
be focused on how our system implements these two computation operations. Theoretical analysis will
be divided into two parts. In Subsection 2.2.1, signal analysis of pulse evolution and computational
information transmission in single loop proves that vector multiplications can be implemented. Then by
vectorize matrices, our system can implement MACs in time-division ways. In Subsection 2.2.2, analysis
will focus more on designing the signals for modulation and time-division logic to prove that the whole
TS-CNN system can implement convolution operations as well.

2.2.1 Signal analysis and MAC implementation

As is described in Figure 1, pulse whose temporal waveform noted as E1 is firstly broadened and flattened
by pulse broaden component and waveshaper to be E2. The waveform of the pulse after the waveshaper
is ought to be a rectangular shape whose width equals the absolute value of the multiplication of the
spectrum bandwidth of the pulse Ω, second order propagation coefficient β2a and the length of optical
fiber in pulse broaden component la due to fiber optics and dispersion fourier transform [27] in the theory
of time-stretch method. This can be described as

|E2(la, T )| ∝ rect|Ωβ2ala|(T )e
−αala

2 , (1)

in which αa means loss per length of fiber in pulse broaden component and rect(·) represents rectangular
shaped function whose length is described in its subscript. T is the time-retarded frame which moves at
the same speed as the light pulse propagates for the simplicity of derivations.

Then, the broadened and flattened pulse will be modulated with the signal generated by two intensity
modulators. According to theory of linear systems, this process can be written as

E3(la, T ) = s(T )E2(la, T ), (2)

in which s(·) represents the signal for modulation and E3 describes temporal waveform of light pulse after
modulation processes.

The signal s(T ) can be seen as the multiplication results of the signal from AWG1 and AWG2. If the
signal of AWG1 comes from one vector a and the signal of AWG2 comes from the other vector b, the
signal for modulation can be further described as

s(T ) =

K
∑

k=1

√

akbk × rect|Ωβ2ala/K|

(

T − (2k −K − 1)
|Ωβ2ala|

2K

)

, (3)

in which ak and bk is the kth element of a and b both containing K elements.
In the pulse compression component, pulses are compressed through dispersion fiber with the second

order propagation coefficient β2b (whose symbol is the opposite of β2a) and length lb. This process can
be described as

E4 (la + lb, T ) =
e−

αblb
2

2π

∫ ∞

−∞

[

S3 (la, ω − ωs) exp

(

j
β2blb

2
(ω − ωs)

2

)

× exp (−j (ω − ωs)T )

]

dω, (4)

in which E4 represents the temporal waveform of the pulse after pulse compression component. S3

represents the spectrum of modulated pulse. αb means loss per length of the fiber in pulse compression
component. ω and ωs represents angular frequency and central angular frequency of the pulse.

The resulting signal after the PD in each loop can be calculated based on Plancherel theorem [28]. This
is because the relationship between the energy of modulated pulse and compressed pulse can be clearly
found via frequency domain so as to calculate the final result. Therefore, this process can be described
precisely as

E = κ

∫ ∞

−∞

|E4|
2dT =

κ

2π

∫ ∞

−∞

S4S
∗
4dω =

κe−αblb

2π

∫ ∞

−∞

S3S
∗
3dω



Zang Y B, et al. Sci China Inf Sci February 2021 Vol. 64 122401:4

= κe−αblb

∫ ∞

−∞

|E3|
2dT = σ

K
∑

k=1

akbk ∝

K
∑

k=1

akbk, (5)

in which E represents the energy of pulse accumulated by PD, κ means the proportional coefficient
brought by PD and σ represents the proportional coefficient and can be obtained by calibration process
in actual implementations. Superscript * represents complex conjugation.

This means each loop of TS-CNN can implement vector multiplications and accumulations. Therefore,
if the matrix is vectorized into vectors, and are modulated onto pulses in a time-division way, then our
system can implement MACs [26].

2.2.2 Convolution implementation

The convolution operations in convolution and mean pooling layers are conducted between output feature
maps from the previous layer and kernels of the current layer. Consider one convolution operation between
one gray picture (feature map) G with N×N pixels and one gray kernel H with M×M pixels. In order to
let kernels be centered at one pixel of the convoluted feature map, M is usually set to be an odd number
less than N . This convolution process can be described precisely as

F (p, q) = H(i, j)⊗G(i, j) =

M
∑

i=1

M
∑

j=1

H (M + 1− i,M + 1− j)G (p+ i− 1, q + j − 1) , (6)

in which F represents the convolution result. Parameters p and q not only represent the displacement
in row and column during convolution process, but also represent the row and column index of the
convolution result respectively while parameters i and j are the row and column index of kernels and
pictures.

