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Abstract A general framework to tackle the problem of few-shot learning is meta-learning, which aims

to train a well-generalized meta-learner (or backbone network) to learn a base-learner for each future task

with small training data. Although a lot of work has produced relatively good results, there are still some

challenges for few-shot image classification. First, meta-learning is a learning problem over a collection of

tasks and the meta-learner is usually shared among all tasks. To achieve image classification of novel classes

in different tasks, it is needed to learn a base-learner for each task. Under the circumstances, how to make the

base-learner specialized, and thus respond to different inputs in an extremely task-wise manner for different

tasks is a big challenge at present. Second, classification network usually inclines to identify local regions

from the most discriminative object parts rather than the whole objects for recognition, thereby resulting in

incomplete feature representations. To address the first challenge, we propose a task-wise attention (TWA)

module to guide the base-learner to extract task-specific image features. To address the second challenge,

under the guidance of TWA, we propose a part complementary learning (PCL) module to extract and fuse

the features of multiple complementary parts of target objects, and thus we can obtain more specific and

complete information. In addition, the proposed TWA module and PCL module can be embedded into a

unified network for end-to-end training. Extensive experiments on two commonly-used benchmark datasets

and comparison with state-of-the-art methods demonstrate the effectiveness of our proposed method.
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1 Introduction

Deep learning has made great achievements in many fields, such as object detection [1–6], image classi-
fication [7–10], semantic segmentation [11, 12], and so on [13, 14], but these methods all rely heavily on
substantial labeled training data. How to undertake new tasks with a small amount of labeled data has
become a new research hotspot [15,16]. Few-shot learning (FSL) provides a solution to this problem and
meta-learning is a general framework to achieve the goal of few-shot learning [17–20].

Typically, a meta-learning algorithm consists of two main components, namely, a meta-learner and
a base-learner [20, 21]. The meta-learner is generally trained from a large number of similar few-shot
tasks (also known as episodes), with the goal of being well generalized to new tasks, by maximizing the
united generalization power of the learner on all tasks. The base-learner is trained for each specific task
with only a few labeled training examples. In other words, the goal of meta-learning is to train a well-
generalized meta-learner on a variety of tasks in order to facilitate the training of base-learners for each
future task. Therefore, the key of meta-learning is to develop high-capacity yet trainable meta-learners
and base-learners.

During the past few years, researchers have proposed many meta-learners, including metrics [22, 23]
and optimizers [24–31], which have shown promising results for few-shot learning. For instance, some
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studies such as prototypical networks [22] and matching networks [23] proposed to use distance metric
learning algorithms as meta-learners for non-parametric learners like nearest neighbor classifiers and their
variants. Distance metric-based methods work through matching the labeled examples of the support set
and the unlabeled data of the query set, which work well for few-shot image classification problem and are
widely used. However, a metric does not really train a learner and it actually affects its behavior through
modifying the distances between the examples. Therefore, meta-learners based on distance metric are
mainly suitable for non-parametric learners.

Recent studies move meta-learners towards deep neural networks. Some studies used a recurrent
model such as long short-term memory (LSTM) as meta-learners owing to its capability of adaptively
modeling optimization algorithms [24–26]. For example, Andrychowicz et al. [24] formulated LSTM
as a stochastic gradient descent (SGD)-like optimizer to imitate the process of model update of the
learner and obtained promising results when compared to hand-crafted optimization algorithms. Ravi et
al. [25] proposed an LSTM-based meta-learner that is trained to learn a neural network classifier which
can quickly converge on each specific task. The meta-learner could capture both long-term knowledge
common across all the tasks and short-term knowledge within a specific task. LSTM-based meta-learners
are versatile and show promising results; however, using such meta-learners to learn learners such as
convolutional neural networks (CNNs) encounters high complexity. Besides, Finn et al. [27] proposed a
simple yet effective model-agnostic meta-learning (MAML) algorithm. Li et al. [28] developed an SGD-
like, conceptually simple, and easy-to-implement meta-learner, called meta-SGD, which can initialize
and adapt all differentiable learners in just one step. Furthermore, in order to obtain an unbiased meta-
learner and improve its generalization ability, Jamal and Qi [29] proposed an entropy-based task-agnostic
meta-learning (TAML) algorithm. Zhou et al. [30] proposed to equip a meta-learner with a deep learning
based concept generator to enable it to better learn in the new concept space. Sun et al. [31] presented
a new few-shot learning approach named meta-transfer learning (MTL) which can learn to adapt a deep
neural network to few-shot learning tasks.

