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Abstract Detecting pedestrians, especially under heavy occlusion, is a challenging computer vision prob-

lem with numerous real-world applications. This paper introduces a novel approach, termed as PSC-Net,

for occluded pedestrian detection. The proposed PSC-Net contains a dedicated module that is designed

to explicitly capture both inter and intra-part co-occurrence information of different pedestrian body parts

through a graph convolutional network (GCN). Both inter and intra-part co-occurrence information con-

tribute towards improving the feature representation for handling varying level of occlusions, ranging from

partial to severe occlusions. Our PSC-Net exploits the topological structure of pedestrian and does not

require part-based annotations or additional visible bounding-box (VBB) information to learn part spatial

co-occurrence. Comprehensive experiments are performed on three challenging datasets: CityPersons, Cal-

tech, and CrowdHuman datasets. Particularly, in terms of log-average miss rates and with the same backbone

and input scale as those of the state-of-the-art MGAN, the proposed PSC-Net achieves absolute gains of 4.0%

and 3.4% over MGAN on the heavy occlusion subsets of CityPersons and Caltech test sets, respectively.
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1 Introduction

Pedestrian detection is a challenging problem in computer vision with various real-world applications,
e.g., robotics, autonomous driving, and visual surveillance [1, 2]. Recent years have witnessed significant
progress in the field of pedestrian detection, mainly owing to the advances in deep convolutional neural
networks (CNNs) [3, 4]. Modern pedestrian detection methods can be generally classified into single-
stage [5–7] and two-stage [8–18] categories. Single-stage pedestrian detectors typically work by directly
regressing the default anchors into pedestrian detection boxes. Different from single-stage pedestrian
detectors, two-stage methods first produce a set of candidate pedestrian proposals in the first stage
and then classify and regress these proposals in the second stage. Most existing two-stage pedestrian
detectors [8,13–15,17,18] are adapted from the popular Faster R-CNN generic detection framework [19].

Though promising results have been achieved by existing pedestrian detectors on standard non-occluded
pedestrians, their performance on heavily occluded pedestrians is far from satisfactory. This is evident
from the fact that the best reported log-average miss rates [13] on the reasonable (R) set (where visibility
ratio is larger than 65%) of CityPersons test set [1] is 9.3% whereas it is 41.0% on the heavy occlusion
(HO) set (where visibility ratio ranges from 20% to 65%) of the same dataset. Handling pedestrian
occlusion is an open problem in computer vision and presents a great challenge for detecting pedestrians
in real-world practical applications owing to its frequent occurrence. Therefore, a pedestrian detector
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is desired to be accurate with respect to varying level of occlusions, ranging from slightly occluded to
severely occluded pedestrians.

A lot of occluded pedestrian detection approaches have been proposed in the past years. A common
strategy to address occlusion is based on learning and integrating a set of part detectors [20–25]. Earlier
part-based pedestrian detection approaches utilize body part annotations [25, 26]. Recently, the deploy-
ment of pre-trained part models was investigated [14] to exploit part correlations, typically relying on
part detection scores corresponding to the visible regions of the pedestrian. Other methods [20–23, 27]
utilize the bounding-box of the pedestrian and train a large number of independently learned part detec-
tors. Alternatively, the topological structure of the pedestrian was also exploited [15] to avoid the reliance
on body part annotations, leading to promising detection performance. However, it predominantly relies
on the detection scores of parts to highlight visible regions of the pedestrian and it neither considers spa-
tial co-occurrence relations between different body parts (e.g., head and arms) nor spatial co-occurrence
relations between different sub-regions (e.g., eyes and ears of a head region) within a body part. The
part spatial co-occurrence information is expected to enrich the feature representation by exploiting the
information about the spatially adjacent parts. Knowledge about the typical configuration of objects
(e.g., humans) in a scene and its impact on recognition performance was extensively studied in the field
of both psychology and computer vision [28–30]. To the best of our knowledge, modern two-stage CNN-
based pedestrian detectors do not explicitly encode the part spatial co-occurrence information. In this
study, we introduce a data driven approach to handle occlusion problem that goes beyond part detection
scores by explicitly integrating the part spatial co-occurrence information not only between different body
parts but also between different sub-regions within a body part. Figure 1 shows detection results with
occlusion level varying from slight to severe. Our PSC-Net is able to more accurately detect pedestrians,
compared with both the baseline (Subsection 3.1) and the state-of-the-art MGAN [13] even there are
heavy occlusions.

The contributions and the characteristics of the proposed method are as follows.