Since all feature maps and kernels are viewed as matrices, parameters p and q are integer numbers. In
traditional convolutions, p and q both take consecutive integer numbers which means that the position of
the center of kernels moves from one pixel to another without omitting pixels. However, in more general
cases, the center of kernels can move every two or three pixels each at a time. Therefore, parameters sp
and sq named row and column stride are introduced to describe the number of pixels omitted in row and
column direction respectively of kernels’ movements during convolution processes. In this case, Eq. (6)
can be further illustrated as

F (kp, kq) = H(i, j)⊗G(i, j) =
M
∑

i=1

M
∑

j=1

H (M + 1− i,M + 1− j)G (kpsp − sp + i, kqsq − sq + j) , (7)

in which kp and kq are integers equaling

kp = 1, 2, 3, . . . ,

⌊

N −M + sp

sp

⌋

, kq = 1, 2, 3, . . . ,

⌊

N −M + sq

sq

⌋

, (8)

where the operator ⌊·⌋ means rounding the number to the nearest integer which is no larger than that
number.

In convolutional neural networks, especially for TS-CNN system, various kernels are used to extract
different patterns in each convolution layer. More specifically, the inputs in one neuron in each convolution
or mean pooling layer can be obtained by firstly using the corresponding kernel to conduct convolutions
with all feature maps from the previous layer, then adding up altogether and doing nonlinear stimulation
which can be clearly seen in Figure 2. These two processes can be described as

F (n)
m (kp, kq) = f

(

bm +
L
∑

l=1

Hml(i, j)⊗ F
(n−1)
l (i, j)

)

= f



bm+

L
∑

l=1

M
∑

i=1

M
∑

j=1

Hml (M+1−i,M+1−j)×F
(n−1)
l (kpsp−sp+i, kqsq−sq+j)



 , (9)

in which superscript (n) and (n−1) means the nth and (n−1)th layer in CNN. Subscript m and l means
the mth and lth neuron in each layer. Capital L describes the total number of nodes in the (n − 1)th



Zang Y B, et al. Sci China Inf Sci February 2021 Vol. 64 122401:5

.
.

Input Output
Convolution

layer1
Convolution

layer2

Mean pooling

layer1
Mean pooling

layer2

Fully-connected

layer

Kernels with 5×5 pixels Kernels with 5×5 pixels  

 28×28×1  24×24×6  12×12×6  8×8×12  4×4×12

Tiled into
column vector

(192×1)

10×1

.

.

Legends
1

0
Convolution

and down-

sampling

connections

Multiplications

and summation

connections

Figure 2 (Color online) Structure of theoretical CNN model. It includes two convolution layers, two mean pooling layers and

one full-connected layer. The sample ‘0’ from the training set is used as an example to show all procedures.

layer. Subscript ml means the corresponding kernel between the lth neuron of the (n − 1)th layer and
the mth neuron of the nth layer. b represents bias and f means nonlinear function like Sigmoid, ReLU.

In order to further convert (9) into vector multiplication form which can be modulated by two intensity
modulators in TS-CNN system, both feature maps and kernels need to be vectorized. This can be done
by shuffling each row of kernels and feature maps into one row which is described as

{

k = M + 1− j + (M − i)×M,

kkp,kq
= sqkq − sq + j + (spkp − sp + i− 1)×M,

(i, j = 1, 2, 3, . . . ,M), (10)

in which the first equation is for kernels while the second equation is for feature maps.

Under this circumstance, Eq. (9) can be changed into

F (n)
m = (kp, kq) = f

(

bm +

L
∑

l=1

Hml(i, j)⊗ F
(n−1)
l (i, j)

)

= f



bm +

L
∑

l=1

M2

∑

k=1

Hml(k)F
(n−1)
l

(

kkp,kq

)



 . (11)

In all, the temporal waveform of the modulated light pulse which was described in (2) can be written
as

E3,kp,kq
(la, T )

= skp,kq
(T )E2(la, T )

=

M2

∑

k=1

{
√

Hml(k)F
(n−1)
l (kkp.kq

)× rect|Ωβ2ala/M2|

(

T −
(

2k −M2 − 1
) |Ωβ2ala|

2M2

)}

E2(la, T ). (12)