The abovementioned methods mainly focus on the research of meta-learner, which is a slow learning
process of task-agnostic meta-level model performing across a variety of tasks with the goal of capturing
common knowledge of different tasks. In fact, the learning of base-learners acting with each specific task is
also significantly crucial for few-shot learning. However, there are only few literatures specially focusing
on the research of base-learners. For example, Lee et al. [32] proposed to leverage linear classifiers
(e.g., support vector machine, ridge regression) as base-learners to tackle few-shot learning problems
instead of nearest-neighbor classifiers in prototypical networks. Promising results with the consideration
of dual formation and Karush-Kuhn-Tucker (KKT) conditions indicate that the regularized linear model
produced better generalization under novel categories and reduced overfitting. Ref. [21] introduced a
differentiable ridge regression base-learner, called R2-D2, which achieved a tradeoff between adaptation-
free for novel class samples (e.g., metric-based approaches) and costly iterative techniques (e.g., LSTM-
based approaches). Lifchitz et al. [33] broadened the well-trained base network by introducing extra
convolution kernels at the top, called new neurons implants, striving to achieve rapid adaptation of
base-learners on previously unseen classes with few available annotations.

These innovative design and considerable improvements for base-learners stimulated our research inter-
est. In addition to optimizing the network classifier, how to capture specific but discriminative information
under different task requirements is equally vital for the few-shot learning scenarios. Towards this end,
a task-specific feature extraction module named task-wise attention (TWA) was proposed in this work.
TWA learns to find the most representative features associated with current task by reinforcing or sup-
pressing a portion of the knowledge provided by meta-learner. Under the guidance of TWA, the learning
process of base-learners becomes more efficient and specialized, demonstrating their unique nature of
“adaptation”. Whereas, such a solution is insufficient for the scenarios with few data attainable (e.g.,
1 shot or 5 shots), because base-learners may fail to analyze the critical classification information from
a global and comprehensive perspective, ultimately tending to overfit during the meta-training phase.
For this purpose, we designed a part complementary learning (PCL) module in the form of dual-branch
network, incorporating and enriching the formerly extracted features. PCL is not limited to recognition
from the most discriminative object parts, which often incline to be local and incomplete. On the con-
trary, the proposed module efficiently leverages complementary information generated by the new branch
to assist classification process from a global perspective, exhibiting the “generalization” characteristic
of base-learners. Compared to conventional meta-learning algorithms, our proposed model (called TP-
Net) can exploit and explore the feature map in-depth, and further, achieve a tradeoff between rapid
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“adaptation” and inductive “generalization”.

In summary, our study aims to contribute to the growing area of few-shot learning by exploring the
modification of meta-learning algorithm, which can be stated out from three aspects:

• First, we focus on the research of base-learners in meta-learning framework, which is crucial but
rarely investigated.

• Second, TWA and PCL modules are integrated into base models, achieving fast adaptation and
inductive generalization during meta-testing phase.

• Third, our proposed end-to-end meta-learning network, called TPNet, demonstrates superior perfor-
mance compared to the state-of-the-art approaches on benchmark few-shot datasets, e.g., miniImageNet
and CUB-200.

2 Related work

For the past few years, meta-learning algorithms have received widespread attention from scholars due to
their universality and effectiveness in the few-shot learning scenarios. By leveraging the base datasets with
sufficient samples, a capable meta-learner can be developed in the meta-training phase, and then provides
prior knowledge (also known as meta-knowledge) for base-learners, specifically guiding the adaptation
process under different task requirements. In general, most representative few-shot learning approaches
based on meta-learning can be organized into four categories as follows.

Model-based meta-learning methods aim to quickly update the parameters on a small number of
samples through the design of model structure, directly establishing the mapping function of input vari-
ables and predicted results. Santoro et al. [26] proposed to utilize memory-augmented neural network to
tackle few-shot learning task, exhibiting high-capable of acquiring data knowledge and accurate prediction
based on small samples from new categories. The rapid generalization characteristic of meta network [34]
derives from its unique “fast weight” mechanism, which is established with the gradient provided during
training phase as a medium. In general, the proposed meta-model can be conceptually summarized into
two parts, namely meta-learner and base-learner. Meta-learner learns to seek commonalities among var-
ious meta-tasks, and then store the extracted information under the guidance of memory strategy; while
base-learner adapts quickly to new tasks with the gradient information (i.e., meta-information) anteriorly
generated by meta-learner, conclusively producing predictive outputs.