(1) We propose to utilize the cue of not only the co-occurrence of parts of a pedestrian (inter-part
co-occurrence) but also the co-occurrence of sub-parts of a part (intra-part co-occurrence) for detecting
occluded pedestrians. One intuition of applying inter-part occurrence is that if two or more parts (e.g.,
a head and an arm) co-occur when other parts are occluded then one can also infer that there is a
pedestrian. Another intuition is that two or more parts can mutually support existence of each other.
The intuition of applying intra-part occurrence is analogous.

(2) Both the inter-part occurrence information and intra-part occurrence information are adaptively
modeled by graph convolution networks (GCNs). The module is called part spatial co-occurrence (PSC)
module. With GCNs, it is not necessary for our method to explicitly and deterministically decide whether
or not a part/sub-part is occluded. Therefore, the method can avoid the risk of mistakenly classification
of a part/sub-part. Moreover, this makes our method not requiring distinguishing occluded regions from
visible ones in the process of annotating a pedestrian for training.

(3) Integrating the proposed PSC module with a baseline detection network (e.g., Faster R-CNN [19])
results in remarkable improvement for detecting heavily occluded pedestrians and at the same time is
significantly beneficial for improving the performance of detecting pedestrians with light or no occlusion
(a.k.a., reasonable subset). The computational cost of the PSC module is quietly small compared with
that of the baseline network.

(4) The proposed method achieves the best detection accuracy on three challenging datasets compared
with existing state-of-the-art methods in the sense of detecting occluded pedestrians.

2 Related work

Two-stage deep pedestrian detection. In recent years, two-stage pedestrian detection approaches [1,
8, 9, 12–15, 17] have shown superior performance on standard pedestrian benchmarks. Generally, in
two-stage pedestrian detectors, a set of candidate pedestrian proposals is first generated. Then, these
candidate object proposals are classified and regressed. Zhang et al. [1] proposed key adaptations in the
popular Faster R-CNN [19] for pedestrian detection. Wang et al. [17] proposed an approach based on a
bounding-box regression loss designed for crowded scenes. Zhang et al. [14] proposed to investigate several
channel attention strategies for pedestrian detection. MS-CNN [31] was proposed to introduce a multi-
scale pedestrian detection approach with layers having receptive fields similar to object scales. Zhang et
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Figure 1 (Color online) Qualitative detection examples using (a) the state-of-the-art MGAN [13], (b) our baseline, and (c) our

PSC-Net on CityPersons validation images. In these examples, red boxes denote the ground-truth and detector predictions are

indicated by green boxes. Note that all detection results are obtained using the same false positive per image (FPPI) criterion.

Our PSC-Net accurately detects pedestrians with varying level of occlusions.

al. [15] proposed a loss formulation to enforce candidate proposals to be close to the corresponding objects
and proposed to integrate structural information with visibility predictions. AR-Ped [7] is a multi-phase
autoregressive pedestrian detection approach which utilizes a stackable decoder-encoder module with
convolutional re-sampling layers. In [8], an adaptive NMS strategy was introduced in order to apply a
dynamic suppression threshold to an instance. Multiple pedestrian detectors stacked in a series were
also investigated [5, 7] to improve the detection performance.

Towards occluded pedestrian detection. The problem of occluded pedestrian detection was
well studied in the literature [9,12–15,17,20,21]. To handle occlusion problem, some of these pedestrian
detection approaches [20,21] exploit part-based information by learning a set of body part detectors. Each
part is designated to handle a specific type (pattern) of occlusions. Other approaches [15, 17] investigate
novel loss formulations for detector training to improve pedestrian detection in crowded scenes under
heavy occlusion.

Most recent approaches [9, 12–15] tackle the problem of occluded pedestrian detection by utilizing
additional visible bounding-box (VBB) annotations together with the standard full body information.
Zhang et al. [14] employed VBB along with a pre-trained body part prediction model to deal with occluded
pedestrian detection. The work of [9] demonstrates that an additional task of visible-region bounding-
box prediction can improve the full body pedestrian detection. Zhang et al. [15] proposed a novel loss
that improves the localization, and a part occlusion-aware region of interest pooling integrating structure
information with visibility predictions. Zhou et al. [12] proposed a discriminative feature transformation
module that projects the features into a feature space, where the distance between occluded and non-
occluded pedestrians is minimized. Such a transformation improves the robustness of the pedestrian
detector. In their approach, the VBB is used to identify the occluded pedestrian. In [13], we proposed a
mask-guided attention network (MGAN) which utilizes VBB annotation to emphasize the visible regions
and at the same time suppress the occluded regions. To the best of our knowledge, MGAN achieves
state-of-the-art results on several popular benchmarks.