As a result, accumulated energy for each pulse after PD which bandwidth is narrower than that of the
signals can be obtained as

E
(n)
m,l,kp,kq

∝

M2

∑

k=1

Hml(k)F
(n−1)
l

(

kkp.kq

)

. (13)
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In the end, (9) can be rewritten as

F (n)
m (kp, kq) = f

(

bm + σ

L
∑

l=1

E
(n)
m,l,kp,kq

)

. (14)

Therefore, it theoretically proves that our system which is described in Figure 1 can accomplish con-
volution operations. Since convolution operations are the basis of convolution layers and mean pooling
layers, together with fully-connected layer whose basic computations are MACs, the whole CNN model
can be implemented by our TS-CNN system. All phsyical meaning of important parameters mentioned
above can be clearly seen in Appendix A. More detailed mathematical analysis of the generation of the
signals for modulation can be found in Appendix B.

3 Simulations and results

3.1 CNN setup and training

CNN setups and training algorithms are based on the open source deep learning toolbox written by
Palm [29, 30] which can be conducted on digit computers. All training and testing data are taken from
MNIST handwriting digit recognition dataset [31]. In theoretical model of CNN, 60000 training samples
from MNIST are used to optimize the whole configurations of each layer in CNN via stochastic gradient
descend (SGD) algorithm while 10000 testing pictures are used to test the recognition accuracy of CNN.
All nonlinear functions in this CNN model are chosen to be non-negative Sigmoid function.

As can be seen from Figure 2, in total 5 layers including two convolution layers, two mean pooling
layers and one fully-connected layer are made up of theoretical neural networks model. Input data are
picture samples from MNIST handwriting digit recognition set with 28×28 pixels. Note that the legend
of gray scale turns from white to black as value of pictures ascends in Figure 2 which may well be different
from normally defined gray scale legends in order to clearly show the value since more near-zero values
exist in feature maps than near-one values. Convolution layer1 has six neurons, each of which has its own
kernel with 5×5 pixels. Convolutions are conducted between feature maps from the previous layer and
kernels from the current layer. Stride sp and sq are set to be one when doing convolutions. Therefore,
according to (8), in total six convolution results with 24×24 pixels are obtained after all convolutions are
done in this layer. After that, each neuron will add up its own bias to the corresponding convolution
result and conduct nonlinear stimulus to obtain its output feature map. All nonlinear stimulus functions
in theoretical model are non-negative Sigmoid function.

Mean pooling layer1 is used to down-sample the output feature maps from convolution layer1 in order
to further compress the data and improve the generalization ability of the whole network. This layer also
has six neurons with each conducting down-sampling to the corresponding feature map from previous
layer. Each neuron first divides each feature map with 24×24 pixels from previous layer into 144 groups
of 2×2 pixels, then for each group, its mean value is taken as the new pixel of the outputs of this layer.
As a result, in total six new feature maps with 12×12 pixels are obtained. These new feature maps will
directly become the inputs for convolution layer2.

In convolution layer2, twelve neurons are adopted to extract various patterns for input feature maps.
For each neuron in this layer, convolutions are firstly conducted between kernels with 5×5 pixels and out-
put feature maps from the previous layer. Six new convolution results with 8×8 pixels are obtained after
operations. Then, all six corresponding convolution results and the bias will be summed up. Afterwards,
nonlinear stimulus function is adopted to obtain the resulting feature maps for the next layer. In all, 12
output feature maps, each with 8×8 pixels, are obtained after all these processes are accomplished.

Mean pooling layer2, like the first mean pooling layer, is used to down-sample 12 output feature maps
from convolution layer2. Thus, for each neuron, like procedures in mean pooling layer1, input feature
maps with 8×8 pixels are firstly divided into 4 groups of 2×2 pixels. Then new pixels of feature map
can be obtained by taking mean value for each group. Therefore, in total 12 new feature maps with 4×4
pixels are obtained. Afterwards, these feature maps will be tiled into one column vector with 192 rows
and 1 column as the inputs for fully-connected layer.

Fully-connected layer, as the last layer in theoretical CNN model, is used to turn the pattern features
extracted from precious four layers into recognition probability. Neurons in this layer, which repre-
sent value instead of the whole feature map like previous layers, work in the same way like traditional
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Figure 3 (Color online) Illustration of convolution operations implemented by broadened pulses in TS-CNN. All numbers and

alphabets only represent pixel order.

feed-forward neural networks. For each of the ten neurons, multiplications between each weight coef-
ficient and 192 elements in input vectors are firstly conducted. Then, summation between each bias
and all multiplication results are conducted, nonlinear stimulus function will later be adopted to turn
linear computational results into output recognition probability. At last, one vector with 10 elements
representing the probability of recognizing input picture as 0–9 respectively will come out.