Metric-based meta-learning approaches [22,23,35–39] try to learn a mapping function from source
domain to embedding space, where a fundamental principle of “clustering” is established. In other words,
images belonging to the same category are closer together while instances of different categories are
separated. Consequently, the differences between sample features can be intuitively reflected in the form
of distance in embedded space, and this unique property is expected to be equally applicable to unseen
categories. Sung et al. [35] proposed an efficient feature extraction network to capture the information of
query samples and labeled support samples, then measured the difference of feature embeddings through
a well-trained relation module. Snell et al. [22] proposed to obtain a prototype representation for each
category, which mathematically refers to the mean of labeled support data in embedding space, and then
calculated the Euclidean distance between query samples and each prototype to determine similarity
measurement. Wang et al. [36] proposed that the attention information of images can be extracted from
category tags. The authors designed a novel network architecture for generating attention maps based on
semantic embedding classification tags and utilized these attention maps to create discriminative features
for classification.

Optimization-based meta-learning techniques [24–32] take into account the inadaptability of con-
ventional gradient descent algorithm to few-shot learning scenarios. To this end, this type of approach
raises the level of significant factors that affect the optimal parameter determination, such as initial-
ization and optimizer. The purpose of [27] is to learn good optimization or good initialization during
meta-training phase, resulting valid generalization of the base-learner on novel database. The goal of [25]
is to capture the generalization ability of optimization algorithm through several iterative steps, so that
meta-learner can guide the base-learner to converge to the approximate optimal solution on each task.
TAML algorithm [29] proposed to meta-train an unbiased initial model by avoiding overperforming on
some specific tasks or directly minimizing the inequality of measures. Even if facing a new task, start-
ing from the determined initial parameters, an optimal model can still be rapidly iterated with only a
few training samples. MetaOptNet [32] proposed to utilize linear predictors as base-learner to obtain
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representations and proved that feature embeddings can be universally generalized under the linear clas-
sification rules for novel categories. Meta-SGD [28] introduced a meta-learning algorithm similar to SGD,
which can be regarded as an extension of [27], not only learning initialization parameters of base-learners,
but also learning update strategies (such as learning rate and update direction).

Hallucination-based meta-learning. At present, the biggest challenge in few-shot learning sce-
narios is consistently the shortage of training samples, and therefore how to acquire more informative
and meaningful labeled data is the core of issue. The hallucination based approaches [40–43] use a small
number of labeled samples to generate more hallucination data, with the goal of achieving a robust and
powerful network. Zhang et al. [40] pretrained a saliency network to segment foreground and background
of available image samples and generated additional data by combining the appropriate foreground-
background pairs. Alfassy et al. [41] proposed to perform labeled-set operations (intersection, union, and
subtraction) on multi-label samples in the embedded space. For example, by solving the difference set
between the images containing man and sheep, and the images containing sheep in embedded space, the
representation of images containing only man can be obtained. The authors utilized these operations to
generate more hallucination data for training phase, and thus significantly improved classification per-
formance. Chen et al. [42] proposed to relate new concepts to the existing ones in semantic space, and
leveraged the relationships to generate new additional samples by interpolating among concepts, further
facilitating learning.

3 The proposed method

In this part, we explain the proposed task-wise attention guided part complementary learning method
(TPNet) at length. In Subsection 3.1, we first describe the problem definitions and data notations used in
this study. The introduction of meta-learner is presented in Subsection 3.2. We proceed with explaining
the TWA module and the PCL module in Subsections 3.3 and 3.4. The implementation details of our
model are given in Subsection 3.5. Furthermore, the architecture of the proposed TPNet at different
stages is illustrated respectively.

3.1 Problem definition and notations

Given two subsets Cbase and Cnovel of dataset C, we have the following properties: Cbase ∩ Cnovel = ∅ and
Cbase ∪ Cnovel = C.

As for the former subset, let Cbase denote the base set that contains a certain number of different image
classes with all labeled samples per class, and thus meta-learner can acquire transferable knowledge under
the supervision of Cbase.

As for the latter subset, the authors randomly select several tasks (also known as episodes) from Cnovel
to constitute the sets of novel class, and each task involves the samples from n categories. Further,
(k+m) samples are extracted from each category to form the support set and query set, defined as Isu =
{(xj

i , yi)|i = 0, 1, . . . , n; j = 0, 1, . . . , k} and Iqu = {(xj
i , yi)|i = 0, 1, . . . , n; j = 0, 1, . . . ,m} respectively,

where x denotes a data point and y is the corresponding label.
Through the preceding steps, a series of n-way k -shot tasks are determined for experiment. The

primary purpose of few-shot image recognition is to identify all samples in the query set Iqu according
to the support set Isu, realizing rapid adaption and accurate prediction.

In this paper, the application of few-shot learning in classification task can be divided into two phases:
meta-training phase and meta-testing phase. To be more specific, in the meta-training phase, we use
the entire base class samples of Cbase to train a well-generalized meta-learner (or backbone network) that
provides meta-knowledge for subsequent recognition tasks of unseen categories. During the meta-testing
phase, we utilize the support set Isu with only few data to adapt and generalize the base-learners, and
finally evaluate the efficiency of proposed model on query set Iqu.