Our approach. Contrary to above mentioned recent approaches that rely on additional VBB an-
notations, our proposed PSC-Net only requires the standard full body supervision to handle occluded
pedestrian detection. The core of our approach is a PSC module which explicitly captures both inter
and intra-part co-occurrence information of different body parts through a GCN [32]. To the best of
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Figure 2 (Color online) Overall network architecture of our PSC-Net. It consists of a pedestrian detection (PD) branch and

a part spatial co-occurrence (PSC) module. In contrast to the baseline standard PD branch where the RoI features are used for

box regression and classification (X), the RoI features in our PSC-Net are fed in to the proposed PSC module to integrate both

intra and inter-part spatial co-occurrence information. The resulting enriched features are then deployed for final bounding-box

regression and classification.

our knowledge, the proposed approach is the first to capture both inter and intra-part co-occurrence
information through a GCN to address the problem of occluded pedestrian detection.

3 Proposed method: PSC-Net

As discussed above, occlusion is one of the most challenging problems in pedestrian detection. The degree
of occlusion ranges from slight (a very small fraction of a pedestrian is occluded), severe (a large fraction
of a pedestrian is occluded), to complete (a pedestrian is completely occluded). Though it seems to be
impossible to detect completely occluded pedestrians, there are cues for detecting slightly and severely
occluded ones. In this paper, we propose to adopt not only the cue of existence of parts of a pedestrian
but also the cue of spatial co-occurrence of several parts of a pedestrian.

We divide the spatial co-occurrence patterns into two types: (1) inter-part co-occurrence indicating
the co-occurrence of parts of a pedestrian, and (2) intra-part co-occurrence meaning the co-occurrence
of sub-parts of a part. The intuition of using inter-part co-occurrence is as follows. (1) In the situation
of occlusion, some parts are occluded and other parts are visible. The co-occurrence of the some or all
of the visible parts is a strong evidence of existence of a pedestrian. (2) Two or more visible parts can
mutually support their existence. This intuition can be analogously extended to that of using intra-part
co-occurrence.

The question is how to model the co-occurrence information. One classical way is to classify each
part and then integrate the classification score to make the final decision. This way heavily relies on
the classification accuracy of each part and also depends on accurately annotating visible parts and
occluded parts in the training stage. Incorrect classification is harmful for the final decision and it is
time-consuming for annotating visible parts when some parts are occluded. To overcome the drawbacks,
we propose to employ GCNs to model both the inter-part and intra-part co-occurrence patterns in the
process of feature extraction. The corresponding module is called PSC module.

Figure 2 shows the overall architecture of the proposed PSC-Net. It consists of a standard pedestrian
detection (PD) branch (Subsection 3.1) and a PSC module (Subsection 3.2). The standard PD branch
is based on Faster R-CNN [19] typically employed in existing pedestrian detection studies [1, 13]. The
PSC module encodes both inter and intra-part co-occurrence information of different body parts. The
PSC module comprises two components. In the first component, intra-part co-occurrence of a pedes-
trian body part is captured by utilizing the corresponding RoI features. As a result, an enhanced part
feature representation is obtained. This representation is used as an input to the second component for
capturing the inter-part co-occurrence between spatially adjacent body parts, leading to a final enhanced
feature representation that encodes both intra and inter-part information. This final enhanced feature
representation of a candidate proposal is then deployed as an input to the later part of the PD branch
which implements final bounding-box regression and category classification.

In what follows, we briefly describe the standard PD branch, followed by a detailed presentation of our
PSC module (Subsection 3.2).

3.1 Standard pedestrian detector

The standard PD branch is based on the popular Faster R-CNN framework [19] which is typically em-
ployed in several pedestrian detection methods [1,13]. The PD branch consists of a backbone network, a



Xie J, et al. Sci China Inf Sci February 2021 Vol. 64 120103:5

region proposal network (RPN), region-of-interest (RoI) pooling layer, and a classification network for fi-
nal bounding-box regression and classification. In the PD branch, an image is first feed into the backbone
network and the RPN generates a set of candidate proposals for the input image. For each candidate
proposal, a fixed-sized feature representation is obtained through an RoI pooling layer. Finally, this
fixed-sized feature representation is passed through a classification network to output the classification
score and the regressed bounding box locations for the corresponding proposal. The loss function Lf of
the standard PD branch is given as follows:

Lf = Lrpn cls + Lrpn reg + Lrcnn cls + Lrcnn reg, (1)

where Lrpn cls and Lrpn reg are respectively the classification loss and bounding box regression loss of
RPN, and Lrcnn cls and Lrcnn reg are respectively the classification and bounding box regression loss of
the classification network. Generally, Cross-Entropy loss is used as classification loss, and Smooth-L1
loss is used as bounding-box regression loss.

Limitations. To handle heavy occlusion, several recent two-stage pedestrian detection approaches [13–
15] extend the PD branch by exploiting additional VBB annotations along with the standard full body
information. However, this reliance on additional VBB information implies that two sets of annotations
are required for pedestrian detection training.