3.2 TS-CNN configurations setup

Analytically, in order to set up TS-CNN configurations, pre-trained kernels and all input feature maps of
each layer must be firstly encoded into signals for modulation and computation processes. As is illustrated
in Figure 3, pre-trained inversed kernels and convolution regions of feature maps (as is depicted by red
square-shaped region) from previous layers should be firstly encoded into vectors by order. Then, after
dividing each vector into vectors with positive symbols and vector with negative symbols since the non-
cognitive optical system can only transmit intensity information, these two vectors are modulated onto
peaks of adjoined broadened pulses respectively as is shown in blue and green region in Figure 3. Vector
multiplication and summation results can then be obtained by conducting subtractions between adjoined
two accumulated pulses after pulse compression, optical-electronic power conversion, energy accumulation
and DSP calibration processes. Convolution results can be finally obtained by regrouping subtraction
results by order which can be conducted by DSP as well.

In actual simulation implementation, signal encoders which are located before AWGs are crucial devices
whose function is to pre-process data including feature maps, kernels, weight matrices, and input vectors
into the signals for modulation. These pre-processing procedures include data normalization, symbol
separation [26], quantization and time-domain equalization.

Data including kernels and weight matrices entering into signal encoders will be firstly conducted nor-
malization to ensure all data which will later entering into TS-CNN system vary at the same appropriate
range. There exist two types of data, feature maps from previous layer (or picture samples for the in-
put) and kernels of the current layer. For feature maps, the normalization process has already done by
non-negative Sigmoid function from the previous layer. Picture samples are need to be normalized to the
range from 0 to 1 while kernels are need to be normalized to the range from −1 to 1.

Symbol separation can be conducted after data normalization. It is necessary to conduct this process
since incoherent optical system cannot convey negative signals. This process can be conducted as follows.
Assume the linear component conducts the inner product of two vectors a and b with both K real-number
elements. In TS-CNN, since one of this vector, suppose a, comes from the results from non-negative
Sigmoid fuction, all elements of a is non-negative. Therefore, all we need to do is to separate positive
symbol and negative symbol for b. The separation is to divide b into b

+ and b
−. b+ records all positive
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Figure 4 (Color online) Important signals of the last layer of TS-CNN system. (a) Pulses generated by mode-locked laser [ 1©];

(b) broadened pulses after pulse broaden component [ 2©]; (c) pulses after two intensity modulators [ 3©]; (d) zoomed-in picture

of modulated pulse [ 3©]; (e) compressed pulses after compression component [ 4©]; (f) accumulated signals after PD [ 5©]. Note

that index of circles in the square brackets represent the corresponding nodes in Figure 1. This picture depicts the convolution

operations between the first kernel with input picture in convolution layer1 in TS-CNN system.

elements in b. For negative elements in b, the corresponding elements in b
+ are all set to be 0. On the

contrary, b− is used to record all negative elements in b as to change the symbol of the correwsponding
values in b. For positive elements in b, the corresponding elements in b

− will be all set to 0. More
specifically, if b = [+ + − − + −], then b

+ = [+ + 0 0 + 0] and b
− = [0 0 + + 0 +]. Then,

let b
+ and b

− multiply with a separately and do the subtraction to obtain the inner product of two
vectors a and b. This process is reachable since only kernels or weight matrices which are determined in
the training procedure contain negative data. After symbol separations, data with positive symbol and
negative symbol will be divided apart and later be modulated onto adjoined pulses’ peaks which is both
shown in Figures 3 and 4(c).

Time-domain equalization can be conducted after symbol separation. In fact, it may always be neces-
sary since only adopting waveshaper can not flatten broadened pulses in meticulous ways due to its limited
wavelength resolution. As can be seen in Figure 4(b), even after waveshaper, the peak of each flattened
pulse still descend slightly as time goes on. Therefore, time-domain equalization process conducting
pre-multiplications between equalization coefficients and data is adopted to further flatten broadened
pulses.

Quantization process is conducted after the above three procedures to match the vertical resolution
of AWG which is set to be 8 bits in simulation. However, This procedure will introduce quantization
noise which can not be erased after signals are received and accumulated after PD. Thus, it will affect
recognition accuracy more or less during the test of MNIST handwriting digit recognition.