3.2 Meta-knowledge acquisition

It is of crucial importance to provide base-learners with extensive but valuable meta-knowledge, which is
closely related to the training process of meta-learner.

Generally speaking, the major objective of feature extraction network in the low-level layer is to
extract common features, such as color, edge, and texture, while in the high-level layer is commonly the
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Figure 1 (Color online) Illustration of the classification network utilized in our method during meta-training phase. The network

framework includes backbone network, novel layer, global average pooling layer, and a classifier. “ConvBlock3” represents the first

three blocks of VGG Net. The number at the top (e.g., “28”) denotes the spatial size of feature map, and that at the bottom (e.g.,

“512”) denotes the number of channels.

category relevant information. Therefore, the authors hope that meta-learners in our work can learn
transferable knowledge and appropriately retain the ability to capture general representations as they
identify new categories, thereby facilitating the extraction of high-quality features. Additionally, the
knowledge information acquired from support samples is expected to be correlated with the category
information, making the learning content more specific and meaningful.

To achieve the desired purpose above, an efficient feature extraction network is designed that can be
considered as a variant of VGG Net. The authors add a “novel layer” to the first five blocks of VGG
Net-D (see [8]), which contains three convolutional operations with different kernel size. The kernel size
of first two layers is set to 3, and that of the last layer is set to 1. Global average pooling (GAP) and
softmax layers are then added on the top of the model.

Note that the first five blocks of VGG Net-D are served as backbone network fθ in our study, which
is pre-trained on the base set Cbase for learning prior knowledge (see Figure 1). The parameters of
backbone network are fixed during the meta-testing phase to ensure the effective utilization of acquired
meta-knowledge.

3.3 Task-wise attention module

The main objective of meta-learning approach is to efficiently utilize the prior knowledge provided by
meta-learner, achieving rapid adaption and inductive generalization in the face of new tasks with only few
samples available. However, there are significant differences among meta-tasks, and the ability of meta-
learner to extract features under different requirements is limited. For this purpose, a task-specific feature
extraction module named TWA is introduced in this work, which learns to find the most representative
features associated with current task by reinforcing or suppressing a portion of the knowledge provided
by meta-learner.

As demonstrated by the dotted box in Figure 2, Fm is the output of backbone network with size
C × H × W . We first squeeze the information of each feature map through GAP layer, which can be
formulated as

sk =

∑
i,j S

k
i,j

H ×W
, (1)

where Sk
i,j denotes the element of the kth feature map at the ith row and the j th column. The overall de-

scription with C channels is also obtained by s = [s1, s2, . . . , sC ], which includes the global representation
of image.

Two fully connected (FC) layers are then added to capture task-specific discriminative information.
The number of output channels of the second FC layer is set to be the same as the number of categories
n, realizing correspondence between features and categories. The above operations can be summarized
as follows:

uA = W2(W1(s)), (2)
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Figure 2 (Color online) Illustration of the proposed TPNet for 5-way 1-shot task in training phase. As shown, the TPNet

framework consists of a task-wise attention module for increasing the sensitivity of network to discriminative information and a

part complementary learning module for learning complementary descriptions. τ indicates the “erasing” operation of PCL module

according to a pre-defined threshold.

where W1 ∈ R
C

r
×C and W2 ∈ R

n×C

r refer to the weight matrices of FC layers. The first FC layer is
followed by a ReLU activation function.

In order to prevent excessive enhancement and suppression, the sigmoid function σ is adopted to
normalize the weight (or response) of each feature map

u′
A = σ(uA). (3)

Finally, TWA module is applied to the branch A through channel-wise multiplication between u′
A and

feature maps Fha extracted by the novel layer:

F ′
ha = u′

A ⊙Fha, (4)

where Fha ∈ R
n×H×W and u′

A ∈ R
n×1×1. ⊙ is the element-wise product.

As for branch B, the acquisition of channel weight u′
B is the same as that of branch A. The difference

between these two branches lies in the input feature representations of TWA module, which is elaborated
in Subsection 3.4. Similarly, the task-specific features extracted by the B branch can be formulated by

F ′
hb = u′

B ⊙Fhb, (5)

where Fhb denotes the feature maps processed by the novel layer, sharing the same size as Fha.
To sum up, TWA module improves the ability of base-learners to capture discriminative information or

suppress irrelevant information. The connection between extracted features and categories is successfully
established, facilitating the subsequent refinement and classification stages by the high-level semantic
information acquired.