In this study, we propose a two-stage pedestrian detection method, termed as PSC-Net, to address the
problem of heavy occlusions. Our main contribution is the introduction of a PSC module that only re-
quires standard full body supervision and explicitly captures inter-part spatial co-occurrence information
of different sub-regions within a body part and intra-part spatial co-occurrence information of different
body parts. Next, we describe the details of our PSC module.

3.2 Part spatial co-occurrence module

In pedestrian detection, the task is to accurately localize the full body of a pedestrian whether it is
occluded or not. This task is relatively easier in the case of regular non-occluded pedestrians. However,
it becomes particularly challenging in the case of slight or severe occlusions. Here, we introduce a PSC
module that utilizes spatial co-occurrence of different body parts captured through a GCN [32]. In PSC
module, the GCN is employed to capture intra and inter-part spatial co-occurrence by exploiting the
topological structure of a pedestrian. The intra-part co-occurrence is expected to improve the feature
representation in scenarios where a particular body part is partially occluded whereas the inter-part
co-occurrence targets at the severe occlusion of a particular body part.

Our PSC module neither requires pedestrian body part annotations nor relies on the use of an external
pre-trained part model. Instead, it divides the full body bounding-box of a pedestrian into five parts
(Fhead, Fleft, Fright, Fmid, Ffoot), based on empirical fixed ratio of human body (see Figure 3), as in [15].
The RoI pooling operation is performed on each body part as well as the full body (FD), resulting in six
RoI pooled features of each region proposal.

As described above, the RoI pooling is performed for five body parts as well as the full body, resulting
in an increased feature dimension. Therefore, direct utilization of all these RoI features will drastically
increase the computational complexity of our PSC module. Note that the Faster R-CNN and its pedes-
trian detection adaptations [1,13,15] commonly use a single RoI pooling layer on the conv5 3 features of
VGG16, resulting in 512 channels. To maintain a similar number of channels as in Faster R-CNN and
its pedestrian detection adaptations [13–15], we introduce an additional 1 × 1 convolutional layer in the
RoI pooling strategy that significantly reduces the number of channels (572 in total). Consequently, the
RoI pooled features of each body part and the full body have only 64 and 256 channels, respectively.

3.2.1 Intra-part co-occurrence

The RoI pooled feature representation of each body part is enhanced by considering their intra-part
co-occurrence. For instance, consider a scenario where head part Fhead is partially occluded, thereby
making top-part of the head invisible. Our intra-part co-occurrence component aims to capture spatial
relations between different sub-regions (e.g., eyes and ears) within an RoI feature Fm ∈ R

H×W×C of a
body part (e.g., Fhead) through a graph convolutional layer,

F̃m = σ(AsFmWs), (2)
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Figure 3 (Color online) (a) Full body pedestrian bounding-box is partitioned into five parts based on empirically fixed ratio of

human body. Each body part is shown with a different color and full body is in red. (b) Illustration of intra and inter-part spatial

adjacency, used within our PSC module, to capture the spatial co-occurrence information. Our intra-part co-occurrence component

employs a graph convolutional layer to capture the spatial relation between different sub-regions of each body part. Differently, our

inter-part component captures co-occurrence of spatially adjacent body parts using an additional graph convolutional layer. Note

that node colors in (b) are identical to the corresponding body parts in (a).
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Figure 4 (Color online) Computation of the intra-part spatial adjacency matrix As. Each body part RoI feature Fm ∈ R
H×W×C

is first passed through two parallel convolutional layers. The resulting features are re-shaped to perform matrix multiplication,

followed by a softmax operation.

where F̃m is the enhanced feature, σ is the ReLU activation, Ws ∈ R
C×C is the learnable parameter

matrix, C is the number of channels (64 for each body part and 256 for full body), As ∈ R
(H×W )×(H×W )

is the intra-part spatial adjacency matrix of a graph Gs = (Vs,As), and W and H are the width and
height of Fm. Here, each pixel within the RoI region is treated as a node in the graph. In total, there
are H ×W nodes Vs in the graph.

The intra-part spatial adjacency matrix As is computed as follows, and is also shown in Figure 4. We
first pass the RoI feature Fm ∈ R

H×W×C through two parallel 1× 1 convolutional layers. The resulting
outputs are re-shaped prior for performing matrix multiplications, followed by a softmax operation to
compute the intra-part spatial adjacency matrix As. It is noted that typical values of H and W are
H = 7 and W = 7 and the size of As is (H ×W )× (H ×W ) = 49× 49. Therefore, As is usually a small
matrix.

The output from the graph convolutional layer (Eq. 2) is denoted by F̃m ∈ R
H×W×C . This output

F̃m is first added to its input Fm (original RoI features), followed by a fully connected layer to obtain a
d dimensional enhanced part features. The enhanced part features Fe of all six parts (five parts and full
body) are further used to capture inter-part co-occurrence described next.