In all, narrow pulses with repetition rate equaling 50 MHz are generated by mode-locked laser which
can be clearly seen in Figure 4(a). Then, as is described in Figure 4(b), after each of them is broadened
by pulse broaden component with 170 km-long single mode optical fiber (SMF), its 3 dB width in time
domain extends from 1.5 ps to approximately 12 ns. Since the shape of each pulse is irregular, waveshaper
is used as a tool to flatten the peaks of these pulses. Due to the limited spectrum resolution in wave-
shaper, the peak cannot become extremely flat after processing. Flattened pulses are then transmitted
into intensity modulator1 which modulates encoded output results, i.e., feature pictures, from previous
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loop onto peaks of pulses. After that, pulses will be continuously modulated with encoded configurations,
i.e., kernels or weight coefficients, of the current layer by intensity modulator2. Then, modulated broad-
ened pulses which are vividly shown in Figure 4(c) and (d) are compressed narrow after propagating
through pulse compression component mainly including 28.5 km, −100 ps/nm/km dispersion compen-
sation fiber (DCF). A PD whose bandwidth is narrower than that of the signals is used to transfer the
optical energy into electronic forms and accumulate pulse energy respectively. DSP is used to detect the
pulse energy, turn it into the computation results after each loop and sum up feature pictures from the
convolution operations between each neuron’s kernel with all output feature maps from previous layer
pixel by pixel after all computations of one layer of CNN are finished. Nonlinear component implement-
ing non-negative Sigmoid function which is used in implementing convolution layers and fully-connected
layer is adopted to change the linear computation results into output feature maps which can be seen in
Figure 4(f).

3.3 TS-CNN testing

The performance of TS-CNN is tested by pictures from MNIST handwriting digit recognition test set.
In total, all 10000 pictures are adopted to test the theoretical model of convolutional neural networks.
In order to test TS-CNN system, 100 pictures which are randomly selected from the whole MNIST test
set with 10 pictures for each digit are used. Not only the optoelectronic convolutional neural networks
under ideal circumstance in which no noise exists are tested, but also optoelectronic convolutional neural
networks under different relative noise levels are tested.

Noise mainly comes from AWGs, EDFAs, PD, and DSP in TS-CNN simulation system. The quanti-
zation noise and limited bandwidth of AWGs can cause distortions of the signals for modulation which
are irreversible. EDFAs generate amplified simultaneous emission (ASE) noise which will pollute signals
carried by light pulses. PD which adopts standard PIN model whose responsibility equals 0.9, generates
not only additive white Gaussian noise (AWGN) but also shot noise, ASE-related noise and dark current.
Besides, calibration process in DSP which turns signals input into computation results can also introduce
estimation noise since calibration coefficients are obtained by prior estimation. For signal amplification,
EDFAs are set in this system to amplified optical signals through long distance propagation. All EDFAs’
gains are fixed except that of EDFA2. Both thermal noise and shot noise has been added in PD, and
noise figure of EDFAs is set to be 4 dB. In the testing of TS-CNN under different relative noise levels,
the EDFA2’s gain takes value from 10, 12, 15, 17, and 20 dB in each loop. Therefore, relatively better
signal quality can be obtained after PD for larger gain. All confusion matrices of testing of TS-CNN are
clearly shown in Figure 5.

As can be seen from Figure 5(b) and (c), the accuracy of testing of theoretical convolutional neural
network model by 10000 pictures from MNIST test set and by 100 pictures randomly selected from
MNIST test set is 99.02% and 99% which is similar with each other. Figure 5(d) shows the accuracy of
the testing of TS-CNN without noise is 95% which is lower than the results of theoretical CNN model.
This 4% drop in accuracy is mainly caused by the slightly unflat peaks of broadened pulses. It can also be
caused by symbol separation, quantization or other processes before encoding configurations of each layer
into the signals for modulation in each loop. Figure 5(a) and Figure 5(e)–(i) shows accuracy of testing of
TS-CNN under different relative noise levels, which equals 93%, 92%, 91%, 88%, and 76% with the gain
of the EDFA2 decreases as 20, 17, 15, 12, and 10 dB. With the increase of the gain of the EDFA2, test
accuracy increases since signals of high quality are obtained in each layer.