3.4 Part complementary learning module

Generally speaking, classification networks tend to identify local regions from the most discriminative
object parts rather than from a global perspective for recognition, which leads to incomplete feature
representations. To this end, the authors designed a PCL module in the form of dual-branch network,
incorporating and enriching the formerly extracted features.

In the training phase, the PCL module consists of two branches A and B (see Figure 2), capturing
the discriminative and complementary information respectively. Let Fm denote the feature extraction of
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backbone network, which is served as the input of branch A. Then, the proposed novel layer is applied
to Fm to obtain the task-specific representations F ′

ha with n channels. Followed by GAP and softmax
layers, the classification loss of branch A is subsequently determined.

As described in Subsection 3.3, the feature representation has a certain corresponding relationship
with the category information (n-dimensional vs. n-category) after passing through the novel layer, and
the larger response value of which contains richer information of target category. Therefore, the authors
extract the channel with the largest response among n feature representations as the object activation
map. A pre-defined threshold τ is then served as the criterion to determine unique and discriminative
regions in target feature map. Finally, “erasing” the corresponding area in Fm, and take the processed
feature maps F ′

m as the input of branch B. It is worth noting that fθ and F ′
ha have the same spatial

dimensions, reflecting the feasibility of “erasing” operation. Given the input feature maps F ′
m of branch

B, the complementary information of other significant regions F ′
hb can be acquired through the novel

layer designed, just like branch A. Thus, the sum of classification loss during the training phase can be
calculated by the following equation:

Loss = LossA + λ · LossB, (6)

where

LossA = L(fα(Fm), yi),

LossB = L(fβ(Fm ⊙mask), yi);

fα and fβ represent feature extraction of branches A and B respectively; λ is the loss weight of branch
B; mask denotes the indicator of “erasing” operation that is determined by τ . The first half of (6)
represents the classification loss of branch A, and the second half is the classification loss of branch B. In
Subsection 4.3, we conduct a comprehensive ablation experiments for the values of parameters λ and τ .

In the testing phase, as shown in Figure 3, a max fusion module is added at the top of the network
with the goal of obtaining complete and adequate representations, which integrate the information of
branches A and B according to the following formula:

Fh = max(F ′
ha,F

′
hb). (7)

The fused features increase the weight (or response) of discriminative regions to some extent, reflecting
the crucial task-specific information from a global perspective.

3.5 Implementation details

In the meta-training phase, we apply the same hyper-parameter settings for the miniImageNet dataset
and CUB dataset. The network of CUB dataset is fine-tuned on the pre-trained weights of ILSVRC [44]
and that of miniImageNet is trained from scratch. In our experiments, all input images of miniImageNet
dataset and CUB dataset are resized to 224 × 224 pixels for training and testing. The framework of
classification model adopted at this stage is shown in Figure 1.

In the meta-testing phase, a support set Isu and a query set Iqu are fed to the base-learner for each
experiment. We randomly sample n novel classes, and then select k support instances and 15 query
instances from each class. The performance of proposed TPNet is evaluated under both 5-way 1-shot
and 5-way 5-shot settings, and the results presented are the average of 500 independent trials.

Note that we utilize the SGD optimizer with Nesterov momentum for parameter updating, and the
learning rate adopted for training in each dataset is different, more specifically, 0.01 for the miniImageNet
dataset and 0.001 for the CUB dataset. Our source code is available at the website1).

4 Experiments

In this section, we introduce in detail two public few-shot learning datasets, and conduct a series of
experiments on them to evaluate the proposed TPNet. The experimental results are then compared with
current state-of-the-art results under both 5-way 1-shot and 5-way 5-shot settings. Finally, comprehensive
ablation experiments are performed to investigate the efficiency of TWA and PCL modules.

1) https://github.com/lrmek/TPNet.

https://github.com/lrmek/TPNet
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Figure 3 (Color online) Illustration of the proposed TPNet for 5-way 1-shot task in testing phase. As shown, part complementary

learning module is composed of two branches for learning discriminative and complementary features, respectively. The max fusion

module can obtain multiple representative features by integrating the information of two branches. τ indicates the “erasing”

operation of PCL module according to a pre-defined threshold.

4.1 Datasets

miniImageNet. This dataset [23] is originally used for the task of few-shot image recognition, including
100 classes with a total number of 60000 images. Following the splits used in [25], we select 64, 16, and
20 classes for training, validation, and testing respectively.

CUB-200. This dataset [45] is originally used for the task of fine-grained image classification, including
200 bird species with a total number of 11788 images. Following the evaluation protocol of [46], we
randomly select 100, 50, and 50 classes for training, validation, and testing respectively.

4.2 Comparison with state-of-the-arts

In this subsection, we conduct a series of experiments on the above datasets according to the n-way k -shot
classification task. Both 5-way 1-shot and 5-way 5-shot experimental settings are taken into consideration.
The comparison results with state-of-the-art approaches for each dataset are presented in Tables 1 and
2, respectively.