3.2.2 Inter-part co-occurrence

Our inter-part co-occurrence component is designed to improve the feature representation, especially in
the case of severe occlusion of a particular body part. The traditional convolutional layer only captures
information from a small spatial neighborhood, defined by the kernel size (e.g., 3 × 3), and is therefore
often ineffective to encode inter-part co-occurrence information of a pedestrian. To address this issue, we
introduce an additional graph convolutional layer in our PSC module, so that the inter-part relationship
of different body parts and the full body of a pedestrian is captured. We treat each part (including full
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Figure 5 (Color online) The first row of predicted Âp(i, j) on four example proposals. (a), (c), and (e) are three examples of

pedestrian proposals, respectively. The full body proposal (bounding-box) in red is partitioned into five (body) parts (in different

colors). (b), (d), and (f) are the first row of the predicted unnormalized spatial adjacency matrix Âp(i, j) corresponding to (a),

(c), and (e), respectively. It indicates the co-occurrence of full body with respect to specific body part. The co-occurrence of full

boy with respect to the full body itself is omitted in this figure for brevity. Note that the colors in (b), (d), and (f) are identical

to the corresponding body parts in (a), (c), and (e), respectively.

body) as separate node of Vp of a graph Gp = (Vp,Ap), where Ap denotes the spatial adjacency matrix
capturing the neighborhood relationship of different nodes. The graph convolutional operation is used to
improve the node features Fe as follows:

F̃e = σ((I −Ap)FeWp), (3)

where F̃e ∈ R
n×d is the enhanced feature of n parts, Ap is the spatial adjacency matrix, Wp ∈ R

d×d is
the learnable parameter matrix, I is the identity matrix, and σ is the ReLU activation.

Typical values of n (the number of nodes/parts) and d (the channel number) are n = 6 and d = 1024,
respectively. The matrix (I − Ap) is used to conduct Laplacian smoothing [33] to propagate the node
features over the graph.

The spatial adjacency matrix Ap encodes the relation between different body parts (i.e., graph nodes).
When there are heavy occlusions, features of a particular part/node may not contain relevant body part
information. Therefore, it is able to assign smaller weights to the edges linking such nodes in Ap. To this
end, we introduce a self-attention scheme for each edge which is assigned learnable weight aij . The input
of the self attention is the concatenated features of nodes i and j. The self attention of each edge aij
is computed by a fully-connected operations followed by a sigmoid activation. The unnormalized spatial
adjacency matrix Âp(i, j) is defined as

Âp(i, j) =

{

aij , if parts i and j are spatial adjacent,

0, otherwise.
(4)

The spatial adjacency matrix Ap(i, j) is computed by conducting normalization in each row of Âp(i, j).

Figure 5 shows the first row of predicted Âp(i, j) on three example proposals. It indicates that the co-
occurrence of full body with respect to specific body part. It can be found that the occluded body part
contributes less than the visible parts. It would help GCN learn more discriminative features to detect
occluded pedestrians. When occlusion occurs, observed features of an occluded body part will be different
from its expected features estimated from its spatially adjacent body parts. During end-to-end training
of our network containing GCN, both the spatial adjacency matrix and learnable parameter matrix are
updated iteratively, enabling the self attention of each edge aij to reflect the visibility of each body part.

Afterwards, we employ fully connected layer to merge all the features F̃e ∈ R
n×d into a d-dimensional

feature vector. The resulting enriched features are then utilized as an input to the classification network
which predicts the final classification score and regresses the location of the bounding box.

4 Experimental results

Datasets. We perform experiments on three datasets: CityPersons [1], Caltech [34], and CrowdHu-
man [35]. The CityPersons dataset [1] consists of 2975 training, 500 validation, and 1525 test images.
The Caltech dataset [34] contains 11 sets of videos. The first 6 sets (0–5) are used for training, and the



Xie J, et al. Sci China Inf Sci February 2021 Vol. 64 120103:8

Table 1 Impact of integrating our intra-part (Intra-Part Co) and inter-part (Inter-Part Co) co-occurrence into the baseline on

the CityPersons validation seta)

Baseline (PD) Intra-Part Co (Subsection 3.2.1) Inter-Part Co (Subsection 3.2.2) R HO

X – – 13.8 56.8

X X – 11.8 53.1

X – X 12.5 52.1

X X X 10.6 50.2

a) Performance is reported in terms of log-average miss rates (%) and the best results are boldfaced. Our final PSC-Net that

integrates both the intra-part and inter-part co-occurrence achieves consistent improvement in performance, with gains of 3.2% and

6.6% on the R and HO sets, respectively, over the baseline.

last 5 sets (6–10) are used for test. To get a large amount of training data, we sample the videos with
10 Hz. Consequently, the training sets consist of 42782 images in total.