In most cases, mis-classification happens due to noise, fluctuations and configuration discretizations.
As can be seen from the confusion matrices which show the mis-classification of the digit 6 into 2 from
Figure 5(d)–(i). In Figure 5(d) with no noise, TS-CNN classified all ten pictures of handwriting digit
6 into the correct category. While as the gain of the EDFA2 drops from 20 to 10 dB, the number of
mis-classification of pictures of handwriting digit 6 into 2 increases from 0 to 6 according to Figure 5(e)–
(i). Since nonlinear stimulus component exists in each layer, the changes of mis-classification are by no
means in linear ways. Minor cases show that fluctuations on peaks of stretched light pulses can somewhat
correct the wrong configurations of theoretical CNN model which is shown in the mis-classification of 0 to
6 in Figure 5(c) and (d). Detailed feature maps of each layer and further estimation of time consumption
of TS-CNN can be found in Appendixes C and D.
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Figure 5 (Color online) Confusion matrices of testing of TS-CNN. (a) The trend of accuracy of handwriting digit recognition

with regard to the gain of adjustable EDFA2 in the optoelectronic TS-CNN system. Detailed information of confusion matrix of

each data point can be seen in Figure 5(d)–(i). The numbers in circle mark the data points which are shown in Figure 5(a) with

their corresponding confusion matrices. (b) Test of theoretical CNN by all pictures from MNIST test set. (c) Test of theoretical

CNN by 100 pictures from MNIST test set. (d) Test of noise free TS-CNN [ 1©]. (e) Test of TS-CNN with the gain of EDFA2 equals

20 dB [ 2©]. (f) Test of TS-CNN with the gain of EDFA2 equals 17 dB [ 3©]. (g) Test of TS-CNN with the gain of EDFA2 equals

15 dB [ 4©]. (h) Test of TS-CNN with the gain of EDFA2 equals 12 dB [ 5©]. (i) Test of TS-CNN with the gain of EDFA2 equals

10 dB [ 6©].

4 Conclusion and discussions

In this paper, we have proposed a new optoelectronic convolutional neural networks. Based on time-
stretch method, data can flow in serial ways in TS-CNN system. By implementing a theoretical convo-
lutional neural network with two convolution layers, two mean pooling layers and one fully-connected
layer, this structure reaches 95% accuracy under the test of handwriting digit recognition. Besides, this
new structure of TS-CNN can have a great robust performance under considerable noise or interference.

Several advantages can be obtained once adopting this loop-shaped optoelectronic structure. Firstly,
neural networks with large scale of inputs and more complicated structures can be implemented. Thanks
to the adoption of time-stretch technology, information which is modulated onto peaks of broadened pulses
can be transmitted and processed in a serial way. Therefore, thorny robust problems which become
severe when implementing large-scale complicated neural network models with parallel structures of
optoelectronic or all-optical neural networks no longer exist in TS-CNN. Secondly, high power efficiency
can be obtained. Instead of adopting von Neumann structure like neural networks implemented by
electronic chips or devices in which most power is wasted by exchanging data between memory and
computing unit, data will be immediately processed as pulses flow through the optical fiber. Besides,
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optical pulses can propagate through long distance with relatively low loss. Thirdly, compared with all-
optical structure implementing neural networks, the electronic devices in our optoelectronic system can
better process information and compensate for the defects cause by optical devices. For example, peaks
of light pulses cannot be completely cut flat only by waveshaper due to its limited spectrum resolution.
However, thanks to electronic devices like the signal encoder1 and AWG1, time domain compensation,
together with the processed encoded results from the previous layer can be modulated onto peaks of
flattened pulses to make them more flat, only leaving slight fluctuations which are acceptable from
engineering view. Last but not least, high ability of reconfiguration can be obtained. Various structures
of CNN can be implemented by easily changing configurations of each layer as mentioned in part 2 which
can reduce the cost of reconfiguration.

Future work will focus more on the integration of the whole system. Technology of hybrid integra-
tion [32] which integrates electronic and photonic devices into one chip may does great help in designing
and manufacturing integrated TS-CNN system. Photonic devices like lasers [33] , waveguides, reconfig-
urable optical filter [34], modulators [35] will be integrated as the core computational unit into the chip
while electronic devices such as signal encoders, waveform generators, DSP, nonlinear component will
be integrated as external processing module. After core optical computing units conduct operations in
serial and fast ways, external processing module will further process the results and control the whole
optical system. The nonlinear component in the external processing module can be further implemented
by optical materials [36] such as saterable absorber [37], phase change material (PCM) [12], or mono-
layer grapheme [38–41] so as to implement a fully-optical convolutional neural network system based on
time-stretch method.
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