As for the miniImageNet dataset, the proposed TPNet is compared with numerous types of few-shot
learning techniques, such as prototypical net [22] (metric-based), MAML [27] (optimization-based), meta
net [34] (model-based), and “spot and learn” [43] (hallucination-based). It can be found from Table 1
that TPNet exhibits superior performance over other state-of-the-art approaches under both 1-shot and
5-shot settings, especially in the latter case is more competitive. The reason for this phenomenon is that
the available information for each category becomes richer as the number of support set increases. Com-
pared with other few-shot learning approaches, the proposed TPNet exhibits a more efficient utilization
of the information provided by support set. By capturing discriminative and complementary task-related
information, higher recognition accuracy is eventually achieved under 5-shot setting. Specifically speak-
ing, our approach gains 8.19%, 7.2%, and 3.71% improvements over DN4 net, Saliency hallucination, and
MTL respectively, demonstrating the superiority in few-shot classification tasks. Compared with [22,23],
our approach adopts a deeper backbone network (VGG Net) for feature extraction instead of only 4-layer
shallow network, facilitating the acquisition of high-level information. However, the utilization of deep
backbone network also leads to the increased risk of overfitting, which is the primary reason why depre-
cated by previous work. In the proposed TPNet, the above drawbacks are overcome from two aspects.
On one side of the spectrum, the non-parametric GAP layer in backbone network and TWA module is
utilized to replace the FC layer and capture task-specific representations respectively, which significantly
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Table 1 Few-shot classification accuracy on miniImagNet dataset with 95% confidence intervalsa)

Model 1-shot accuracy (%) 5-shot accuracy (%)

Meta net [34] 49.21 ± 0.96 –

Matching net [23] 46.6 60.0

Prototypical net [22] 49.42 ± 0.78 68.20 ± 0.66

Relation net [35] 50.44 ± 0.82 65.32 ± 0.70

DN4 net [38] 51.24 ± 0.74 71.02 ± 0.64

EGNN+transduction [47] – 76.37

MAML [27] 48.70 ± 1.84 63.11 ± 0.92

MTL [31] 61.2 ± 1.8 75.5 ± 0.8

LR-D2 [21] 51.9 ± 0.2 68.7 ± 0.2

Spot and learn [43] 51.03 ± 0.78 67.96 ± 0.71

Saliency hallucination [40] 57.45 ± 0.88 72.01 ± 0.67

TPNet 59.31 ± 0.99 79.21 ± 0.64

a) Both 5-way 1-shot and 5-way 5-shot experimental settings are taken into consideration. The best results are presented in

boldface. ‘–’ indicates not reported.

Table 2 Few-shot classification accuracy on CUB dataset with 95% confidence intervalsa)

Model 1-shot accuracy (%) 5-shot accuracy (%)

Matching net* [23] 61.16 ± 0.89 72.86 ± 0.70

Prototypical net* [22] 51.31 ± 0.91 70.77 ± 0.69

Relation net* [35] 62.45 ± 0.98 76.11 ± 0.69

DN4-DA net [38] 53.15 ± 0.84 81.90 ± 0.60

MAML* [27] 55.92 ± 0.95 72.09 ± 0.76

Baseline++ [48] 60.53 ± 0.83 79.34 ± 0.61

DeepEMD [49] 75.65 ± 0.83 88.69 ± 0.50

FEAT [50] 68.87 ± 0.22 82.90 ± 0.15

DPGN [51] 75.71 ± 0.47 91.48 ± 0.33

MACO [46] 60.76 74.96

Multiple-semantics [52] 76.1 82.9

TPNet 77.30 ± 0.86 94.20 ± 0.34

a) Both 5-way 1-shot and 5-way 5-shot experimental settings are taken into consideration. The best results are presented in

boldface. ‘*’ indicates the results reported by [48].

reduces the network parameters and prevents over-fitting in few-shot scenarios. On the other side of the
spectrum, the “erasing” operation in PCL module can be regarded as a “Dropout” strategy with remark-
able learning ability, which generates a mask according to the given threshold τ , thereby inactivating
some neurons of the feature maps extracted by backbone network to realize generalization. To sum up,
our proposed TPNet adapts to the deeper backbone network structure by virtue of its unique properties,
and leverages the captured high-level discriminative features to assist recognition task, thus achieving
advanced performance on current dataset.