The CrowdHuman dataset [35] is one the challenging datasets in crowd scenarios. The training,
validation, and test sets contain 15000, 3870, and 5000 images, respectively. On average, there are more
than 20 persons in each image.

Evaluation metrics. We report the performance using log-average miss rates (MR) throughout our
experiments. Here, MR is computed over the false positive per image (FPPI) range of [10−2, 100] [34]. On
CityPersons, we report the results on two different occlusion degrees: reasonable (R) and heavy occlusion
(HO). For both R and HO sets, the height of pedestrians is larger than 50 pixels. The visibility ratio
in R set is larger than 65% whereas in HO it ranges from 20% to 65%. In addition to these sets, the
results are reported on combined (R+HO) set on Caltech. On CrowdHuman, we report the results on
all pedestrians.

Implementation details. For all the datasets, we train our network on one NVIDIA GPU with the
mini-batch consisting of two images per GPU. Adam [36] solver is selected as the optimizer. For CityPer-
sons, we fine-tune the pre-trained ImageNet VGG model [37] on the training set of the CityPersons. We
follow the same experimental protocol as in [1] and employ two fully connected layers with 1024 instead
of 4096 output dimension. The initial learning rate is set to 10−4 for the first 8 epochs, and is then
decayed by a factor of 10 for another 3 epochs. For Caltech, we start with a model that is pre-trained on
CityPersons. An initial learning rate of 10−5 is used for the first 2 training epochs and is then decayed
to 10−6 for another 1 training epoch. For CrowdHuman, we choose the same backbone network (i.e.,
ResNet50+FPN) as in [8, 35] for fair comparison. In addition, we follow the same experimental protocol
as in [8, 35].

4.1 CityPersons dataset

Baseline comparison. As stated in Section 3, the core of the proposed pedestrian detection method
is the PSC module which explicitly captures both intra-part (Subsection 3.2.1) and inter-part (Subsec-
tion 3.2.2) co-occurrence information of different body parts. For fair comparison, all results in Table 1
are reported by using the same set of ground-truth pedestrian examples during training. All ground-
truth pedestrian examples which are at least 50 pixels tall with visibility > 65% are utilized for training.
Further, the input scale of 1.0× is employed during this experiment. Table 1 shows that the integration
of each component into the baseline results in consistent improvement in performance. Further, our
final PSC-Net that integrates both the intra and inter-part co-occurrence achieves absolute gains of 3.2%
and 6.6% on the R and HO sets, respectively, over the baseline. These results demonstrate that both
components are required to obtain optimal performance.

We also conduct an experiment by replacing our PSC module with part occlusion-aware RoI (PORoI)
pooling unit of [15] in our framework. Note that PORoI utilizes VBB information to obtain part labels.
For fair comparison, results are reported using the same settings. Our PSC-Net achieves improved results
(10.6% on the R set and 50.2% on the HO set) compared with the baseline with PORoI (12.4% on the
R set and 54.5% on the HO set) in terms of log-average miss rates.

State-of-the-art comparison. Here, we perform a comparison of our PSC-Net with state-of-the-art
pedestrian detection methods in the literature. Table 2 [5, 8, 9, 12–15, 17, 38, 39] shows the comparison
results on the CityPersons validation set. Note that existing approaches utilize different sets of ground-
truth pedestrian examples for training. For fair comparison, we therefore select the same set of ground-
truth pedestrian examples (denoted as data (visibility) in Table 2) and input scale, when performing
a comparison with each state-of-the-art method. One can see from Table 2 that our PSC-Net achieves
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Table 2 Comparison with the state-of-the-art (in terms of log-average miss rates (%)) on the CityPersons validation seta)

Methods Data (visibility) (%) Input scales R HO

TLL [38] – 1× 14.4 52.0

F.RCNN+ATT-part [14] 1× 16.0 56.7

F.RCNN+ATT-vbb [14]

> 65

1× 16.4 57.3

Repulsion loss [17] 1× 13.2 56.9

Adaptive-NMS [8] 1× 11.9 55.2

MGAN [13] 1× 11.5 51.7

PSC-Net (ours) 1× 10.6 50.2

OR-CNN [15] 1× 12.8 55.7

MGAN [13] > 50 1× 10.8 46.7

PSC-Net (ours) 1× 10.3 44.9

ALFNet [5] 1× 12.0 52.0

CSP [39]

> 0

1× 11.0 49.3

MGAN [13] 1× 11.3 42.0

PSC-Net (ours) 1× 10.5 39.5

Repulsion Loss [17] 1.3× 11.5 55.3

Adaptive-NMS [8]