In general, the recognition task on fine-grained datasets is more complex than that on standard datasets
due to the characteristic of smaller inter-class variation and larger intra-class variation. Therefore, we also
conduct fine-grained few-shot classification experiments on CUB dataset to comprehensively evaluate the
robustness and efficiency. Seven state-of-the-art approaches are selected for comparison, namely matching
net* [23], prototypical net* [22], relation net* [35], MACO [46], DN4-DA net [38], MAML* [27], and
Baseline++ [48]. Especially, matching net*, prototypical net*, relation net*, MAML*, and Baseline++
are conducted by Chen et al. [48] with conv-4 backbone and data augmentation operation, where *
denotes the re-implementation of original approach on CUB dataset, and “conv-4” represents a four-layer
convolutional network. The backbone network of DN4-DA net denoted as Conv-64f is composed of four
convolutional blocks, each of which has convolutional layer, batch normalization layer, and leaky ReLU
layer. It can be seen from Table 2 that our TPNet has achieved higher recognition accuracy compared with
the performance of above-mentioned approaches in both 1-shot and 5-shot classification tasks. Especially
under the 5-way 1-shot setting, the proposed model gains 24.15%, 16.54%, and 16.77% improvements
over DN4-DA net, MACO, and Baseline++, respectively. The utilization of TWA and PCL modules
facilitates base-learners to obtain task-specific discriminative information and prevent incomplete feature
representation, thus exhibiting strong robustness on fine-grained recognition tasks with smaller inter-class
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(a) (b)

Figure 4 (Color online) The influence of parameters λ and τ on CUB dataset. (a) corresponds to the 5-way 1-shot setting, while

(b) corresponds to the 5-way 5-shot setting. It is obvious that when λ = 0.1 and τ = 0.5, the proposed TPNet can achieve the best

performance in both 5-way 1-shot and 5-way 5-shot settings.

(a) (b)

Figure 5 (Color online) The influence of parameters λ and τ on miniImageNet dataset. (a) corresponds to the 5-way 1-shot

setting, while (b) corresponds to the 5-way 5-shot setting. It is obvious that when λ = 0.5 and τ = 0.4, the proposed TPNet can

achieve the best performance in both 5-way 1-shot and 5-way 5-shot settings.

and larger intra-class variations.

4.3 Ablation study

4.3.1 The influence of parameters λ and τ

In PCL module, the complementary information of interest is obtained via setting the corresponding
value of the input feature maps of branch B to zero according to the given threshold τ . In addition,
we introduce a weight parameter λ for branch B in the loss function to coordinate the contribution of
discriminative feature and complementary feature to classification accuracy. The values of these two
hyper-parameters are both explored due to their impact on performance, and the experimental results
under different settings are presented in Figures 4 and 5.

Compared with CUB dataset with bird species only, the images in miniImageNet dataset have different
object categories and contain complex background information. Therefore, a larger loss weight λ of the
second branch is adopted on miniImageNet dataset than that on CUB dataset, so that the complementary
features of target object in complex background can be deeply explored. Furthermore, due to the large
difference of samples in various datasets, the criteria for distinguishing the significance of their features
are not the same, which ultimately leads to distinct determinations of the optimal threshold τ .

4.3.2 The influence of TWA and PCL modules

In order to investigate the influence of the proposed TWA and PCL modules, a series of ablation exper-
iments are conducted based on the baseline model, and the results are shown in Tables 3 and 4. To be
more specific, the authors first introduce the baseline and various modules in detail, then compare the
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Table 3 Comparison of the proposed TPNet model under various configurations on miniImageNet with 95% confidence intervalsa)

Model PCL EB TWA 1-shot accuracy (%) 5-shot accuracy (%)

0 ✘ ✘ ✘ 56.75 ± 0.89 77.22 ± 0.66

1 ✔ ✘ ✘ 56.87 ± 0.92 78.25 ± 0.64

2 ✔ ✔ ✘ 56.92 ± 0.90 78.62 ± 0.65

3 ✔ ✘ ✔ 59.31 ± 0.99 79.21 ± 0.64

4 ✔ ✔ ✔ 58.59 ± 0.91 78.86 ± 0.64

a) Both 5-way 1-shot and 5-way 5-shot experimental settings are taken into consideration, and the best results are presented in

boldface. “Model 0” is the baseline model. We can find that the model achieves optimal performance under the 3rd configuration.

Table 4 Comparison of the proposed TPNet model under various configurations on CUB with 95% confidence intervalsa)

Model PCL EB TWA 1-shot accuracy (%) 5-shot accuracy (%)

0 ✘ ✘ ✘ 74.81 ± 0.88 92.61 ± 0.35

1 ✔ ✘ ✘ 75.61 ± 0.90 93.60 ± 0.36

2 ✔ ✔ ✘ 75.69 ± 0.90 93.55 ± 0.36

3 ✔ ✘ ✔ 77.30 ± 0.86 94.20 ± 0.34

4 ✔ ✔ ✔ 76.40 ± 0.86 93.85 ± 0.38

a) Both 5-way 1-shot and 5-way 5-shot experimental settings are taken into consideration, and the best results are presented in

boldface. “Model 0” is the baseline model. We can find that the model achieves optimal performance under the 3rd configuration.

classification results of algorithms under different configurations, and finally analyze the effect of each
component.