> 65

1.3× 10.8 54.0

MGAN [13] 1.3× 10.3 49.6

PSC-Net (ours) 1.3× 9.8 48.3

OR-CNN [15] 1.3× 11.0 51.3

MGAN [13] > 50 1.3× 9.9 45.4

PSC-Net (ours) 1.3× 9.6 43.6

Bi-box [9] 1.3× 11.2 44.2

FRCN +A +DT [12]

> 30

1.3× 11.1 44.3

MGAN [13] 1.3× 10.5 39.4

PSC-Net (ours) 1.3× 9.9 37.2

a) In each case, the best results are boldfaced. Our PSC-Net achieves superior performance on both the R and HO sets,

compared with existing methods. When using the same input scale (1.3×), training data visibility (> 30%), and backbone (VGG),

PSC-Net provides absolute gains of 7.1% and 2.2% over FRCN +A +DT [12] and MGAN [13], respectively, on the HO set.

the best performance on all these settings for both R and HO sets compared with the state-of-the-art
methods.

Specifically, when using an input scale of 1× and data visibility (> 65%), the attention-based ap-
proaches of F.RCNN+ATT-part [14] and F.RCNN+ATT-vbb [14], obtain log-average miss rates of
(16.0%, 56.7%) and (16.4%, 57.3%) on the R and HO sets, respectively. The work of [17] based on
Repulsion Loss obtains log-average miss rates of 13.2% and 56.9% on the R and HO sets, respectively.
The Adaptive-NMS approach [8] that applies a dynamic suppression threshold and learns density scores
obtains log-average miss rates of 11.9% and 55.2% on the R and HO sets, respectively. MGAN [13] learns
a spatial attention mask using VBB information to modulate full body features and achieves log-average
miss rates of 11.5% and 51.7% on the R and HO sets, respectively. Our PSC-Net outperforms MGAN,
without using VBB supervision, on both sets with log-average miss rates of 10.6% and 50.2% on the R and
HO sets, respectively. When using the same data visibility but 1.3× input scale, Adaptive-NMS [8] and
MGAN [13] achieve log-average miss rates of 54.0% and 49.6% on the HO set, respectively. In addition,
Adaptive-NMS and MGAN report 10.8% and 10.3% on the R set. PSC-Net achieves the best results
with log-average miss rates of 9.8% and 48.3% on the R and HO sets, respectively. On this dataset, the
best existing results of 39.4% are reported [13] on the HO sets, when using an input scale of 1.3× and
data visibility (> 30%). Our PSC-Net outperforms the state-of-the-art [13] with log-average miss rates
of 37.2%.

Table 3 [1, 8, 13, 15, 17, 40] shows the comparison on CityPersons test set. Among existing methods,
the multi-stage Cascade MS-CNN [40] consisting of a sequence of detectors trained with increasing IoU
thresholds obtains log-average miss rates of 47.1% on the HO set. MGAN [13] obtains log-average miss
rates of 41.0% on the same set. Our PSC-Net significantly reduces the error by 4.0% over MGAN on the
HO set.

Computational complexity and inference speed. The computational complexity and test time of
our proposed PSC-Net are reported in Table 4. For a fair comparison, the test time of both the baseline
and our PSC-Net is measured on a single NVIDIA V100 GPU. For a 1024 × 2048 input, our PSC-Net
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Table 3 State-of-the-art comparison (in terms of log-average miss rates (%)) on CityPersons test seta)

Method R HO

Adaptive faster RCNN [1] 13.0 50.5

MS-CNN [40] 13.3 51.9

Rep. loss [17] 11.5 52.6

OR-CNN [15] 11.3 51.4

Cascade MS-CNN [40] 11.6 47.1

Adaptive-NMS [8] 11.4 –

MGAN [13] 9.3 41.0

PSC-Net (ours) 9.3 37.0

a) The test set is withheld and results are obtained by sending our PSC-Net detection predictions for evaluation to the authors

of CityPersons [1]. Our PSC-Net outperforms existing methods on both the R and HO sets. On the heavy occlusion HO set,

PSC-Net achieves an absolute gain of 4.0% over the state-of-the-art [13]. In each case, the best results are boldfaced.

Table 4 Comparison of the proposed PSC-Net with the baseline in terms of the running time for detecting a 1024×2048 image

Method Test time (s)
MR−2

R HO

Baseline 0.13 13.8 56.8

PSC-Net 0.17 10.6 50.2

Table 5 State-of-the-art comparison (in terms of log-average miss rates (%)) on Caltech test seta)

Detector Occlusion handling R HO R+HO

CompACT-Deep [41] × 11.8 65.8 24.6

MCF [42] × 10.4 66.7 22.9

ATT-vbb [14] X 10.3 45.2 18.2

MS-CNN [31] × 10.0 59.9 21.5

SA-F.RCNN [43] × 9.7 64.4 21.9

RPN+BF [44] × 9.6 74.4 24.0

FRCN+A+DT [12] X 8.0 37.9 –

GDFL [45] × 7.9 43.2 15.6

Bi-Box [9] X 7.6 44.4 16.1

SDS-RCNN [16] × 7.4 58.6 19.7

MGAN [13] X 6.8 38.2 13.8

AR-Ped [7] × 6.5 48.8 16.1

PSC-Net (ours) X 6.4 34.8 12.7

a) The best results are boldfaced in each case. Our PSC-Net provides consistent improvements (over) on all sets. On the HO

set, PSC-Net outperforms the best reported results [13] by reducing the error from 37.9% to 34.8%.

takes 0.17 s whereas the baseline takes 0.13 s. The log-average miss rates of the proposed PSC-Net and
the baseline are 50.2% and 56.8% on the HO sets, respectively. The proposed method outperforms the
baseline by 6.6%. Compared with the baseline, our PSC-Net only has additional 0.04 s for one image
in CityPersons validation set. Therefore, it can be concluded that the proposed PSC module results in
much lower miss rate at the cost of slight computational burden. The computational complexity of the
PSC-Net is limited owing to the following factors. (1) The spatial size of the RoI features is 7 × 7 and
hence the size of the adjacency matrix for the intra-part co-occurrence is as small as 49 × 49. (2) A
pedestrian is divided into six parts and so the adjacency matrix for the inter-part co-occurrence is only
6× 6. (3) By an efficient 1× 1 convolutional layer, the channel number of the RoI features is reduced to
256 for the full body and 64 for each part.

4.2 Caltech dataset

Table 5 [7, 9, 12–14, 16, 31, 41–45] shows the comparison on Caltech test set under three sets: R, HO,
and R+HO. Among existing methods, ATT-vbb [14], Bi-Box [9], FRCN+A+DT [12], and MGAN [13],
address the problem of occlusions by utilizing VBB information. On the R, HO, and R+HO subsets, AR-
Ped [7], FRCN+A+DT [12], and MGAN [13] report the best existing performance, respectively. PSC-Net
achieves superior detection performance on all three subsets with log average miss rates of 6.4%, 34.8%,
and 12.7%, respectively. It is concluded from Table 5 that the proposed PSC-Net significantly outperforms
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(a)

(b)

(c)

Figure 6 (Color online) Qualitative detection comparison of (c) PSC-Net with (a) AR-Ped [7] and (b) MGAN [13] under occlusions

on Caltech test images. Here, all detection results are obtained using the same false positive per image criterion. The red boxes

denote the ground-truth whereas the detector’s predictions are marked in green.

Table 6 Comparison (in log-average miss rates (%)) on the CrowdHuman dataseta)

Method MR

FPN [35] 50.4

FPN+Adaptive NMS [8] 49.7

FPN+PSC-Net (ours) 45.9

a) The best results are boldfaced.

existing state-of-the-art methods.

Figure 6 visualizes some examples of the proposed PSC-Net. It is observed that AR-Ped [7] and
MGAN [13] do not detect some pedestrians when there are heavy occlusions whereas our method can
successfully find the pedestrians (e.g., the column 4 of Figure 6). Moreover, the location precision of
PSC-Net is better than that of AR-Ped and MGAN (e.g., the first column of Figure 6).

4.3 CrowdHuman dataset

Finally, the proposed method is compared with FPN [35] and FPN+Adaptive NMS [8] on the CrowdHu-
man dataset. For fair comparison, all the three methods including PSC-Net employ the same backbone
network of ResNet50+FPN. The results are given in Table 6. The log-average miss rates of FPN [31],
FPN+Adaptive NMS [29], and the proposed PSC-Net are 50.4%, 49.7%, and 45.9%, respectively. The
proposed method outperforms FPN and FPN+Adaptive NMS by 4.5% and 3.8%, respectively. The
results on the CrowdHuman dataset also demonstrate the superiority of the proposed method where
intra-part and inter-part spatial co-occurrence is adopted with graph convolutional networks.
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5 Conclusion

We have presented a two-stage approach, PSC-Net, for occluded pedestrian detection. The proposed
PSC-Net consists of a standard pedestrian detection branch and a PSC module. The key of PSC-Net
is that the PSC module is capable of capturing both intra-part and inter-part spatial co-occurrence of
different body parts through GCN. The PSC module only requires standard full body supervision and
exploits the topological structure of pedestrians. Experiments have been conducted on three popular
datasets: CityPersons, Caltech, and CrowdHuman. The results clearly demonstrate that the proposed
PSC-Net significantly outperforms the baseline in all cases. Further, the PSC-Net sets a new state-of-
the-art on all the datasets.
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