For the baseline model, we remove the layers after “ConvBlock5” of VGG Net, then follow the setup
of [53] to add two convolutional layers with 512 filters (kernel size 3 × 3, stride 1, pad 1) and one
convolutional layer with 512 filters (kernel size 1×1, stride 1, pad 1). The framework of baseline model is
shown in Figure 1, which can only obtain incomplete feature representation without the guidance of TWA
and PCL modules. As described in Subsection 3.4, the discriminative and complementary information is
expected to be captured by branches A and B respectively, and the “erasing” operation is performed only
once during this process. Therefore, in the ablation experiment, we also add an extra branch (denoted
as “EB”) to the PCL module to explore whether the synergy of multiple complementary branches would
benefit the classification results.

From the experimental results given in Tables 3 and 4, we can observe that the introduction of PCL
module improves classification accuracy to a certain extent. For example, on the CUB dataset, “Model 1”
achieved 0.8% and 0.99% improvements under the settings of 5-way 1-shot and 5-way 5-shot respectively,
indicating the crucial impact of complementary features on recognition task. However, when PCL module
was extended to three branches, we found that multiple additional information brings no significant
improvement on performance, even degradation when combined with TWA module, as can be seen
from “Model 2” and “Model 4”. The reason for above phenomenon is that under the guidance of
attention mechanism, the ability of network to capture and analyze the most crucial information of
current task is significantly improved, so the addition of more branches may lead to over-representation
instead. Therefore, dual-branch network structure can be considered as the optimal choice for the base-
learners, which can balance the significant information and additional information, ultimately realizing
high-precision identification.

Furthermore, comparing the experimental results of “Model 1” and “Model 3”, it can be found that
by enhancing the adaptability of base-learners to few-shot learning tasks, the recognition accuracy on
miniImageNet dataset is improved by 2.44% (1-shot) and 0.96% (5-shot), and that on CUB dataset
is improved by 1.69% and 0.6%, respectively. These promising results more intuitively illustrate the
necessity of capturing task-specific image features and the effectiveness of TWA strategy.

4.3.3 Visualization

In order to more intuitively illustrate the impact of our proposed TWA and PCL modules on classification
results, the authors investigated the visualization features in each case, as shown in Figure 6. Note that
the performance is evaluated by the coverage of target region and the corresponding color shade. It can
be found that branches A and B extract the discriminative and complementary features respectively,
which are consistent with our original intention of design.

Taking the sample in the 4th column as an example, the body characteristics of bird extracted by only
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Input

Branch A

Branch B

A + B

w/o TWA

A + B

w/TWA

Figure 6 (Color online) Visualization of the proposed method. Red regions represent the positive region in favor of classification

result, while blue regions are negative regions that reduce the recognition confidence. From top to bottom: input images; branch

A; branch B; the feature fusion for branches A and B, without TWA module; the feature fusion for branches A and B, with TWA

module. In the 5th row, comprehensive feature representations are acquired through the information fusion of two branches and

the TWA module introduced. (Best viewed in color.)

one branch have certain discriminability, but are not complete (see 2nd row); while after adding PCL
strategy, the visualization results further covered the characteristics of head and tail well (see 3rd row),
thus increasing the comprehensiveness of sample representation. In addition, by comparing the results of
the 4th and 5th rows, it can be noticed that the introduction of TWA strategy facilitates base-learners to
explore the feature maps in depth, and the positive regions contribute more to the classification results.

5 Conclusion

In this paper, we presented a robust and flexible meta-learning framework for few-shot image classification
task. Task-wise attention and part complementary learning modules are integrated into the base-learner,
with the goal of realizing fast adaptation and inductive generalization during meta-testing phase. More
specifically, the former module improves the ability to capture task-specific image features through at-
tention mechanism, while the latter module facilitates the acquisition of comprehensive representations
through additional information provided by complementary branch. A series of ablation experiments and
comparative experiments have verified the effectiveness of proposed TPNet, that achieves state-of-the-art
performance on several challenging datasets.

In future work, we will attempt to explore the impact of meta-knowledge acquired through various
backbone networks (e.g., residual networks) on recognition performance. The post-processing methods
of information extracted by each branch will also be further investigated, such as utilizing “concatenate
+ Conv” operation to fuse feature representations in a softer manner.
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